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Using chaos indicators to determine vaccine influence on epidemic stabilization
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Virus outbreaks have the potential to be a source of severe sanitarian and economic crisis. We propose
a new methodology to study the influence of several parameter combinations on the dynamical behavior of
simple epidemiological compartmental models. Using this methodology, we analyze the behavior of a simple
vaccination model. We find that for susceptible-infected-recovered (SIR) models with seasonality and natural
death rate, a new vaccination can reduce the chaoticity of epidemic trajectories, even with nonvaccinated adults.
This strategy has little effect on the first infection wave, but it can stop subsequent waves.
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I. INTRODUCTION

The COVID-19 pandemic caused a sanitarian and eco-
nomic crisis across the planet. For this reason, the prediction
of new epidemics and fast response strategies are fundamental
to prevent potentially catastrophic events [1]. Vaccination,
when available, is a powerful method to fight epidemics
caused by virus outbreaks [2]. Unfortunately, vaccination
campaigns can be slowed down for several factors, like pol-
itics, popular hesitance, and speed of production, among
others. These factors can prevent all the population to get
vaccinated and therefore become immune to the virus. Public
agents must take into account these limitations and provide the
best vaccination strategy to the population. With this goal in
mind, the behavior of epidemics must be understood in detail.

Compartmental models, such as susceptible-infected-
recovered (SIR) and its variations, can be described by a few
quantities that can be statistically estimated and combined into
a single parameter called the basic reproduction number R0.
These models can be adapted to consider additional effects
as natural death and seasonality with the inclusion of new
parameters, as the natural death rate μ and the degree of
seasonality δ. Nevertheless, these models must be studied
in detail, as even simple ones can be chaotic, losing their
predictive power [3–5]. Several authors have focused on the
dynamical properties of these nonlinear equations using stan-
dard tools of the field. Several authors, like Zhang et al. [6]
and Kamo and Sasaki [7], study the dynamical behavior of
such systems using standard tools as Lyapunov exponents and
bifurcation diagrams. These works show that the influence of
the degree of seasonality δ can lead to chaos.
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Methods from different areas can provide new information
on epidemics caused by virus outbreaks. We propose to use
grid classification, a technique used to explore the dynamics
of orbital motion in celestial dynamics [8]. This method pro-
vides a fast way to study the epidemic evolution according to
the parameters involved in the model. Also, the color-coded
basin diagrams are useful to analyze the possible outcome
from response strategies employed to fight present or future
diseases.

The development of vaccines is an essential component of
any virus-control strategy, as pointed out by Paltiel et al. [9]
Vaccines reduce susceptibility among the uninfected and viral
spread in those who are infected, providing direct and indirect
protection. Regarding an epidemic situation, the question is
how vaccination impacts the trajectory of disease progression.
These trajectories are strongly dependent on different factors,
such as the biological response, production, and distribution
time, among others.

In this work, we employ a SIR model with natural death
rate and seasonality and complement the model introducing
vaccination. Our goal is to understand the influence of vac-
cination on the stabilization and mitigation of epidemics. We
investigate how vaccination can reduce the quantity of chaotic
epidemics trajectories and the maximum number of infected
individuals. The SIR model is very simple and uses assump-
tions that are not valid for several real cases. Nevertheless,
although we chose a very simple model, grid classification
is a powerful method that can be adapted for more complex
models with any number of parameters.

II. MODEL AND METHODS

In this work, we use an adapted SIR models to study
seasonality and vaccine benefits for different epidemics. The
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original SIR model proposed by Kermack and McKendrick
[10] is one of the more simple compartmental models in
epidemiology. In this model, the population, composed of a
total of N individuals, is divided into three classes, or com-
partments, called “susceptible,” “infective,” and “recovered.”
The classic epidemic model is given by the following set of
differential equations:

dS

dt
= −β

IS

N
, (1)

dI

dt
= β

IS

N
− γ I, (2)

dR

dt
= γ I, (3)

where S, I , and R are respectively the number of susceptible,
infected, and recovered individuals; β is the transmission rate;
and γ is the recovery rate. This model does not consider any
deaths, so S(t ) + I (t ) + R(t ) = N is constant.

