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Extreme rogue wave generation from narrowband partially coherent waves
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In the framework of the focusing one-dimensional nonlinear Schrödinger equation, we study numerically
the integrable turbulence developing from partially coherent waves (PCW), which represent superposition of
uncorrelated linear waves. The long-time evolution from these initial conditions is characterized by emergence
of rogue waves with heavy-tailed (non-Gaussian) statistics, and, as was established previously, the stronger
deviation from Gaussianity (i.e., the higher frequency of rogue waves) is observed for narrower initial spectrum.
We investigate the fundamental limiting case of very narrow initial spectrum and find that shortly after the
beginning of motion the turbulence enters a quasistationary state (QSS), which is characterized by a very
slow evolution of statistics and lasts for a very long time before arrival at the asymptotic stationary state. In
the beginning of the QSS, the probability density function (PDF) of intensity turns out to be nearly inde-
pendent of the initial spectrum and is very well approximated by a certain Bessel function that represents an
integral of the product of two exponential distributions. The PDF corresponds to the maximum possible
stationary value of the fourth-order moment of amplitude κ4 = 4 and yields a probability to meet intensity
above the rogue wave threshold that is higher by 1.5 orders of magnitude than that for a random superposition of
linear waves. We routinely observe rogue waves with amplitudes ten times larger than the average one, and all
of the largest waves that we have studied are very well approximated by the amplitude-scaled rational breather
solutions of either the first (Peregrine breather) or the second orders.
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I. INTRODUCTION

The phenomenon of rogue waves—extremely large waves
that appear unpredictably from moderate wave background—
has been intensively studied in recent years; see, e.g.,
Refs. [1–3] and also the recent review [4]. One of the basic
nonlinear mathematical models suitable for the description
of such waves is the one-dimensional nonlinear Schrödinger
equation (1 D-NLSE) of the focusing type,

iψt + ψxx + |ψ |2ψ = 0, (1)

where t is time, x is spatial coordinate, and ψ is the wave-field
envelope. Several exact solutions of this equation were sug-
gested as candidates for rogue waves, including the Peregrine
[5] and Akhmediev [6,7] breathers, Kuznetsov-Ma solitons
[8,9], and super-regular breathers [10]. Taking specific and
carefully designed initial conditions, these solutions were
reproduced in well-controlled experiments performed in dif-
ferent physical systems [11–17].

With what frequency such solutions appear in nature, how-
ever, is a different question; for instance, typical oceanic
waves represent weakly nonlinear objects having nearly Gaus-
sian statistics; see, e.g., Refs. [2,3,18]. This implies that the
problem of rogue waves should be examined in the context
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of random initial conditions, and the key characteristic for
the study should be the probability density function (PDF) of
waves’ amplitude, or, alternatively, the PDF P (I ) of relative
wave intensity I = |ψ |2/〈|ψ |2〉, where 〈|ψ |2〉 is the average
intensity. Of particular interest is comparison of the PDF for a
nonlinear system with the exponential PDF,

PR(I ) = e−I , (2)

which describes distribution of intensity for a superposition of
uncorrelated linear waves and corresponds to Gaussian PDFs
for the real Re ψ and imaginary Im ψ parts of the wave-field
and Rayleigh PDF for the amplitude |ψ |; see, e.g., Refs.
[19, chapter 5] and [20, chapter 3]. In nonlinear systems,
the phases of Fourier modes composing the wave field may
correlate, which in turn may lead to enhanced appearance of
large waves. Throughout the paper, we use the distribution (2)
as a benchmark, allowing us to compare the frequency of large
waves for the examined system with that for a linear one.

Note that, in the context of optical waves, the intensity is
a natural quantity of interest. However, it can also be relevant
in water wave experiments by using the Hilbert transform of
the wave form to extract the slow varying amplitude; see, e.g.,
Ref. [21].

The 1D-NLSE is integrable in terms of the inverse scat-
tering transform (IST) method [22,23]. Statistical analysis of
integrable systems with random input is the concept of inte-
grable turbulence, first introduced by Zakharov in Ref. [24].
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Integrability implies conservation of infinite series of in-
variants (integrals of motion), and since these invariants are
different for different types of initial conditions, the wave
statistics should depend on the statistics of the input random
process even over a long time.

In particular, for the scenario of the noise-induced modu-
lational instability (MI) of a plane wave (the condensate), the
PDF coincides over a long time with the exponential distribu-
tion (2); see Refs. [25,26]. This result was later generalized
for the MI of cnoidal waves [27], with demonstration that
(depending on parameters of the unstable cnoidal wave) either
the PDF is sufficiently close to the exponential distribution or
the dynamics reduces to two-soliton collisions which occur
with exponentially small rate. For both the condensate and
the cnoidal wave initial conditions, the development of the
MI leads to integrable turbulence, which approaches asymp-
totically its stationary state—the state in which its statistical
characteristics are independent of time.

Meanwhile, for the partially coherent wave (PCW) initial
conditions, which represent superpositions of uncorrelated
linear waves and are characterized by the exponential distribu-
tion of intensity (2), the results were shown to be completely
different [28]. The integrable turbulence in this case quickly
reaches a state in which its statistical characteristics do not
change visibly, and the PDF in this state exceeds the exponen-
tial distribution (2) by orders of magnitude at large intensities
(see also earlier studies [29–31] for the long-crested water
waves of JONSWAP spectrum). Moreover, as was demon-
strated in Refs. [32–36], the excess over the exponential PDF
is larger for the initial conditions of larger correlation length
or larger average intensity that are equivalent to those of the
narrower initial spectrum. Note that the transition between
the two types of initial conditions—i.e., from the condensate
perturbed by small initial noise to the PCW—was widely
investigated in Refs. [32,33], in particular, with the help of
the IST methods.

In the present paper, with the help of extensive numeri-
cal simulations, we study in detail the fundamental limiting
case when the integrable turbulence develops from PCW of
narrowband spectrum and its long-time statistics exhibits the
strongest deviation from Gaussianity. For the narrow initial
spectrum, the influence of the group velocity dispersion is
weak, so that initially the nonlinear effects prevail over the
linear dispersive ones. As a natural criterion for narrowness,
we therefore demand the initial nonlinearity strength α0, that
is, the dimensionless ratio of the potential energy to the kinetic
one, to be large:

α0 = |Hnl |
Hl

∣∣∣∣
t=0

= 〈|ψ |2〉
δk2

∣∣∣∣
t=0

� 1. (3)

Here the potential energy Hnl is related to the nonlinear term
of the 1D-NLSE and the kinetic energy Hl is related to (linear)
dispersion [see Eqs. (9) and (10) below], and, as we explain
later, the initial nonlinearity strength α0 equals the average
intensity 〈|ψ |2〉 divided by the mean square spectral width
δk2. Thus, in dimensionless variables, the studied case of
narrow initial spectrum is equivalent to large intensity, and
from comparison with results of Ref. [34] it appears to be one
of the most promising for extreme generation of rogue waves.

