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Stopping a reaction-diffusion front
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We revisit the problem of pinning a reaction-diffusion front by a defect, in particular by a reaction-free region.
Using collective variables for the front and numerical simulations, we compare the behaviors of a bistable and
monostable front. A bistable front can be pinned as confirmed by a pinning criterion, the analysis of the time
independent problem, and simulations. Conversely, a monostable front can never be pinned, it gives rise to a
secondary pulse past the defect and we calculate the time this pulse takes to appear. These radically different
behaviors of bistable and monostable fronts raise issues for modelers in particular areas of biology, as for
example, the study of tumor growth in the presence of different tissues.
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I. INTRODUCTION

Reaction-diffusion equations are general models for active
chemical reactions like combustion [1], see the book by Scott
[2] for examples, or the review [3]. In biology, while these
equations are ubiquitous in population dynamics or popula-
tion genetics, they are also used in a variety of problems
such as nerve impulse propagation in an axon or growth of
a cancer tumor [4], see the general book by Murray [5]. These
equations have a number of stationary solutions. In the physics
context, the models have three stationary solutions, two stable
and one unstable, they are termed bistable. In biology, the
bistable model can be used to describe the growth of a popu-
lation. Still, the main model remains the one that describes the
wave of advance of an advantageous gene like in the seminal
paper [6]. It only has two stationary states, one stable and
another unstable; it is called monostable. The normal forms
of these two different reaction terms are cubic for the bistable
and quadratic for the monostable. Mostly the study of these
two nonlinearities gives the qualitative picture for almost all
other nonlinearities.

Important dynamical solutions are the fronts [in one di-
mension (1D)] that connect two such stationary solutions.
In two dimensions (2D) and three dimensions (3D), assum-
ing radial symmetry, fronts describe the interface of “blobs”
where the inside has one state and the outside another. Fronts
have a speed that is proportional to the square root of the
diffusion times the reaction rate. Many studies dealt with
the stability of such fronts, see [2] for references. Assuming
a front is stable, important parameters are its position and
width, i.e., the spatial extension of the transition region sepa-
rating the two stationary states. These fronts have exact forms
for the bistable [2] and monostable [7] nonlinearities. Using
these solutions as Rayleigh-Ritz type ansatzes, we and other
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authors have derived ordinary differential equations giving
the evolution of the position and width—termed collective
coordinates—whose solutions match remarkably well the full
dynamics, see [8,9] for the bistable case and [10] for the
monostable case.

For many applications it is useful to understand how fronts
respond to perturbations of the environment. Such perturba-
tions can be temporal such as the action of therapy on a cancer
cell [11]. They can also be spatial like a defect in a burning
candle. Such a geographic defect can act on scales larger
or smaller than the front width. In the latter case, the front
adiabatically adapts to the defect and changes its width and
speed accordingly, see for example our study [8] on bistable
fronts. When the defect is narrow compared to the front, a
bistable front can be pinned by the defect [8]. This effect can
also be seen in waveguides whose transverse width abruptly
changes, see the works [12,13].

In this article we revisit the issue of front pinning compar-
ing bistable and monostable fronts. We consider first as defect
a region where the reaction is enhanced or diminished, but
always remains strictly positive. We derive collective variable
approximations for both fronts. A first result is that wide
defects cannot pin any of the two types of fronts. Narrow
defects will pin a bistable front, see the numerics and analysis
of [8]. To understand further the phenomenon, we consider
as defect a no reaction region of a given extension. Using
collective variables for the front, we obtain a pinning criterion
which indicates that static bistable fronts exist in such a region
if it is large enough. This criterion is in excellent agreement
with the solutions of the time-independent problem and the
partial differential equation. Monostable fronts behave very
differently, they can never be pinned. Numerical simulations
show that a monostable front can be delayed and gives rise to
a secondary pulse past the defect which will develop into a
front that will continue to propagate. We calculated the delay
time, i.e., the difference between the arrival at the defect and
the appearance of the secondary pulse, when its maximum
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reaches 0.5. This delay time scales approximately linearly
with the extension of the reaction-free region, in agreement
with a simple calculation based on the diffusion kernel and
the instability rate of the zero stationary solution.

The article is organized as follows. The bistable and
monostable models and their exact solutions are recalled in
Sec. II. Section III presents and discusses the collective vari-
able differential equations for the front position and width.
Sections IV and V detail the front motion in a no reaction
zone for the bistable and monostable models, respectively.
Section VI concludes the article.