We denote the fraction of N on each compartment respec-
tively by s = S/N , i = I/N , and r = R/N . The parameters
β and γ can be combined into a single quantity known as
the basic reproduction number R0 = β/γ . Performing a time
scaling tnew = γ told, the classical model is now given by

ds

dt
= −R0is, (4)

di

dt
= R0is − i, (5)

dr

dt
= i, (6)

where s(t ) + i(t ) + r(t ) = 1.
The original SIR model can be complemented to accom-

modate several effects such as natural death and seasonality.
We will adapt the procedure from Aron and Schwartz [11] for
the susceptible-exposed-infected-recovered (SEIR) model. In
this case, other parameters are introduced: the natural death
rate μ and the degree of seasonality δ. The equations are given
by

ds

dt
= −R0[1 + δ sin(2πωt )]is − μs + μ, (7)

di

dt
= R0[1 + δ sin(2πωt )]is − i − μi, (8)

dr

dt
= i − μr, (9)

where ω = 1/γ is the inverse of the mean infection time. In
this model, we are following the work by Aron and Schwartz
and considering the seasonality period as the original time
unit. This model also considers that the number of individuals
N is constant, so the number of deceased individuals is com-
pensated by the same number of newborns. We assume that
these newborns start as susceptible individuals, even if their
parents are infected. The number of deaths is an important fac-
tor to be considered in the first phases of new epidemics like
COVID-19. Several countries reported excess deaths when
comparing with the same period before and after this virus
outbreak. Even in a normal situation, the assumption that N is
constant can be disputed due to fluctuations in the total num-
ber of individuals caused by external factors. Some time after

the first outbreak the population reaches a new equilibrium,
as the remaining individuals are more resistant, which does
not mean that the virus is gone. There is a possibility that the
disease becomes endemic, and new infection waves can occur.
In this work, we will consider such new waves caused by an
endemic disease.

The quantity R0 does not have a minimum value but in gen-
eral is considered to be larger than 1, as epidemic trajectories
with R0 � 1 tend to disappear. There is also no upper limit
for R0, but from all known diseases, like measles, the larger
values are R0 ≈ 12–18. We consider R0 in the interval [1,40].
Nowadays there are no known diseases with such large R0. On
the other hand, several types of virus, including coronavirus,
are very likely to suffer mutations, and several new variants
are the object of concern as they present a larger R0, spreading
more rapidly. Even if it is unlikely, it is possible that we may
have a virus with high R0.

For the natural death rate, we shall use μ = 0.01 as used
by Kamo and Sasaki [7]. The degree of seasonality, used to
introduce a time variation in the reproduction number, must
lie in the range [0,1).

There are several propositions to include vaccination on
SIR models [12,13]. For this work, we chose a simple but
realistic one to study the influence of this virus-control method
on the system dynamics. That models use includes a fourth
compartment for vaccinated individuals, with the fraction v of
the population given by v. The equations depend on a fixed
vaccination rate, denoted by p. The equations are given by

ds

dτ
= −R0[1 + δ sin(2πωt )]is − μs + (1 − p)μ, (10)

di

dτ
= R0[1 + δ sin(2πωt )]is − i − μi, (11)

dr

dτ
= i − μr, (12)

dv

dτ
= pμ − μv. (13)

It is important to observe that in this model only newborns are
vaccinated, so the vaccination rate must range in the interval
[0,1]. In the case p = 0 no individuals get vaccinated, and we
get the original SIR model. In this case, p = 1 all newborns
are vaccinated, so they are no longer exposed to the disease.
Nevertheless, the original population is always susceptible.
The deceased individuals are then replaced by the same num-
ber of newborns that can be vaccinated or not. Not vaccinated
newborns are counted as susceptible.