We demonstrate that turbulence developing from narrow-
band PCW relatively quickly enters a state, which we call
quasistationary (QSS). In the QSS, most of the basic sta-
tistical functions (e.g., the moments and PDF of intensity)
change with time very slowly, while some other higher order
statistical functions, most notably the autocorrelation of inten-
sity, continue to evolve noticeably. The subsequent evolution
toward the asymptotic stationary state turns out to be very
long. For these two reasons—the slow evolution of statistics
in the QSS and a very distant stationary state—we believe
that, for any possible practical application, examination of the
QSS is important, so that we concentrate on it, focusing on the
kinetic and potential energies, the moments, and the PDF of
intensity.

In particular, we show that, in the QSS, the ratio of the
potential energy to the kinetic one (the nonlinearity strength)
αQSS and the fourth-order moment κ4 = 〈|ψ |4〉/〈|ψ |2〉2 in-
crease monotonically for vanishing initial spectral width
δk → 0 (i.e., increasing initial nonlinearity α0 → +∞), but
turn out to be bounded from above, αQSS � 2 and κ4 �
4. Hence, by demanding narrowness of the initial spec-
trum, we obtain the integrable turbulence that develops
with the maximum nonlinearity αQSS ≈ 2 and the maximum
fourth-order moment κ4 ≈ 4, possible for the PCW initial
conditions.

We find that, in the beginning of the QSS, the PDF does not
depend on the shape of the initial spectrum and slightly varies
with initial nonlinearity α0. The close-to-universal profile of
the PDF exceeds the exponential distribution (2) by orders of
magnitude at large intensities and is very well approximated
by a certain Bessel function representing an integral of the
product of two exponential distributions. The Bessel function
corresponds to the fourth-order moment κ4 = 4 and yields
the probability of meeting intensity above the rogue wave
threshold, I > 8, by 1.5 orders of magnitude higher than the
exponential distribution (2). To our knowledge, these values of
the fourth-order moment and the frequency of rogue waves,
observed in our numerical simulations, are the largest that
have been reached so far for (quasi)stationary states of the
1D-NLSE developing from various types of initial conditions.
We routinely detect rogue waves 10 times larger than the
average amplitude, and all of the largest waves that we have
studied are very well approximated by the amplitude-scaled
rational breather solutions of either the first (the Peregrine
breather) or the second orders.

The paper is organized as follows. In the next section,
we give a general overview for the problem of integrable
turbulence developing from narrowband PCW. In Sec. III,
we describe our numerical methods. In Sec. IV, we discuss
the basic features of evolution from which we conclude ex-
istence of the QSS, and in Sec. V, we report our results for
its statistical properties, focusing on the moments and PDF
of intensity. The final section contains conclusions. The pa-
per has also several Appendixes, where we discuss scaling
transformations of the 1D-NLSE, construct a nonsymmet-
ric initial spectrum, consider properties of the wave-action
spectrum and the autocorrelation of intensity, and study ef-
fects of inclusion of an additional wide-spectrum noise to
the initial conditions, as it might be important for practical
applications.
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II. PARTIALLY COHERENT WAVES OF
NARROWBAND SPECTRUM

We study evolution governed by the focusing 1D-
NLSE (1) staring from initial conditions of fixed average
intensity,

ψ |t=0 = ψ0(x), |ψ0|2 = 1

L

∫ L/2

−L/2
|ψ0|2 dx = N. (4)

Here the overline denotes spatial averaging, N is constant,
and for the numerical study we consider the periodic prob-
lem x ∈ [−L/2, L/2] with a very large period L � 1. The
initial conditions are given by a discrete sum of Fourier
components,

ψ0(x) =
∑

k

ψ0keikx, ψ0k = √
Nkeiφk , (5)

where k = 2πm/L is the wave number, m ∈ Z is integer,
Nk � 0 is a (given) smooth function of k, and φk ∈ [0, 2π )
are random phases. We use the so-called random phase (RP)
model (see, e.g., Ref. [19], in which only the phases φk are
considered to be random and uncorrelated) and average our
results over the ensemble of phase realizations.

As an integrable equation, the 1D-NLSE conserves an in-
finite series of integrals of motion, and the first three of these
invariants are wave action (which in our notation equals the
average intensity)

N = |ψ |2 = 1

L

∫ L/2

−L/2
|ψ |2 dx =

∑
k

|ψk|2, (6)

momentum

P = i

2L

∫ L/2

−L/2
(ψ∗

x ψ − ψxψ
∗) dx =

∑
k

k|ψk|2, (7)

and total energy

E = Hl + Hnl , (8)

Hl = |ψx|2 = 1

L

∫ L/2

−L/2
|ψx|2 dx =

∑
k

k2|ψk|2, (9)

Hnl = −|ψ |4
2

= − 1

2L

∫ L/2

−L/2
|ψ |4 dx. (10)

Here Hl is the kinetic energy (linear contribution), Hnl is
the potential energy (nonlinear contribution), and ψk is the
Fourier-transformed wave field,

ψk (t ) = 1

L

∫ L/2

−L/2
ψ (t, x) e−ikx dx.

According to the central limit theorem, the PDF of
intensity for the initial conditions (4) and (5) is the expo-
nential distribution (see, e.g., Refs. [19, chapter 5] and [20,
chapter 3]),

PR(|ψ0|2) = 1

N
exp

(
− |ψ0|2

N

)
. (11)

This allows us to find the ensemble-averaged potential energy,

〈Hnl〉|t=0 = − 1

2
〈|ψ0|4〉

= − 1

2

∫ +∞

0
|ψ0|4 PR(|ψ0|2) d|ψ0|2 = −N2,

(12)

and the fourth-order moment,

κ4|t=0 = 〈|ψ0|4〉
〈|ψ0|2〉2

= 2, (13)

where 〈...〉 means averaging over the ensemble of random
phases.

As follows from Eqs. (6) and (9), the square spectral width
can be defined as the ratio of the kinetic energy to the average
intensity (wave action),

δk2 =
∑

k k2|ψk|2∑
k |ψk|2 = Hl

N
. (14)

Together with Eq. (12), this yields the initial nonlinearity
strength that equals the average intensity N = 〈|ψ |2〉 divided
by the square spectral width δk2,

α0 = |〈Hnl〉|
Hl

∣∣∣∣
t=0

= 〈|ψ |2〉
δk2

∣∣∣∣
t=0

. (15)

The problem of evolution within the focusing 1D-NLSE
with arbitrary coefficients before dispersion and nonlinearity
terms, that starts from initial conditions of arbitrary average
intensity, can be renormalized to Eq. (1) and initial conditions
of unit average intensity N = 1; see Appendix A for detail. In
dimensional variables, in which the dispersion and nonlinear-
ity coefficients do not equal to unity, the second equality in
relation (15) is changed with proportionality. The advantage
of criterion α0 � 1 for narrowness of the initial spectrum
comes from dimensionless nature of the quantity α0, which
can be computed readily using the dimensional definitions for
kinetic and potential energies. For this reason, throughout the
paper we use the nonlinearity strength α0 as a characteristic
of the spectral width δk, instead of setting the spectral width
directly.