II. THE MODEL

In the following we are concerned with the equation

ut = uxx + s(x)R(u),

u(x, 0) = u0(x) (1)

for (x, t ) ∈ R × R∗
+ and u0 a given function with sufficient

regularity. We will study the two canonical types of nonlin-
earities: the monostable one R(u) = u(1 − u) and the bistable
one R(u) = u(1 − u)(u − a) for some 0 < a < 1. To account
for the variable growth rate of the quantity u (chemical den-
sity, population density, etc.), we make use of a reactivity s
that is space dependent and remains positive over the consid-
ered range: s(x) > 0 for every real x. Let us first recall the
theory when s is constant. We recall that in the former case, the
state u∗ = 1 is a stable equilibrium of the associated ordinary
differential equation while u∗ = 0 is an unstable equilibrium.
In the latter, the states u∗ = 0, 1 are stable equilibria while
u∗ = a is unstable.

To carry out our analysis in the next sections, we will
use extensively the fact that exact solutions of Eq. (1) are
known when s is constant. In the bistable case, all traveling
wave solutions are fronts connecting the two stable equilibria.
We choose to consider in the rest of the paper only fronts
going from 1 at −∞ to 0 at +∞. Then all traveling wave
solutions—up to a translation—are of the form

u(x, t ) = Ũbi(x − ct ) = 1

1 + exp
[√ s

2 (x − ct )
] , (2)

where the speed c is known [2] and related to the parameter a
via the formula

c =
√

s

2
(1 − 2a). (3)

To consider only positive speeds, we will restrain—without
loss of generality—our analysis to the range 0 < a < 1

2 . In
this case, the propagation of the front translates as an invasion
of the state 0 by the state 1.

At each time the front is centered around x = ct , this means
u(ct, t ) = Ũbi(0) = 1

2 . We can then define the width w of a
given front by the relation

Ũbi(−w) = 1

1 + e−1
≈ 0.73

or equivalently Ũbi(w) = 1
1+e ≈ 0.27. With that definition we

have here

w =
√

2

s
. (4)

In the monostable case, the situation is somewhat different.
There are traveling wave solutions for a continuum of speeds
c � 2

√
s, and here again traveling wave solutions are fronts

going from 1 at −∞ to 0 at +∞. It is known that asymp-
totically a great number of solutions converge to the front of
minimal speed c = 2

√
s. That is notably the case when u0 is

compactly supported [14]. Only one family of exact solutions
is known [7], they take the form

u(x, t ) = Ũmono(x − ct ) = 1{
1 + K exp

[√ s
6 (x − ct )

]}2 , (5)

where K is a constant and the speed is given by

c = 5

√
s

6
. (6)

We will use this solution with K = √
2 − 1 to ensure that

Ũmono(0) = 1
2 . Here we define the width w of a given front

by the relation

Ũmono(−w) = 1

[1 + (
√

2 − 1)e−1]2
≈ 0.75

or equivalently Ũmono(w) = 1
[1+(

√
2−1)e]2 ≈ 0.22. With that

definition we have

w =
√

6

s
. (7)

Some differences between the bistable case and the monos-
table one are better understood when we see waves in the
bistable case as being pushed by the bulk of the population
distribution and waves in the monostable case wave as being
pulled by the leading edge of the distribution [15].

III. COLLECTIVE VARIABLES

In the model we are interested in, the reactivity s is allowed
to be space dependent. When the variations of s are small, it is
reasonable to expect that the solutions of (1) will remain close
to the solutions in the homogeneous case. This approach is
sometimes called the use of collective variables. First, we can
expect that the front remains close to its original profile but
will move with a modulation of its speed:

u(x, t ) ≈ Ũ [x − c(t )t].

Actually, the numerical simulations indicate that the solution
behavior is better captured through a modulation of its center
x0 and width w:

u(x, t ) ≈ Ũ

(
x − x0(t )

w(t )

)
.

When investigating the evolution of a compactly supported
initial condition, for instance growing from near 0 values, it
can also be useful to allow for a modulation of the amplitude
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in the form of the following ansatz:

u(x, t ) ≈ A(t )Ũ

(
x − x0(t )

w(t )

)
.

This kind of approach is used for instance in [10], where
evolution equations for the collective variables are obtained
through balance laws, just like in [8]. As our goal is to investi-
gate the dynamics of established fronts, and not the evolution
from an initial condition to a generalized traveling front, we
will make no use here of this third collective variable.