The study of dynamical behavior for epidemiological sys-
tems consists of the analysis of the influence of different
parameters on the dynamics. Usually, every parameter is
studied separately, considering all the others fixed. Although
this approach is correct, it can miss interesting features from
different parameter combinations. To study the influence of
different combinations of parameters it is useful to consider
multi-dimensional displays. We propose the use of grid clas-
sification [8], in which different trajectories are classified
according to their properties and the results are plotted on
a two-dimensional display. In this approach, we perform the
numerical integration of several epidemic trajectories using
a different combination of the parameters involved in the
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model. All trajectories are integrated using the same set of
initial conditions. For this work we consider s0 = 0.9999, i0 =
0.0001, r0 = 0, and v0 = 0 (for vaccination), representing a
population with a very small fraction of infected individuals.
We also consider a fixed natural death rate of μ = 0.01 and a
mean infection rate such that ω = 0.02. The other parameters
are studied in their range to investigate their influence on the
system dynamics.

One important property for SIR models is stability. To
classify if the system based on a determined set of parameters
is chaotic, there are several methods available. In this work,
we use smaller alignment index (SALI) [14] to perform the
classification, as it is reliable and faster than other methods,
such as Lyapunov exponents. According to this method, the
system is chaotic if SALI < 10−8 and regular if SALI >

10−4. For 10−8 � SALI � 10−4 the results are inconclusive
and further numerical integration is needed. The SIR model
with seasonality and the normal death rate is described by
three parameters, namely the basic reproduction number R0,
the degree of seasonality δ, and the natural death rate μ. We
investigate the influence of R0 and δ on the system dynamics
and perform a classification according to the chaoticity.

Another important feature is the maximum number of in-
fected individuals of a given epidemic trajectory. According
to the SIR models, the number of infected individuals reaches
a maximum that depends on the parameters involved in the
model. Grid classification can be used to classify different
epidemic trajectories according to this number. In this work,
we perform the classification using the first wave of infection
according to subsequent waves. The first wave is more severe,
with a great number of infected individuals. The following
infection waves, in SIR models, are much lower. We generate
grid classification diagrams and investigate the influence of
these quantities on vaccination rate p and reproduction num-
ber R0.

Although the SIR model is a standard in epidemiology, this
model has severe limitations [15]. It makes several simplify-
ing assumptions about the population, such as homogeneous
mixing, absence of migration, and so on. Also, the parameters
do not allow for the quantification of uncertainty in model pa-
rameters. As the parameters are not known with any precision,
more complex models can demonstrate the uncertainty in pro-
jections. The actual effect of social distancing, for example,
is often unknown. The vaccination model incorporated in the
SIR model is also a simplification. It simply removes from
the susceptible compartment vaccinated individuals, assuming
that they can never be infected. It does not take into account
the effectiveness or the validity period of the vaccine. These
parameters can be incorporated into more complex models
[9].

III. RESULTS

In Fig. 1 we show the stability classification for different
combinations of the parameter R0 in the interval [1,40] and δ

in the interval [0,0.2]. It is possible to observe that the diagram
structure is nontrivial. The main chaotic region lies in the
region with high R0 and low δ, including larger values of δ

as R0 increases. Nevertheless, there are also several chaotic
“islands” outside of this main region. These small regions

FIG. 1. SIR model with natural death rate and seasonality. R0

is the basic reproduction number and δ is the seasonality degree.
SALI < 10−8 regions correspond to chaotic systems. For this dia-
gram we use μ = 0.01 and ω = 0.02.

become larger as R0 increases, and have very small SALI,
indicating great sensibility to initial conditions.

The influence of vaccination can be found in Fig. 2. Each
diagram is generated considering a different vaccination rate,
p = 0.1, p = 0.3, p = 0.5, and p = 0.7. As the vaccination
rate increases the chaotic “islands” become smaller, as the
main chaotic region for small δ. This result implies that sev-
eral epidemic trajectories that were chaotic become stable
when newborn vaccination is included. So the introduction of
vaccination provides a stabilization of this SIR model.

The classification based on the maximum number of in-
fected individuals imax for the first and subsequent epidemic
waves can be found in Fig. 3. In Fig. 3(a) the equal color line
inclination show that, in addition to the well-known depen-
dency on R0, as δ increases imax also increases. In Fig. 3(b) a
different pattern can be observed. It indicates that now smaller
values of R0 have larger imax and have the same dependency
on δ.