In the following, without loss of generality, we consider
evolution governed by the 1D-NLSE (1) starting from initial
conditions (4) of unit average intensity, N = 1. Then, the
initial ensemble-averaged potential energy equals to minus
unity, 〈Hnl〉 = −1, and the kinetic energy equals the square
spectral width, Hl = δk2, so that the initial nonlinearity is
connected with the spectral width as α0 = δk−2. For narrow-
ness of the initial spectrum we demand α0 � 1, and when we
consider different (dimensionless) spectral widths δk, we set
them through the only parameter—the initial nonlinearity α0.

To summarize, we examine evolution governed by the
1D-NLSE (1) starting from random superpositions of uncor-
related linear waves (4) and (5) with unit average intensity,
N = 1, and of narrowband spectrum, δk2 � 1. Such initial
conditions are characterized by the exponential distribution
of intensity (11), have small kinetic energy, Hl = δk2 � 1,
and potential energy of minus unity, 〈Hnl〉 = −1, so that they
are highly nonlinear, α0 = |〈Hnl〉|/Hl = 1/δk2 � 1. The total
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FIG. 1. (a) Initial amplitude |ψ | and (b) space-time evolution for one realization of a PCW of narrowband spectrum. The initial spectrum
is super-Gaussian with the exponent n = 32 and nonlinearity strength α0 = 64. The maximum of the initial amplitude is shifted to x = 0 for
better visualization.

energy is close to minus unity, 〈E〉 = −1 + 1/α0 ≈ −1, and
the fourth-order moment equals two, κ4 = 2. In the physi-
cal space, each realization represents a collection of humps
of characteristic width δx � 1/δk = √

α0 � 1; see Fig. 1(a).
The linear timescale for the problem is large, tl = δx2 � α0 �
1, and the nonlinear timescale equals unity, tnl = 1; see, e.g.,
Ref. [37].

The described initial conditions resemble a plane wave in
the sense of small spectral width. However, importantly, a
plane wave cannot be obtained from them in the limit δk → 0,
as it has different total energy E = −1/2 and δ-distribution of
intensity.

Note that in our dimensionless formulation the fourth-order
moment equals the double absolute value of the potential
energy,

κ4 = 2|〈Hnl〉|; (16)

see Eqs. (4), (10), and (13). When we start from initial con-
ditions of small spectral width, δk � 1, we expect the latter
to increase to some value of unity order during the evolution
in time. This means increase in the kinetic energy Hl = δk2

to some value of unity order as well, see Eq. (14), and, due
to conservation of the total energy, the same increase in the
absolute value of the potential energy. The latter equals unity
at the initial time, |〈Hnl〉| = 1, that corresponds to the fourth-
order moment κ4 = 2; see Eq. (16). Hence, with increase of
the spectral width during the evolution, we also expect the
fourth-order moment to significantly increase from the value
of 2, which would correspond to strongly nonexponential PDF
and enhanced probability of rogue wave events. These ideas,
exploiting connection between the spectral width, the fourth-
order moment, and the probability of rogue wave appearance,
were suggested in Ref. [38] and can be generalized for a class
of NLS-type equations in multiple spatial dimensions.

In the present paper, we focus on examination of the
ensemble-average kinetic 〈Hl (t )〉 and potential 〈Hnl (t )〉 en-
ergies, the moments of amplitude M (p)(t ) = 〈|ψ |p〉 and, in
particular, the fourth-order moment κ4 = M (4), and the PDF

P (I, t ) of intensity I = |ψ |2. In Appendix C we also consider
the other two important statistical functions: the wave-action
spectrum and the autocorrelation of intensity. For the PDF,
we use normalization

∫
P (I ) dI = 1. In the next sections, we

will also use that the exponential PDF (2) corresponds to the
following values of the moments,

M (p)
R =

∫ +∞

0
|ψ |p PR(|ψ |2) d|ψ |2 = �1+p/2, (17)

where � is the Gamma function.
The ensemble-averaged statistical functions depend in our

problem on one free parameter, the function Nk , defining the
initial spectrum in Eq. (5); for unit average intensity N = 1,
this function has constraint

∑
k Nk = 1 [see Eq. (6)]. In the

following, we artificially split this parameter by two: (i) the
spectral width, which we set through the nonlinearity strength
and consider to be small, δk = 1/

√
α0 � 1, and (ii) the shape

of the function Nk , for instance, Gaussian or super-Gaussian.

III. NUMERICAL METHODS

We integrate Eq. (1) numerically in a large box x ∈
[−L/2, L/2], L � 1, with periodic boundaries; the specific
choice of the box size for different experiments is explained
below. We use the pseudospectral Runge-Kutta fourth-order
method in an adaptive grid, with the grid step 	x set from the
analysis of the Fourier spectrum of the solution; see Ref. [25]
for details. We have checked that the first 10 integrals of mo-
tion of the 1D-NLSE are conserved by our numerical scheme
up to the relative errors from 10−10 (the first three invariants)
to 10−6 (the tenth invariant) orders.

As initial conditions, we use PCW with super-Gaussian
Fourier spectrum

ψ0(x) =
∑

k

A(0)
k eikx+iφk , (18)

A(0)
k =

(
Cn

θL

)1/2

e−|k|n/θn
, (19)
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where θ plays the role of the spectral width (14), θ � δk,
φk are random phases for each k and each realization of the
initial conditions, n ∈ N is the exponent defining shape of the
initial spectrum, and Cn = π 21/n/�1+1/n is the normalization
constant such that the average intensity is unity, |ψ0(x)|2 = 1;
see, e.g., Eq. (20) below. For each pair of parameters n and
θ , we perform simulations for an ensemble of 1000 random
realizations of phases φk and then average the results over
these realizations. The initial kinetic energy is proportional
to θ2,

Hl |t=0 = 1

L

∫ +L/2

−L/2
|ψ0x|2 dx

= Cn

θL

∑
k

k2 e−2kn/θn ≈ �1+3/n

�1+1/n

θ2

3 × 22/n
, (20)

while the initial ensemble-averaged potential energy equals to
minus unity; see Eq. (12). Thus, the initial nonlinearity α0 is
inversely proportional to θ2,

1

δk2
= α0 = |〈Hnl〉|

〈Hl〉 ≈ �1+1/n

�1+3/n

3 × 22/n

θ2
. (21)

We perform simulations for several profiles of the initial
spectrum (19), including exponential n = 1, Gaussian n = 2,
and super-Gaussian n = 8 and n = 32, and also for several
initial nonlinearity levels α0 from 1 to 256, with the parameter
θ determined from Eq. (21). We also study generic (nonsym-
metric) Fourier spectra A(0)

k in Eq. (18), which we construct
as described in Appendix B. The distance between neighbor
harmonics in our simulations depends only on the box size,
	k = 2π/L, and we choose the box sufficiently large, L �
512π , so that the region in the k space [−θ, θ ], containing
most of the initial wave action, see Eq. (6), is resolved with at
least

2θ/	k � 100 (22)

harmonics. We have confirmed that simulations performed in
twice larger boxes L provide the same statistical results. Addi-
tionally, we have checked that simulations with smaller boxes,
for which the region [−θ, θ ] is resolved with just 2θ/	k � 20
harmonics, also give us very similar results, meaning that this
relatively small number of uncorrelated modes is sufficient to
reproduce our results in practice.