That being said, in the context of this paper we will assume
that at order zero we have

u(x, t ) = U [x, x0(t ),w(t )] := (Ũ ◦ z)[x, x0(t ),w(t )], (8)

where Ũ is a given profile and we define z[x, x0(t ),w(t )] =
x−x0(t )

w(t ) . We can compute the time derivative and the second
order space derivative

ut = ẋ0
∂U

∂x0
+ ẇ

∂U

∂w
,

uxx = ∂2U

∂x2
.

The next step is to obtain time evolution equations for the col-
lective variables x0 and w. To that end we follow the procedure
exposed in [8,9]. After the analysis is carried over (details of
the computations are given in Appendix A), we obtain the
system of ordinary differential equations:

ẋ0 = α1

w
+ α2wK0(x0,w, s, R) + α3wK1(x0,w, s, R), (9a)

ẇ = α4

w
+ α5wK0(x0,w, s, R) + α6wK1(x0,w, s, R), (9b)

where the αi are numbers and the integrals Kn are given by

Kn(x0,w, s, R) =
∫ ∞

−∞
zns(wz + x0) R[Ũ (z)]Ũ ′(z) dz. (10)

The integrals Kn are the main driver of the front time evolu-
tion, as we will see in the next sections.

A. Time-evolution equations for the collective variables

In the case of a bistable reaction term R = Rb, we are
always able to compute the integrals because there is unicity
of the profile

Ũ (z) = 1

1 + exp(z)
(11)

and Eqs. (9) reduce to

ẋ0 = −6wK0(x0,w, s, Rb), (12a)

ẇ = 3

2(π2 − 6)w
− 18

π2 − 6
wK1(x0,w, s, Rb). (12b)

These equations were obtained by Dawes and Susanto [9].
In the case of a monostable reaction term R = Rm, we are

able to explicitly compute the integrals only when the profile
Ũ is known. This is especially the case if we consider the
simplest following ansatz:

Ũ (z) = 1

[1 + (
√

2 − 1)exp(z)]2
, (13)

which is an exact solution of (1) when s is constant. Then
Eqs. (9) give a system similar to (12) though a bit more
intricate:

ẋ0 = α1

w
+ α2wK0(x0,w, s, Rm) + α3wK1(x0,w, s, Rm ),

(14a)

ẇ = α4

w
+ α5wK0(x0,w, s, Rm) + α6wK1(x0,w, s, Rm),

(14b)

and the constants are (see Appendix B for the definitions of
the Ik)

α1 = 90I1

85 − 12π2
≈ −0.026, α2 = 900I2

85 − 12π2
≈ −5.0,

α3 = 900I1

12π2 − 85
≈ 0.26, α4 = 18

12π2 − 85
≈ 0.54,

α5 = 900I1

12π2 − 85
≈ 0.26, α6 = 180

85 − 12π2
≈ −5.4.

B. Defect wide compared to the front width

For a defect that varies on a scale longer than w, s(x0 +
wz) ≈ s(x0), so that s goes out of the integral, allowing us
to take the computation one step further. We obtain for the
bistable case

ẋ0 = 1 − 2a

2
ws(x0),

ẇ = 3

2(π2 − 6)w
− 3

4(π2 − 6)
ws(x0), (15)

and for the monostable case
(

12π2 − 85

90

)
ẋ0 = 5 − 6 ln(1 + √

2)

30w

+ 30π2 − 220 + 9 ln(1 + √
2)

270
ws(x0),

(
12π2 − 85

90

)
ẇ = 1

5w
− 1

30
ws(x0). (16)

These equations justify the notion of a local speed and width
of the front. When s(x) = s is constant, we recover the speeds
and widths of the kinks, respectively, (3), (6) and (4), (7) in
the homogeneous situation.

For both the bistable and monostable cases, the right-hand
side of the ẋ0 equation is always positive so that no pinning
of the front occurs for wide defects. The numerical solutions
match well the predictions given by (15) and (16), see [8,9]
for the bistable case and [10] for the monostable case.

C. Defect narrow compared to the front width

We now turn our attention to defects that are narrow in
comparison to the width of the incident front. Namely, we
consider here the case of a Heaviside function. The defect
function s(x) can be written

s(x) = s0 + s1H (x). (17)
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The integrals Ki(x0,w, s, R) can be broken down into two
parts:

Ki(x0,w, s, R) = s0

∫ +∞

−∞
+s1

∫ +∞

−x0
w

.