The introduction of vaccination brings some interesting
information on the maximum number of infected individu-
als, as can be seen in Fig. 4. Figure 4(a) shows that this
number depends on R0 as expected, but it does not have a
visible dependency on p, as the lines with equal colors are
vertical. For the subsequent waves in Fig. 4(b) it is possible
to observe that there is a nontrivial dependence on p. In
particular, it is possible to observe that, when the vaccination
reaches a threshold value for each R0 subsequent waves are
fully contained.

IV. DISCUSSION

Evidently, most of the real-known diseases do not present
chaotic behavior in this model, as they have low R0. But there
are diseases such as measles [16] that can have R0 = 18, and
unknown diseases can have an even lager reproduction num-
ber. These diseases can present chaotic behavior depending
on the seasonality degree. The structure of the chaotic region
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FIG. 2. Vaccination effect on stability of SIR models for different combinations of R0 and δ, for vaccination rates (a) p = 0.1, (b) p = 0.3,
(c) p = 0.5, and (d) p = 0.7. As p increases, the systems become more stable. For all these diagrams we use μ = 0.01 and ω = 0.02.

in the SIR model is nontrivial, as can be seen in Fig. 1, so
the study of the two parameters separately can lead to wrong
conclusions. In addition to the chaotic region with high R0

and low δ, there are several “islands” in that parameter space
corresponding to chaotic epidemic trajectories.

When we introduce vaccination several formerly chaotic
regions become stable, as can be seen in Fig. 2. Even the
isolated “islands” of chaos tend to vanish when vaccination
is introduced. We can conclude that in the context of this sim-
plified model that vaccination of newborns is able to control

FIG. 3. Maximum number of infected individuals for (a) the first wave and (b) subsequent waves of epidemic infection without vaccination.
In these diagrams we consider μ = 0.01 and ω = 0.02.
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FIG. 4. Maximum number of infected individuals for (a) the first wave and (b) the subsequent waves of the epidemics for δ = 0.05. Note
that the number is independent of the vaccination rate p for the first wave, but for subsequent waves there is a nontrivial influence of p. In these
diagrams we consider μ = 0.01 and ω = 0.02 and δ = 0.05.

chaos in most of the epidemic trajectories. The less chaotic,
the more predictable the models are, as they lose their sensi-
bility to initial conditions. This is an unexpected benefit from
a vaccination as a strategy of epidemics control. The vacci-
nation influence on stabilization of epidemics was the object
of several studies, but the grid classification provides a more
complete analysis for different scenarios. This is essential for
models that depend on several parameters.

Considering the maximum number of infected individuals,
it is clear from Fig. 3 that R0 controls the dynamics, but the
degree of seasonality δ has an influence on the number of
individuals that get infected by the disease. This is expected as
the effect of seasonality is to change the effective value of the
reproduction number. As δ increases, the reproduction number
achieves larger values and more individuals get infected. Also,
we can see that the maximum number of infections for subse-
quent waves is greater for smaller reproduction numbers. This
is explained by the fact the for large R0 most of the individuals
are infected in the first wave.

The introduction of vaccination has little effect on the first
wave of infection, as can be seen in Fig. 4(a). This is also
expected as our model assumes only the vaccination of new-
borns, which occur at a much smaller rate than the number of
new infections. On the other hand, when we study subsequent

infection waves, as in Fig. 4(b), we obtain a very different pic-
ture. We can see a very clear influence of vaccination, as the
number of subsequent infections becomes zero for sufficiently
large values of the vaccination rate p. For larger R0, a higher
fraction of newborns must be vaccinated in order to control the
epidemic. In this case, the grid classification allows obtaining
the threshold value for the vaccination rate in order to contain
further infection waves for each epidemic.

In conclusion, we show that vaccination, when available,
is a key strategy for the control of epidemics caused by
virus outbreaks. The benefits of the vaccination go beyond
controlling the number of infections. It is also useful so the
epidemic becomes predictable and other control strategies can
be combined. This is an essential matter for any policy of
public health.

ACKNOWLEDGMENTS

This work was funded by the Deanship of Scientific Re-
search (DSR) at King Abdulaziz University under Grant No.
FP-116-42. The authors express their warmest thanks to the
two anonymous reviewers for the careful reading of the article
and also for all the apt suggestions and comments that allowed
us to improve both the quality and the clarity of our work.