IV. TIME EVOLUTION AND THE
QUASISTATIONARY STATE

Some insights into the initial stage of evolution of a PCW
having a narrowband spectrum (α0 � 1) are provided by the
so-called semiclassical limit (or the zero-dispersion limit) of
the 1D-NLSE, that reads as

iεψτ + ε2

2
ψζζ + |ψ |2ψ = 0. (23)

Here ε = √
tnl/tl � 1/

√
α0 is a small parameter, tl � tnl are

linear and nonlinear timescales, and ζ = ε x/
√

2 and τ = ε t
are renormalized space and time.

Within this normalization, the subsequent application of
the Madelung transform results in equations of motion for

one-dimensional fluid [39], which contain terms proportional
to ε2. For initial conditions in the form of a single smooth
hump with width and height of unity order, δζ ≈ 1 and |ψ | ≈
1, these terms can be neglected at the early stage of evolution.
However, without these terms at later stages, there exists a cer-
tain (critical) time of unity order, τ ≈ 1, when the gradient of
the solution explodes (the gradient catastrophe). As has been
rigorously demonstrated in Ref. [40], in the full equation (23)
the gradient catastrophe is regularized by emergence of a co-
herent structure, which tends locally to the Peregrine breather
solution [5] as ε → 0. The subsequent optical fiber experi-
ments [41] have shown that this scenario is robust and can be
observed for the parameter ε as large as 0.4. Importantly, in
variables (x, t ), regularization of the gradient catastrophe and
emergence of the Peregrine-like coherent structure arise for
the time t ∼ 1/ε � √

α0.
A PCW of narrowband spectrum represents a collection of

humps of characteristic width δx � 1/δk = √
α0; in variables

(ζ , τ ), these humps have width and height of unity order, δζ ∼
1 and |ψ | ∼ 1. At the early stage of evolution, each individual
hump may lead to local emergence of the Peregrine-like co-
herent structure at its own critical time. A detailed numerical
study with demonstration of this scenario has been performed
in Ref. [42], and it has been shown that the time when the
fourth-order moment κ4 takes maximum value turns out to be
also of unity order, τm ∼ 1, and corresponds to the maximum
presence of the Peregrine-like coherent structures appearing
on top of different humps. Hence, in our variables (x, t ),
this time has scaling with the nonlinearity strength α0 as
tm = τm/ε ∼ 1/ε � √

α0.
The theory developed for the semiclassical limit of the 1D-

NLSE provides insights into the early stage of evolution of a
narrowband PCW [42–44], for t � √

α0. In the present paper,
we investigate statistics for the subsequent stage, t � √

α0.
Figure 1 illustrates the typical space-time evolution devel-

oping from a PCW, on the example of numerical experiment
with super-Gaussian initial spectrum (19) with the expo-
nent n = 32 and nonlinearity strength α0 = 64. As shown
in Fig. 1(a), the PCW looks like a collection of humps of
characteristic width δx � 1/δk = √

α0 � 10. The spatiotem-
poral dynamics from this initial condition, demonstrated in
Fig. 1(b), reveals that each hump experiences an individual
self-focusing evolution that shortly after beginning of motion
leads to emergence of a coherent structure at the top of the
hump. The coherent structure reaches a maximum amplitude
about three times larger than the initial one and then disap-
pears with formation of two new breather-like structures on
its left and right sides. The two structures then also reach
maximum amplitudes and disappear with emergence of three
breather-like structures—one in between and the other two
on the left and right sides. This process continues, and, for
the largest hump, the breather-like structures fill the entire
area to time t � 5. The smaller humps repeat the described
scenario for the largest hump, but with longer characteristic
times (compare the dynamics for the humps centered at x �
−50 and x � −70 with that for x = 0). Note that, even after
sufficiently long evolution, the breather-like structures tend to
stay within the initial area of the humps, which corroborates
the suggestion of independence of the humps at the early
stages of motion [42]. In the following, we concentrate on
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FIG. 2. (a) Evolution of the ensemble-averaged kinetic energy 〈Hl〉, potential energy 〈Hnl〉, and the fourth-order moment κ4; note the
logarithmic horizontal scale. [(b), (c)] Averaged over ensemble and different time intervals statistical functions: (b) the moments [M (p)]1/p

and (c) the PDF P (I ). The initial spectrum is super-Gaussian with the exponent n = 32 and nonlinearity strength α0 = 64. The inset in panel
(b) shows the higher order moments M (p) (without the 1/p power), while the inset in panel (c) shows the PDF at smaller intensity. In panels
(c) and (b), the black dash-dotted lines indicate the exponential PDF (2) and the corresponding moments (17), respectively.

statistics after sufficiently long evolution (as we explain be-
low, at t � 20 for the experiment in Fig. 1); for description of
the shorter time dynamics we refer the reader to Refs. [39–44],
where it was studied in more detail.

For the numerical experiment with the same initial super-
Gaussian spectrum with n = 32 and α0 = 64, the ensemble-
averaged kinetic energy, 〈Hl〉, potential energy, 〈Hnl〉, and the
fourth-order moment, κ4, change rapidly until time t � 10;
see Fig. 2(a). Below, we call this rapid evolution the transient
regime. After t � 10, the three functions freeze, changing
by less than 0.5% for t ∈ [10, 1000]. From such a behavior,
one might suggest that at t � 10 the system arrives to the
statistically steady state. If this suggestion is true, then the
other statistical functions must be independent of time for
t � 10.

In Figs. 2(b) and 2(c), we compare the ensemble-averaged
moments and the PDF of intensity, additionally averaged
over time intervals t ∈ [20, 40] (shown with black in the
figures), t ∈ [60, 80] (blue), t ∈ [180, 200] (green), and t ∈
[980, 1000] (red). The time averaging is applied since the
corresponding functions evolve slowly, and this procedure

allows us to significantly improve the accuracy of our results,
most notably for measurement of the PDF; see Appendix D
for details. As shown in the figures, time averaging in the
intervals t ∈ [20, 40] and t ∈ [60, 80] gives almost identical
results. However, changes start to become visible from t �
200, when the higher order moments and the PDF at very
large intensities noticeably decrease. Some moderate changes
for t � 200 can also be noticed for the wave-action spectrum
at large wave numbers, while the autocorrelation of intensity
evolves significantly at intermediate distances over the whole
time interval t ∈ [20, 1000]; see Appendix C.