We introduce the expressions

Kl
i (u, R) =

∫ u

−∞
ziR[Ũ (z)]Ũ ′(z) dz, (18a)

Kr
i (u, R) =

∫ +∞

u
ziR[Ũ (z)]Ũ ′(z) dz, (18b)

with the exponents l for left and r for right. Then
Ki(x0,w, s, R) for the defect (17) can be written as

Ki(x0,w, s, R) = s0Ki(x0,w, 1, R) + s1Kr
i

(−x0

w
, R

)
. (19)

Then the system (9) reads

ẋ0 = α1

w
+ ws0[α2K0(x0,w, 1, R) + α3K1(x0,w, 1, R)]

+ws1

[
α2Kr

0

(−x0

w
, R

)
+ α3Kr

1

(−x0

w
, R

)]
, (20a)

ẇ = α4

w
+ ws0(α5K0(x0,w, 1, R) + α6K1(x0,w, 1, R))

+ws1

[
α5Kr

0

(−x0

w
, R

)
+ α6Kr

1

(−x0

w
, R

)]
. (20b)

Up to here, everything is reaction agnostic. We can, as we
did earlier in Sec. III A, compute the different terms in this
system. It has been done before for the bistable case [9],
and the constants for the monostable one are given here in
Appendix B. We write them here for the sake of completeness,
first in the bistable case:

ẋ0 = 1 − 2a

2
ws0 − 6ws1Kr

0

(−x0

w
, R

)
, (21a)

ẇ = 3

2(π2 − 6)w
+ 3

4(6 − π2)
ws0

+ 18

6 − π2
ws1Kr

1

(−x0

w
, R

)
(21b)

and second in the monostable case:

ẋ0 = −0.026

w
+ 0.83ws0

−5ws1Kr
0

(−x0

w
, R

)
+ 0.26ws1Kr

1

(−x0

w
, R

)
(22a)

ẇ = 0.54

w
− 0.09ws0

+0.26ws1Kr
0

(−x0

w
, R

)
− 5.4ws1Kr

1

(−x0

w
, R

)
. (22b)

To illustrate how well the collective variables match with
the PDE solution we consider a Heaviside defect (9) such that

s(x) = 0.2, x < 0, s(x) = 0.1, x > 0.

Figure 1 shows x0(t ), w(t ), w(x0) from left to right for both
the monostable PDE and Eqs. (22a)–(22b). The values x0,w

are obtained by fitting the PDE solution by the ansatz (13) just
as was done for the bistable solution in [8]. One can see the
good agreement between the two solutions.

FIG. 1. Motion of a monostable front in a tanh-like defect s =
0.2, x < 0 and s = 0.1, x > 0. Both the PDE solutions in the
continuous line (blue) and the reduced model in the dashed line (red)
are presented. From left to right: x0(t ), w(t ), w(x0).

D. Reaction-free region

Such a reaction-free zone occurs for example in forest
fires where a trench with no trees is made to prevent fire
propagation. In combustion in a duct, this corresponds to a
region where there is no fuel. The defect function s(x) can be
written

s(x) = 0, 0 � x � d, s(x) = s0 elsewhere. (23)

With that defect, the integrals Ki(x0,w, s, R) break down into
two parts:

Ki(x0,w, s, R) =
∫ −x0

w

−∞
+

∫ +∞

d−x0
w

,

with the naming conventions of (18). We get

Ki(x0,w, s, R) = s0Kl
i

(−x0

w
, R

)
+ s0Kr

i

(
d − x0

w
, R

)
(24)

so that the system (9) reads

ẋ0 = α1

w
+ ws0

[
α2Kl

0

(−x0

w
, R

)
+ α3Kl

1

(−x0

w
, R

)]

+ws0

[
α2Kr

0

(
d − x0

w
, R

)
+ α3Kr

1

(
d − x0

w
, R

)]
, (25a)

ẇ = α4

w
+ ws0

[
α5Kl

0

(−x0

w
, R

)
+ α6Kl

1

(−x0

w
, R

)]

+ws0

[
α5Kr

0

(
d − x0

w
, R

)
+ α6Kr

1

(
d − x0

w
, R

)]
. (25b)

Again, up to here, the computation does not depend on the
shape of the reaction term R.

IV. REACTION-FREE REGION FOR BISTABLE

In the bistable case, the major result is that the front can be
stopped for a wide enough reaction-free zone. The analysis is
developed in the following sections.