[1] A. M. André, A. Lopez, S. Perkins, S. Lambert, L. Chace, N.
Noudeke, A. Fall, and B. Pedalino, Frontline field epidemiology
training programs as a strategy to improve disease surveillance
and response, Emerg. Infect. Dis. 23, S166 (2017).

[2] C. Lahariya, Vaccine epidemiology: A review, J. Family Med.
Prim. Care 5, 7 (2016).

[3] T. D. Rogers, Z.-c. Yang, and L.-w. Yip, Complete chaos in a
simple epidemiological model, J. Math. Biol. 23, 263 (1986).

[4] P. Glendinning and L. P. Perry, Melnikov analysis of chaos in a
simple epidemiological model, J. Math. Biol. 35, 359 (1997).

[5] S. Mangiarotti, M. Peyre, Y. Zhang, M. Huc, F. Roger, and
Y. Kerr, Chaos theory applied to the outbreak of Covid-19:

An ancillary approach to decision-making in pandemic context,
Epidemiol Infect. 148, e95 (2020).

[6] Y. Zhang, Q. Zhang, F. Zhang, and F. Bai, Chaos anal-
ysis and control for a class of sir epidemic model
with seasonal fluctuation, Int. J. Biomath. 6, 1250063
(2013).

[7] M. Kamo and A. Sasaki, The effect of cross-immunity and
seasonal forcing in a multi-strain epidemic model, Physica D
165, 228 (2002).

[8] E. E. Zotos and A. F. Steklain, On the nature of the motion of
a test particle in the pseudo-Newtonian Hill system, Astrophys.
Space Sci. 364, 184 (2019).

032212-5

https://doi.org/10.3201/eid2313.170803
https://doi.org/10.4103/2249-4863.184616
https://doi.org/10.1007/BF00276961
https://doi.org/10.1007/s002850050056
https://doi.org/10.1017/S0950268820000990
https://doi.org/10.1142/S1793524512500635
https://doi.org/10.1016/S0167-2789(02)00389-5
https://doi.org/10.1007/s10509-019-3668-z


STEKLAIN, AL-GHAMDI, AND ZOTOS PHYSICAL REVIEW E 103, 032212 (2021)

[9] A. D. Paltiel, J. L. Schwartz, A. Zheng, and R. P. Walensky,
Clinical outcomes of a COVID-19 vaccine: Implementation
over efficacy, Health Affairs 40, 42 (2021).

[10] W. O. Kermack and A. G. McKendrick, A contribution to the
mathematical theory of epidemics, Proc. Roy. Soc. Lond. Ser.
A 115, 700 (1927).

[11] J. L. Aron and I. B. Schwartz, Seasonality and period-doubling
bifurcations in an epidemic model, J. Theor. Biol. 110, 665
(1984).

[12] S. Chauhan, O. P. Misra, and J. Dhar, Stability analysis of sir
model with vaccination, Am. J. Comput. Appl. Math. 4, 17
(2014).

[13] S. Gao, Z. Teng, and D. Xie, Analysis of a delayed SIR epi-
demic model with pulse vaccination, Chaos Solitons Fract. 40,
1004 (2009).

[14] C. Skokos, Alignment indices: A new, simple method for deter-
mining the ordered or chaotic nature of orbits, J. Phys. A: Math.
Gen. 34, 10029 (2001).

[15] J. Tolles and T. Luong, Modeling epidemics with compartmen-
tal models, J. Am. Med. Assoc. 323, 2515 (2020).

[16] F. M. Guerra, S. Bolotin, G. Lim, J. Heffernan, S. L. Deeks, Y.
Li, and N. S. Crowcroft, The basic reproduction number (r0)
of measles: A systematic review, Lancet. Infect. Dis. 17, e420
(2017).

032212-6

https://doi.org/10.1377/hlthaff.2020.02054
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1016/S0022-5193(84)80150-2
https://doi.org/10.5923/j.ajcam.20140401.03
https://doi.org/10.1016/j.chaos.2007.08.056
https://doi.org/10.1088/0305-4470/34/47/309
https://doi.org/10.1001/jama.2020.8420
https://doi.org/10.1016/S1473-3099(17)30307-9