Hence, after the transient regime, the system arrives not
to the statistically stationary state, as concluded in the pre-
vious research works, but to a quasistationary state (QSS).
In the QSS, most of the basic statistical functions change
with time very slowly, and evolution of statistics is hidden in
the higher order moments, the PDF at very large intensities,
the wave-action spectrum at large wave numbers, and the
autocorrelation of intensity at intermediate distances.

For the experiments with wider initial spectrum (e.g.,
for α0 = 16 and 4), we observe faster convergence to the
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FIG. 3. The fourth-order moment κ4 vs renormalized time t/
√

α0, for different numerical experiments. (a) Four simulations with nonlinear-
ity strength α0 = 64 and different shapes of the initial spectrum (exponential n = 1, Gaussian n = 2, and super-Gaussian n = 8 and n = 32),
and also one simulation with nonsymmetric initial spectrum of nonlinearity α0 ≈ 65.2; see Appendix B. (b) Five simulations with different
nonlinearity levels α0 = 1, 4, 16, 64, and 256; the shape of the initial spectrum is super-Gaussian with the exponent n = 32.

statistically steady state. For this reason, we believe that the
steady state exists for the experiments with narrower initial
spectrum (e.g., for α0 = 64 and 256) as well, but the evolution
toward it takes much longer.

Qualitatively the same scenario—relatively short transient
regime followed by the long QSS—is observed for other
numerical experiments with different initial spectra. Quanti-
tatively, the transient regime is significantly affected by the
profile and the width of the initial spectrum. This can be
seen from evolution of the fourth-order moment κ4 versus
renormalized time t/

√
α0, shown in the following:

(1) Fig. 3(a) for five experiments with fixed width δk =
1/

√
α0 and different profiles of the initial spectrum (including

the nonsymmetric spectrum constructed in Appendix B) and
(2) Fig. 3(b) for five experiments with different widths

δk = 1/
√

α0 and fixed profile of the initial spectrum.
Note that evolution of the ensemble-averaged kinetic and

potential energies is defined uniquely from that of the fourth-
order moment, as 〈Hnl〉 = −κ4/2 and 〈Hl〉 = −1 + 1/α0 −
〈Hnl〉. As follows from the figures, the duration of the transient
regime δTtr is roughly equal to the square root of the initial
nonlinearity, δTtr � √

α0, and, during the transient, the fourth-
order moment κ4 takes different maximum values at slightly
different renormalized times around t/

√
α0 = 0.35 (compare

with Ref. [42]), depending on the shape and width of the initial
spectrum.

From these results, we can conclude that, while the dura-
tion of the transient regime increases with α0, the subsequent
QSS lasts much longer than the transient before the final
arrival to the statistically steady state. This means that, in
the case of very narrow initial spectrum, it is very difficult to
reach the stationary state, both using the direct numerical sim-
ulations (DNS) and an experiment in a real physical system.
Indeed, examination of the stationary state with the DNS is
difficult because, with decreasing spectral width δk, both the
grid size and the duration δTtr � √

α0 = 1/δk of the transient
regime increase; and then the QSS takes a very long time as

well. The increase in the grid size comes from proportional
elongation of the simulation box L, since the initial spectrum
must be appropriately resolved; see Eqs. (21) and (22). As
for an experiment, the accumulated effects of the higher order
interactions over the long evolution should strongly affect the
stationary state’s statistics. For these reasons, in the present
paper we concentrate on detailed examination of statistics
in the beginning of the QSS, which we perform in the next
section.

Note also that, in the QSS, the fourth-order moment κ4

has two important properties: (i) it virtually does not change
with time [see Fig. 2(a)] and (ii) its value monotonically
increases with α0 but remains bounded from above, practically
reaching the upper bound κ4 = 4 for sufficiently small initial
spectral width α0 � 16 [see Figs. 3 and also Fig. 5, which
we discuss in detail in the next section]. The latter means
that the studied regime of narrow initial spectrum leads to
the strongest deviation from Gaussianity and to the highest
probability of rogue wave events possible for the PCW initial
conditions. The practical independence of κ4 on time in the
QSS allows us to suggest that the asymptotic stationary value
of the fourth-order moment κ4∞ should also be very close
to 4 for sufficiently small initial spectral width. This deter-
mines the (asymptotic) ensemble-averaged potential energy,
〈Hnl〉∞ = −κ4∞/2 ≈ −2, as well as the kinetic one, 〈Hl〉∞ =
−1 + 1/α0 − 〈Hnl〉∞ ≈ 1. Thus, the ratio of the potential en-
ergy to the kinetic one (the stationary nonlinearity strength)
α∞ should be close to 2 [see, e.g., Fig. 2(a)], the same as for
the asymptotic stationary state of the noise-induced MI [25].

V. STATISTICS OF THE QUASISTATIONARY STATE

A. The moments and the PDF

In this subsection, we perform two sets of numerical ex-
periments. In the first set, we fix the initial nonlinearity α0

and consider different profiles of the initial spectrum. In the
second set, we fix the profile of the initial spectrum and
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FIG. 4. Ensemble- and time-averaged statistical functions in the
beginning of the QSS for four super-Gaussian initial spectra with
exponents n = 1, 2, 8, 32 and one nonsymmetric initial spectrum:
(a) the moments [M (p)]1/p and (b) the PDF P (I ). The initial nonlin-
earity is α0 = 64 for the four super-Gaussian spectra and α0 ≈ 65.2
for the nonsymmetric spectrum; see Appendix B. The inset in panel
(a) shows the higher order moments M (p) (without the 1/p power),
and in panel (b) shows the PDF at smaller intensity. The black dash-
dotted lines indicate the exponential PDF (2) and the corresponding
moments (17), while the cyan dashed lines indicate the Bessel PDF
(24) and the corresponding moments (25).

study different levels of α0. As in the previous section, in
addition to ensemble averaging over random realizations of
the initial conditions, we also perform time averaging over
relatively short time interval t ∈ [ts, te] placed in the begin-
ning of the QSS. The start of the interval is determined as
ts/

√
α0 = 2.5 in order to avoid the residual small oscillations

of the fourth-order moment κ4 visible for some experiments
in Fig. 3(b). The duration of the interval is set the same
for all experiments, te − ts = 20. We focus on examination
of the ensemble-averaged kinetic and potential energies, the
moments, and the PDF, which change very slowly during
the QSS; the results for the wave-action spectrum and the
autocorrelation of intensity are provided in Appendix C.