A. Criterion for front stopping

In this section, using the reduced model recalled above, we
analyze the stopping of the front. For simplicity of the analysis
we assume s0 = 1 because the amplitude s0 of the defect s(x)
can be scaled out of the problem by the following change of
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FIG. 2. Left: The functions F l (u, Rb) and F r (u, Rb). Right:
Zoom on the [−1, 4] region.

variables:

x = x′
√

s0
, t = t ′

s0
, s = s0s′(x′). (26)

When the front stops x0 and w are stationary. The collective
variable ODEs (25) yield

−α1

w
= ws0

[
α2Kl

0

(−x0

w
, R

)
+ α3Kl

1

(−x0

w
, R

)]

+ws0

[
α2Kr

0

(
d − x0

w
, R

)
+ α3Kr

1

(
d − x0

w
, R

)]
,

(27a)

−α4

w
= ws0

[
α5Kl

0

(−x0

w
, R

)
+ α6Kl

1

(−x0

w
, R

)]

+ws0

[
α5Kr

0

(
d − x0

w
, R

)
+ α6Kr

1

(
d − x0

w
, R

)]
,

(27b)

then

−α1α4

w2s0
= α2α4Kl

0

(−x0

w
, R

)
+ α3α4Kl

1

(−x0

w
, R

)

+α2α4Kr
0

(
d − x0

w
, R

)
+ α3α4Kr

1

(
d − x0

w
, R

)
,

(28a)

−α1α4

w2s0
= α1α5Kl

0

(−x0

w
, R

)
+ α1α6Kl

1

(−x0

w
, R

)

+α1α5Kr
0

(
d − x0

w
, R

)
+ α1α6Kr

1

(
d − x0

w
, R

)
.

(28b)

The system implies an equation that can be written as

F l
(x0

w
, R

)
= F r

(
d − x0

w
, R

)
. (29)

Equation (29) is verified for a critical distance

d = dc (30)

such that the following trichotomy happens:
(i) if d < dc, the front is slowed down but it eventually

crosses the no-reaction zone;
(ii) if d = dc, the front is pinned in an infinite time, it

converges towards a stationary solution;
(iii) if d > dc, the front is pinned in a finite time.
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FIG. 3. Left: Width of the front when pinning occurs as a func-
tion of the parameter a. Right: Critical distance of the reaction-free
region as a function of the parameter a.

The feasibility of pinning can then easily be checked by
studying the functions F l and F r ; these are plotted in Fig. 2
for the bistable nonlinearity.

For the critical distance dc, we need the maximum of Fr

to cancel out the contribution from Fl . If we define xr =
Argmax(Fr ), xl = F−1

l [max(Fr )], then the following equa-
tions hold:

dc − x0

w
= xr, (31a)

x0

w
= xl . (31b)

They give in turn w using (27b) (a bit of caution is nec-
essary as α1 = 0 in the bistable case) and finally dc. As an
illustration, we plot in Fig. 3 the width of the front when
pinning occurs (left panel), and the critical distance (right
panel), as functions of the parameter a of the bistable reaction
term. They compare very well with what we obtain through a
simulation of the original PDE, as we will see in Fig. 6.

B. Stationary solution when the front stops

Let us consider the stationary case. The problem is

uxx + u(1 − u)(u − a) = 0, x � 0, (32)

uxx = 0, 0 � x � d, (33)

uxx + u(1 − u)(u − a) = 0, x � d, (34)

together with the boundary conditions u = 1, ux = 0, x →
−∞ and u = 0, ux = 0, x → ∞. The interface conditions at
x = 0, d are continuity of u and of ux. Multiplying (32) and
(34) by ux and integrating, we get

u2
x

2
+

(
−u4

4
+ u3

3
(a + 1) − u2

2
a

)
= C1, x � 0,

u2
x

2
+

(
−u4

4
+ u3

3
(a + 1) − u2

2
a

)
= 0, x � d.

The constant C1 is obtained from the first expression evaluated
for x → −∞ where u = 1 and ux = 0. We get

C1 = 1 − 2a

12
. (35)

Inside the strip 0 � x � d , the solution is

u = αx + β.
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FIG. 4. Bistable case, reaction-free region 0 � x � d . Plots of
the functions g(ul , ur ) (curve) and h(ul , ur ) (line) in the (ul , ur )
plane for two different values of d , d = 6 < dc (left) and d = 7 > dc

(right); the parameter is a = 0.3.

Using the interface conditions at x = 0, d , we get the two
relations for the unknowns α, β:

α2

2
− 1

4
β4 + 1

3
(a + 1)β3 − a

2
β2 = C1, (36)

α2

2
− 1

4
(αd + β )4 + 1

3
(a + 1)(αd + β )3

−a

2
(αd + β )2 = 0. (37)

To solve this algebraic system we used a graphical method,
introducing the values ul = β and ur = αd + β. In Fig. 4 we
plot the 0 contour lines of the functions g(ul , ur ) and h(ul , ur )
defined by

g(ul , ur ) = (ul − ur )2

2d2
+ f (ul ) − C1, (38)

h(ul , ur ) = (ul − ur )2

2d2
+ f (ur ), (39)

f (x) = −1

4
x4 + a + 1

3
x3 − a

2
x2, (40)

in the square (ul , ur ) ∈ [0, 1] × [0, 1].
In the left panel d < dc so that there is no solution. In the

right panel d > dc and there are two solutions (ul , ur ). One
of them is stable and the other unstable, as expected from
standard bifurcation theory. A numerical exploration is then
possible, e.g., by dichotomy, to find the value of d for which
the line is tangent to the curve. This yields a second estimate
for dc after the one found in Sec. IV A.

C. Comparison of estimations of the critical widths dc

We now have two means of estimating dc, and will compare
these estimates with the critical widths found by solving the
original PDE.

Two typical PDE simulations are presented in Fig. 5 which
shows snapshots of the solution u(x, t ) of (1) with R(u) =
u(1 − u)(u − 0.3) at different times, for d = 6 (left panel) and
d = 7 (right panel). In the left panel, the front crosses the
reaction-free region while it is pinned for the larger d shown
in the right panel. Note that at the right edge of the defect, the
value of u for a pinned front (d > dc) remains smaller than a.
For the critical distance dc, the stationary solution at the right
edge of the front reaches a.
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 1
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u
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FIG. 5. Snapshots of u for t = 50, 100, 150, 200, 250, and 300
when the front crosses the reaction-free region d = 6 (left panel) and
when the front is stopped by the reaction-free region d = 7 (right
panel). The defect s(x) is shown in the dashed line (red).

Using repeated simulations, we find a third approximate
value of dc. The estimates of dc using the criterion, the anal-
ysis of the stationary solution and the PDE simulations are
reported in Fig. 6. As seen, the estimates are in excellent
agreement.

V. REACTION-FREE REGION FOR MONOSTABLE

A. Nonexistence of stationary solution

Following the same strategy as for the bistable case, we
look for a stationary solution of the Fisher problem with a
strip [0, d]. The formalism is the same as above. We then get

u2
x

2
+

(
u2

2
− u3

3

)
= 1

6
, x � 0.

u2
x

2
+

(
u2

2
− u3

3

)
= 0, x � d.

There is no solution to the problem because the second expres-
sion is always greater than 0, for u ∈ [0, 1]. This is consistent
with the instability of the u = 0 stationary state for the monos-
table case.

 0

 20

 40
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 100

 120

 140

 160

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

d c

a

reduced model
static
PDE

FIG. 6. Critical distance dc of the reaction-free region for pinning
to occur, as a function of the parameter a. The pinning criterion is
shown together with estimates obtained using the stationary solution
and the PDE solution.
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FIG. 7. Motion of a monostable front in a zero defect
region of extension d = 70: snapshots of u(x, t ) for t =
27.5, 55, 82.5, 110, 137.5, 165, and 192.5 for a no reaction region
of extension d = 70 in linear (left) and log (right) scales for u. The
defect s(x) is shown in the dashed line (red).

B. Appearance of secondary front

Figure 7 shows snapshots u(x, t ) of the solution for seven
successive times from t = 27.5 up to 192.5 for a reaction-free
region |x| � 35. The left panel shows the solution in linear
scale. One can see the advancing profile for small u. It reaches
the right interface and becomes visible at t = 165.

The increase of u with time is clearer in the right panel (log
plot). There one sees the diffusion of u in the reaction-free
zone followed by its amplification for x � 35.

The time of appearance of the secondary front can be
estimated from the solution. Assume a reaction-free region

0 � x � d.

In Fig. 8 we plot the time interval t2 − t1 as a function of
the half-width d of the reaction-free region. The instant t1
corresponds to the front reaching the left edge of the strip,
when its position is x = 0. The time t2 is when the secondary
pulse reaches the value 0.5.

 20
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 120

 140

 160

 180

 10  20  30  40  50  60  70

t 2
-t

1

d

FIG. 8. Time of appearance of secondary front t2 − t1 for the
monostable case for different widths of the reaction-free region. The
continuous line (blue) corresponds to the numerical results and the
dashed line (red) is for the approximation (44).