Figures 3(a) and 4 demonstrate statistical characteristics
for fixed initial nonlinearity strength α0 = 64 and different

10
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3.5

4
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αQSS

κ4

FIG. 5. The potential-to-kinetic energy ratio (the nonlinearity
strength) αQSS = |〈Hnl〉|/〈Hl〉 (blue) and the fourth-order moment
κ4 (red) in the beginning of the QSS vs the initial nonlinearity α0,
for nine experiments with super-Gaussian initial spectrum with the
exponent n = 32 and nonlinearity levels from α0 = 1 to 256. Note
the logarithmic horizontal scale.

profiles of the initial Fourier spectrum. As shown in the
figures, in the beginning of the QSS, the presented statis-
tics practically does not depend on the profile of the initial
spectrum, even when the latter is rather arbitrary and non-
symmetric. In particular, the fourth-order moment κ4 is very
close to 4, Fig. 3(a), and the moments [M (p)]1/p increase with
p close to linearly, Fig. 4(a), exceeding significantly at large p
the moments (17) corresponding to the exponential PDF (2).
The PDF is slightly smaller than the exponential distribution
(2) at moderate intensities I � 2 and exceeds it by orders of
magnitude at large intensities I � 5, Fig. 4(b).

Note that we observe small deviations within 10% for the
absolute value of the tenth-order moment M (10); see the inset
in Fig. 4(a). However, we find difference of the same order
for M (10) when we repeat a numerical experiment for the
second time—that is, keeping the initial spectrum A(0)

k the
same in Eq. (18), but using a different random ensemble of
the initial Fourier phases φk . Additionally, the moments are
directly connected to the PDF of intensity, and the difference
in the latter in Fig. 4(b) is very small. For these reasons, we
think that deviations of the higher order moments seen in the
inset of Fig. 4(a) come mainly from finiteness and randomness
of the ensemble of initial conditions and should diminish with
increase of the ensemble size. We disregard such deviations
here, as well as below in similar cases.

The shape of the initial spectrum does not influence visibly
the wave-action spectrum in the QSS, while leading to no-
ticeably different autocorrelation of intensity at intermediate
distances; see Appendix C. Also, we have checked that other
realizations of generic nonsymmetric initial spectra, charac-
terized by the same value of α0, provide the same results
for the moments, the PDF, and the wave-action spectrum,
while leading to noticeable difference in the autocorrelation
of intensity at intermediate distances.

We have repeated the described set of experiments fixing
α0 to other sufficiently large values and came to qualitatively
the same results. This means, in particular, that in the begin-
ning of the QSS the ensemble-averaged kinetic energy 〈Hl〉,
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FIG. 6. Ensemble- and time-averaged statistical functions in the
beginning of the QSS for different initial nonlinearity levels α0 = 4,
16, 64, 128, and 256: (a) the moments [M (p)]1/p and (b) the PDF
P (I ). The initial spectrum is super-Gaussian with the exponent n =
32. The inset in panel (a) shows the higher order moments M (p)

(without the 1/p power) and in panel (b) shows the PDF at smaller
intensity. The black dash-dotted lines indicate the exponential PDF
(2) and the corresponding moments (17), while the cyan dashed lines
indicate the Bessel PDF (24) and the corresponding moments (25).

potential energy 〈Hnl〉, and the fourth-order moment κ4 do not
depend on the shape of the initial spectrum if α0 is sufficiently
large.

In the second set of numerical experiments, we keep the
shape of the initial spectrum fixed to super-Gaussian with the
exponent n = 32, and now change the nonlinearity strength
α0; see Figs. 3(b), 5, and 6. The value of the fourth-order
moment κ4 in the QSS increases monotonically with α0, from
approximately 3 for α0 = 1 to very close to 4 for α0 � 16;
see Figs. 3(b) and 5. The potential-to-kinetic energy ratio
(the nonlinearity strength in the QSS) αQSS = |〈Hnl〉|/〈Hl〉
also increases monotonically from 1 for α0 = 1 to very close
to 2 for α0 � 16; see Fig. 5. Note that equality αQSS = 1
for α0 = 1 follows from conservation of the total energy.
Thus, for the PCW initial conditions, the two characteristics
of the QSS—the fourth-order moment and the nonlinearity

strength—are bounded from above, κ4 � 4 and αQSS � 2, ap-
proaching to these bounds for high initial nonlinearity (small
spectral width). These results could be relevant, in particular,
for better understanding of random sea states [45,46].

As discussed in Sec. IV, the kinetic and potential ener-
gies, as well as the fourth-order moment, practically do not
change during the QSS, so that we may suggest that in the
asymptotic stationary state these functions have the same
properties. Hence, in the long-time evolution, the studied sce-
nario of small spectral width α0 � 1 should lead to the highest
frequency of rogue waves and the strongest deviation from
Gaussianity.

The moments [M (p)]1/p turn out to be practically a
universal function increasing almost linearly with p for non-
linearities 16 � α0 � 128; see Fig. 6(a). When the initial
nonlinearity is not large enough, α0 � 4, the higher order
moments are noticeably smaller than this function. For the
largest nonlinearity strength α0 = 256 that we study in the
present paper, we also detect slightly smaller values for the
higher order moments. In particular, the tenth-order moment
M (10) is more than 40% smaller for α0 = 4 and about 10%
smaller for α0 = 256 than that for 16 � α0 � 128, as shown
in the inset of Fig. 6(a).

The PDF for 16 � α0 � 128 turns out to be practically a
universal function as well, which exceeds the exponential dis-
tribution (2) by orders of magnitude at large intensities I � 5;
see Fig. 6(b). For smaller α0 � 4 and larger α0 � 256 initial
nonlinearities, we observe the PDF to be slightly smaller at
large intensities, with deviations by less than one order of
magnitude within the interval I ∈ [20, 80]. These deviations
explain the smaller values for the higher order moments com-
pared to 16 � α0 � 128, and we will address them in more
detail in the next paragraphs.

Note that the PDFs similar in shape but with lower tails
were obtained in Ref. [34] for the largest optical power and in
Refs. [32,33] for the initial conditions with the largest fraction
of PCW and the largest correlation length.

The wave-action spectrum depends significantly on α0,
which is most noticeable at small wave numbers, and the
autocorrelation of intensity changes strongly with α0 at inter-
mediate distances; see Appendix C.

B. Insights from wave-field dynamics

The deviations of the PDF for α0 � 4 and α0 � 256 from
almost a universal function at 16 � α0 � 128 can be under-
stood qualitatively by looking at the wave-field dynamics.
Each realization of the initial conditions represents a col-
lection of humps of characteristic width δx � √

α0, and the
smaller scale breather-like structures of width � 1 gradually
emerge on each hump at the early stage of motion; see, e.g.,
Fig. 1 and Refs. [39–44]. To observe evolution of the humps,
we can remove the smaller scale oscillations associated with
the breather-like structures by applying a filter in space of
moving average type to the wave-field intensity.