It is surprising that t2 − t1 depends linearly on d . To explain
this effect, we suggest the following simple model. In the
linear (no reaction) region, the propagation is governed by
the heat kernel giving the solution at (x, t ) for a source at
(y, t = 0),

K (x, y, t ) = 1√
4πt

e− (x−y)2

4t . (41)

Then for x = d , the solution of the heat equation uh is

uh(d, t ) = 1√
4πt

e
−d2

4t . The u = 0 solution of the Fisher equa-

tion is unstable and any plane wave perturbation eikx will
grow as

δu = eikx+(s0−k2 )t . (42)

Combining (41) and (42), the solution of the Fisher equation
at x = d will be

u(d, t ) = 1√
4πt

e− d2

4t +s0t , (43)

where ξ is a coefficient smaller than 1 accounting for the
average of the growth rate.

We can calculate when u(d, t ) = 0.5. Using (43) we obtain

1√
4πt

e− d2

4t +s0t = 0.5.

This implies

d =
√

4s0t2 − 2t log(πt ). (44)

In Fig. 8 we plotted the values of d, t such that u(d, t ) = 0.5.
These follow a straight dashed line (red) that is not far from to
the numerical results (blue). During the time interval t2 − t1 a
new pulse emerges right after the reaction-free region. After
the instant t2, this pulse gives rise to a front that travels towards
the right at the same speed as before the defect. Comparing the
front propagation with and without the defect shows that the
front suffered a delay due to the defect.

VI. CONCLUSION

We analyzed the stopping of a one-dimensional reaction-
diffusion front by a reaction-free region for bistable and
monostable nonlinearities.

Bistable fronts can be stopped and—using a collective
variable description—we obtained a stopping criterion linking
the width of the region and the parameter of the nonlinearity.
This criterion is in excellent agreement with the analysis of
the time independent problem and the PDE solutions.

The monostable nonlinearity is more complex. If the front
is accelerated by the defect, the collective variables agree well
with the PDE numerical solution, otherwise a secondary pulse
appears and the collective variable description is wrong. For a
reaction-free region, a secondary pulse appears past the defect
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and we can predict its time of appearance using a simple
model based on the diffusion kernel and the growth rate of
the zero unstable state.

This reaction-free region can be generalized into a damped-
reaction region to model the action of (chemo/radio) therapy
on a cancer tumor [11]. The function s(x) becomes

s(x) = −s1, 0 � x � d, s(x) = s0 elsewhere. (45)

Using the same approach as for (43), we find the form of the
solution in the damped-reaction region as

u(d, t ) = 1

4πt
e

d2

4t +(s0−s1 )t , (46)

so that we can predict the time of crossing

d =
√

4(s0 − s1)t2 − 2t log(πt ). (47)

The radically different behaviors between a monostable
and a bistable front raise important questions for modelers.
Is it reasonable that a monostable front cross a reaction-free
region of arbitrary width? Maybe tumor researchers should
use a u2(1 − u) nonlinearity instead of the standard logistic.
Then u = 0 would be stable and there would be a critical
distance that the front could not cross.
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APPENDIX A: DERIVATION OF THE TIME EVOLUTION
EQUATIONS FOR THE COLLECTIVE VARIABLES

We multiply the equation

ẋ0
∂U

∂x0
+ ẇ

∂U

∂w
= ∂2U

∂x2
+ s(x)R{U [x, x0(t ),w(t )]}

by the test functions ∂U
∂x0

and ∂U
∂w

, respectively, and we integrate
over x going from −∞ to +∞. We obtain

ẋ0

∫ ∞

−∞

(
∂U

∂x0

)2

+ ẇ

∫ ∞

−∞

∂U

∂x0

∂U

∂w

=
∫ ∞

−∞

∂2U

∂x2

∂U

∂x0
+

∫ ∞

−∞
s(x)R{U [x, x0(t ),w(t )]} ∂U

∂x0
,

ẋ0

∫ ∞

−∞

∂U

∂x0

∂U

∂w
+ ẇ

∫ ∞

−∞

(
∂U

∂w

)2

=
∫ ∞

−∞

∂2U

∂x2

∂U

∂w
+

∫ ∞

−∞
s(x)R{U [x, x0(t ),w(t )]}∂U

∂w
.

Thanks to the chain rule we have

∂U

∂x
= 1

w
Ũ ′(z) and

∂2U

∂x2
= 1

w2
Ũ ′′(z),

∂U

∂x0
= − 1

w
Ũ ′(z),

∂U

∂w
= − z

w
Ũ ′(z).