Figure 7 demonstrates results of such a smoothing per-
formed with the weighted local regression (lowess) filter [47]
over the spatial window � = 4π , together with the nons-
moothed intensity and the initial intensity, for one realization
of the initial conditions with nonlinearity α0 = 64 in Fig. 7(a)
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FIG. 7. Smoothed intensity |ψ |2 vs spatial coordinate x at different times for one realization of a PCW, for the initial nonlinearity (a) α0 =
64 (the same realization as in Fig. 1) and (b) α0 = 256; the initial spectrum is super-Gaussian with the exponent n = 32. The black lines indicate
the initial (nonsmoothed) intensity at t = 0; the dashed red and thin green lines show the smoothed intensity at renormalized times t/

√
α0 = 2.5

and t/
√

α0 = 25, respectively. The time t/
√

α0 = 2.5 corresponds to the beginning of the QSS. The spatial smoothing is performed with the
weighted local regression (lowess) filter over the window � = 4π . The insets show the original (nonsmoothed) intensity at the same times on
the scale of the largest hump; note the different vertical scales compared to the main figures. The maximum of the initial amplitude is shifted
to x = 0 for better visualization.

and α0 = 256 in Fig. 7(b). Note that, as we have checked, the
smoothing windows from � = π to 8π provide qualitatively
the same results. The smoothed intensity is shown in the
figures at two different times t/

√
α0 = 2.5 and t/

√
α0 = 25,

the first of which corresponds to the beginning of the QSS; the
insets of the figures show the original (nonsmoothed) intensity
at the same times on the scale of the largest hump.

For the first experiment with α0 = 64, one can see that,
while the original (nonsmoothed) intensity in the beginning
of the QSS may exceed the maximum of the initial intensity
by more than three times due to emergence of the smaller
scale breather-like structures, the smoothed intensity at the
same time practically coincides with the initial one, Fig. 7(a).
During the subsequent evolution, the humps revealed by the
smoothing procedure gradually mix with each other and dis-
appear, though this turns out to be a long process. In particular,
the largest hump with maximum intensity |ψ |2 � 8 survives
and retains its shape even at t/

√
α0 = 25, which corresponds

to t = 200, i.e., the time-averaging interval t ∈ [180, 200]
shown in Figs. 2(b) and 2(c) with the green color. Qualita-
tively the same scenario is observed for other realizations of
the initial conditions with initial nonlinearity from α0 = 16 to
128.

The above observations allow to suggest the analytical
form of the universal PDF for 16 � α0 � 128. Indeed, in the
QSS, the smoothed intensity Is evolves slowly, and in the

beginning of this state it practically coincides with the initial
intensity. The initial intensity is exponentially distributed, so
that in the beginning of the QSS the smoothed intensity is
exponentially distributed too, Ps(Is) = exp(−Is). Let us con-
sider a sufficiently small element of a hump with smoothed
intensity Is. This element provides a contribution Pe(I | Is) to
the overall PDF of intensity I = |ψ |2 (nonsmoothed), depend-
ing on the smaller scale breather-like structures evolving on its
background. Assuming the simplest scenario that each such
contribution is exponential distribution with mean intensity
Is, i.e., Pe(I | Is) = I−1

s exp(−I/Is), where the prefactor I−1
s

comes from normalization condition, we come to the follow-
ing estimate for the overall PDF,

PB(I ) =
∫ +∞

0
Pe(I | Is) × Ps(Is) dIs

=
∫ +∞

0
I−1
s e−Is−I/Is dIs = 2K0(2

√
I ), (24)

where K0 denotes the modified Bessel function of the second
kind of zeroth order. The estimate (24) is shown in Figs. 4(b)
and 6(b) with the dashed cyan lines, and for the initial nonlin-
earities 16 � α0 � 128 it is in a remarkable agreement with
numerical simulations.
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The Bessel PDF (24) represents a strongly nonexponential
distribution, which decays at large intensity as

PB(I ) →
√

π

I1/4
e−2

√
I for I → +∞,

and corresponds to the moments

M (p)
B =

∫ +∞

0
|ψ |p PB(|ψ |2) d|ψ |2 = �2

1+p/2, (25)

in particular, the fourth-order moment κ4 = 4. Note that, quite
remarkably, the latter values equal the squares of the moments
(17) corresponding to the exponential PDF (2). The moments
following from the Bessel PDF are in very good agreement
with those observed numerically in the beginning of the QSS,
as can be seen in Figs. 4(a) and 6(a) for 16 � α0 � 128. Then,
the close to linear dependency of [M (p)]1/p with p can be
explained by the asymptotic expansion of the Gamma func-

tion �1+z ∼ √
2πz( z

e )
z

at z → +∞ (the Stirling’s formula)
applied to Eq. (25),

[
M (p)

B

]1/p ∼ (π p)1/p · p

2e
as p → +∞. (26)

For the experiment shown in Fig. 7(b) with initial non-
linearity α0 = 256, the behavior of the smoothed intensity
has a significant difference. The largest hump in this case
substantially decreases in intensity and broadens already to
the beginning of the QSS, and then splits to several smaller
humps: Compare the smoothed intensities at t/

√
α0 = 2.5

(t = 40) for Fig. 7(b) and at t/
√

α0 = 25 (t = 200) for
Fig. 7(a). Note that this process can be seen even by looking at
the original (nonsmoothed) intensity, as indicated in the inset
of Fig. 7(b). The smaller humps, however, may preserve their
shape for a sufficiently long time. We think that the splitting
of the largest humps, which are the background for evolving
on them smaller scale breather-like structures, is the reason
why the PDF for α0 = 256 is slightly smaller at very large
intensities I � 50 than the PDF given by the estimate (24).

Performing experiments with individual realizations char-
acterized by even larger initial nonlinearity α0 > 256, we
observe that, in the beginning of the QSS, the tendency for
splitting of the humps depends on the humps’ width and
maximum intensity. Specifically, for fixed width (which is
proportional to

√
α0), humps with maximum intensity larger

than some threshold tend to substantially decrease in inten-
sity and broaden, and then split to smaller humps, while the
initially smaller humps may survive for a long time. The
value of the intensity threshold, dividing the different be-
havior, decreases with increasing α0. Hence, we expect that,
for larger nonlinearity α0 > 256, the tail of the PDF should
deviate from the Bessel estimate (24) to lower values even
more pronouncedly and starting from smaller intensities. This
should result in the higher order moments smaller than the
estimate (25) too, with deviation increasing with α0.

Similarly, we may assume that for 16 � α0 � 128 the PDF
and the moments should also deviate from the estimates (24)
and (25), but these deviations should be noticeable from so
large intensities I , which we do not observe in our limited
numerical experiments. Note that a visible deviation of the
PDF from the Bessel estimate (24), that starts from very large
intensities, may lead to very small corrections of the higher

order moments, compare the results for α0 = 256 in Figs. 6(b)
and 6(a), because the remaining part of the integral at these
intensities is very small; see, e.g., Eqs. (17) and (25).

Note also that, when the initial nonlinearity is not large
enough, α0 � 4, the humps have characteristic width of unity
order, δx � 2. Then, decomposition of evolution by that of the
humps and of the breather-like structures should be inapplica-
ble, as the latter have width of unity order too, and it is natural
to expect the PDF deviating from the Bessel estimate (24). We
indeed observe this deviation in the numerical simulations, as
demonstrated in Fig. 6(b).