We remark that it is convenient to make the change of variable
z = x−x0(t )

w(t ) in each integral to get (after multiplication by w)

ẋ0

∫ ∞

−∞
Ũ ′(z)2 + ẇ

∫ ∞

−∞
zŨ ′(z)2

= − 1

w

∫ ∞

−∞
Ũ ′(z)Ũ ′′(z)

− w

∫ ∞

−∞
s(wz + x0)R[Ũ (z)]Ũ ′(z),

ẋ0

∫ ∞

−∞
zŨ ′(z)2 + ẇ

∫ ∞

−∞
z2Ũ ′(z)2

= − 1

w

∫ ∞

−∞
zŨ ′(z)Ũ ′′(z)

− w

∫ ∞

−∞
zs(wz + x0)R[Ũ (z)]Ũ ′(z).

The system is written in abstract form:

I0ẋ0 + I1ẇ = −J0

w
− wK0(x0,w, s, R),

I1ẋ0 + I2ẇ = −J1

w
− wK1(x0,w, s, R),

where

In =
∫ ∞

−∞
znŨ ′(z)2dz,

Jn =
∫ ∞

−∞
znŨ ′(z)Ũ ′′(z)dz,

Kn(x0,w, s, R) =
∫ ∞

−∞
zns(wz + x0)R[Ũ (z)]Ũ ′(z)dz.

The integrals In and Jn are numbers, they only depend on
the profile Ũ . In the cases that we consider, the determinant
of the system is nonzero and we get the following equations
governing ẋ0 and ẇ:

ẋ0 = α1

w
+ α2wK0(x0,w, s, R) + α3wK1(x0,w, s, R),

ẇ = α4

w
+ α5wK0(x0,w, s, R) + α6wK1(x0,w, s, R),
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where

α1 = I1J1 − I2J0

I0I2 − I2
1

,

α2 = I2

I2
1 − I0I2

,

α3 = I1

I0I2 − I2
1

,

α4 = I1J0 − I0J1

I0I2 − I2
1

,

α5 = I1

I0I2 − I2
1

,

α6 = I0

I2
1 − I0I2

.

APPENDIX B: EXACT VALUES OF INTEGRALS
PRESENT IN THE PAPER

For the bistable case,

I0 =
∫ ∞

−∞
Ũ ′(z)2dz = 1

6
,

I1 =
∫ ∞

−∞
zŨ ′(z)2dz = 0,

I2 =
∫ ∞

−∞
z2Ũ ′(z)2dz = π2 − 6

18
≈ 0.21,

J0 =
∫ ∞

−∞
Ũ ′(z)Ũ ′′(z)dz = 0,

J1 =
∫ ∞

−∞
zŨ ′(z)Ũ ′′(z)dz = − 1

12
,

K0(x0,w, 1, Rb) =
∫ ∞

−∞
Rb[Ũ (z)]Ũ ′(z)dz = 2a − 1

12
,

K1(x0,w, 1, Rb) =
∫ ∞

−∞
zRb[Ũ (z)]Ũ ′(z)dz = 1

24
,

and the constants in (9) read

α1 = 0, α2 = −6,

α3 = 0, α4 = 1

12I2
≈ 0.39,

α5 = 0, α6 = − 1

I2
≈ −4.7.

For the monostable case,

I0 =
∫ ∞

−∞
Ũ ′(z)2dz = 1

5
,

I1 =
∫ ∞

−∞
zŨ ′(z)2dz = ln(1 + √

2)

5
− 1

6

≈ 0.0096,

I2 =
∫ ∞

−∞
z2Ũ ′(z)2dz

= −1

3
+ π2

15
− ln(1 + √

2)

3

+ [ln(1 + √
2)]2

5

≈ 0.19,

J0 =
∫ ∞

−∞
Ũ ′(z)Ũ ′′(z)dz = 0,

J1 =
∫ ∞

−∞
zŨ ′(z)Ũ ′′(z)dz = − 1

10
,

K0(x0,w, 1, Rm ) =
∫ ∞

−∞
Rm[Ũ (z)]Ũ ′(z)dz = −1

6
,

K1(x0,w, 1, Rm ) =
∫ ∞

−∞
zRm[Ũ (z)]Ũ ′(z)dz

= 7

45
− ln(1 + √

2)

6
≈ 0.0087,

and the constants in (9) read

α1 = 90I1

85 − 12π2
≈ −0.026, α2 = 900I2

85 − 12π2
≈ −5.0,

α3 = 900I1

12π2 − 85
≈ 0.26, α4 = 18

12π2 − 85
≈ 0.54,

α5 = 900I1

12π2 − 85
≈ 0.26, α6 = 180

85 − 12π2
≈ −5.4.
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