The probability to meet intensity above the rogue wave
threshold I > 8 (see, e.g., Refs. [1–3]) can be calculated as
the corresponding integral of the PDF,

PRW =
∫ +∞

8
P (I ) dI, (27)

and for the PDF (24) the result is PRW = 1.1 × 10−2. To our
knowledge, this is the largest probability of rogue waves that
has been reached so far for (quasi)stationary states of the
1D-NLSE developing from various types of initial conditions.
For instance, the corresponding probability for the exponen-
tial PDF (2) is 3.4 × 10−4, which is smaller by 1.5 orders of
magnitude. For the numerical experiments with α0 � 16, we
measure the same result PRW = 1.1 × 10−2 as for the Bessel
PDF, while for smaller nonlinearities α0 = 4 and α0 = 1 we
find PRW = 10−2 and PRW = 6.1 × 10−3, respectively. Note
that for α0 = 256 we measure practically the same probability
PRW as for 16 � α0 � 128; this happens because the PDF for
α0 = 256 deviates from the Bessel fit starting from very large
intensities I � 50, where the remaining part of the integral
(27) is very small.

Summarizing the experiments shown in Fig. 7, we con-
clude that, in the QSS, evolution of the wave field can be
subdivided by the fast changes with time of the smaller scale
breather-like structures moving on background of the humps
and the slow motion of the humps. For initial nonlinearities
16 � α0 � 128, all humps which we observe in our numerical
simulations evolve slowly. For larger values α0 � 256, the
largest humps tend to significantly decrease in intensity and
broaden at the beginning of the QSS, and then split to smaller
humps, while the initially smaller humps survive and retain
their shape for a long time.

We think that the slow evolution of the humps is the
main process that underlies the QSS and determines the slow
changes with time of its basic statistical functions. If this
suggestion is true, then we can guess that in the asymp-
totic stationary state all humps should disappear, so that the
smoothed intensity should everywhere be sufficiently close to
unity and the tail of the PDF should be significantly lower than
for the Bessel PDF (24).

As for a general examination of possible causes that might
lead to the different behavior of the largest humps for α0 �
256, we leave it to future studies.

C. Rogue waves

Figure 8 shows the largest rogue wave event detected in the
beginning of the QSS for the experiment with super-Gaussian
initial spectrum with the exponent n = 32 and nonlinearity
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FIG. 8. The largest rogue wave detected in the beginning of the QSS for the ensemble with super-Gaussian initial spectrum with the
exponent n = 32 and nonlinearity strength α0 = 64; the maximum amplitude is shifted to x = 0 for better visualization. (a) The thick black
and the thin red lines show the coordinate dependencies for the amplitude |ψ | and the phase arg ψ , while the dash-dotted blue and the dashed
green indicate fits by the rational breather solutions of the first and second orders. The left inset demonstrates time dependency for the maximum
amplitude maxx |ψ | (thick black) and its fits with the corresponding rational breather solutions (dash-dotted blue and dashed green), while the
right inset shows the amplitude |ψ | (black) and the smoothed amplitude (cyan) in the x space at the time of the maximum elevation. The
smoothing is performed with the lowess filter over the window � = 4π . (b) Space-time representation of the amplitude |ψ (x, t )| near the rogue
wave event.

strength α0 = 64. This event occurred at time t0 ≈ 24.36,
had duration 	T � 0.07, and reached maximum amplitude
max |ψ | ≈ 14.4 corresponding to intensity I ≈ 207.

The rogue wave emerged on background of the hump hav-
ing maximum amplitude close to 3 and exceeded the latter by
about five times; see the right inset in Fig. 8(a). We observe
such behavior for other rogue waves as well: The initial condi-
tions contain large humps exceeding the average amplitude by
several times, and evolution of the smaller scale breather-like
structures on background of these humps leads to spikes ex-
ceeding amplitude of the humps by several times. This implies
that rogue waves tend to appear in regions occupied by large
humps, similar to emergence of rogue waves on caustics in
multidimensional spatial systems [48,49].

We routinely detect rogue waves with maximum ampli-
tude 10 times larger than the average one, max |ψ | > 10. For
instance, among 20 largest rogue waves emerged from the
same ensemble of initial conditions, all 20 have maximum
amplitude exceeding 10.

The spatial profile |ψ (x, t0)| of the rogue wave in Fig. 8(a)
at the time of the maximal elevation t0, as well as the tempo-
ral evolution of the maximum amplitude maxx |ψ |, are very
well approximated by the amplitude-scaled rational breather
solution of the second order, as indicated by the dashed green
lines in the figure and the left inset. The rational breather
solution of the first order, also known as the Peregrine breather
[5], is localized in space and time rational solution of the
1D-NLSE (1),

ψ (1)
p (x, t ) = ei t

[
1 − 4(1 + 2it )

1 + 2x2 + 4t2

]
. (28)

The next-order rational breathers are too cumbersome, and
we refer the reader to Ref. [7]. If ψp(x, t ) is a solution of
the 1D-NLSE, then A0ψp(κ, σ ), where κ = |A0|(x − x0) and
σ = |A0|2(t − t0), is also a solution. In Fig. 8(a), the rational
breathers of the first (dash-dotted blue) and the second (dashed

green) orders are scaled with parameters A0, x0, and t0 to fit
the observed rogue wave in its maximum amplitude, position,
and time of occurrence. Note that the phase of the rogue wave
arg ψ (x, t0) is almost constant near the amplitude maximum,
as in the case of the rational breathers at the time of their
maximal elevation. The space-time representation of the rogue
wave shown in Fig. 8(b) looks as a collision of three pulses.

For each of our numerical experiments with initial nonlin-
earity from α0 = 4 to 256 and with different profiles of the
initial spectrum, including the nonsymmetric spectra, we have
checked the largest 20 rogue waves detected in the beginning
of the QSS. We have found that all of these rogue waves are
very well approximated by the rational breather solutions of
either the first (the Peregrine breather), or the second orders,
with flat phase profile arg ψ (x, t0) ≈ const near the amplitude
maximum.

VI. DISCUSSION AND CONCLUSIONS

We have studied statistics of waves for the integrable tur-
bulence developing from partially coherent waves (PCW) of
narrowband spectrum. As a criterion for narrowness, we have
demanded the initial nonlinearity strength (i.e., the dimension-
less ratio of the potential energy to the kinetic one) to be large,
α0 � 1; in our dimensionless formulation, the nonlinearity
strength equals to the average intensity divided by the square
spectral width (3). Motivated by the previous publications
[28,34] that indicated such initial conditions as promising for
extreme generation of rogue waves, we have examined the
basic statistical characteristics of the turbulence, focusing on
the moments and the PDF of intensity, and have analyzed the
emerging rogue waves.

For narrow initial spectrum α0 � 1, we have found that, af-
ter a relatively short transient regime, the system enters a state
which we call quasistationary (QSS). In the QSS, most of the
basic statistical functions—including the kinetic and potential
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energies, the moments, and the PDF of intensity—change
with time very slowly, and evolution of statistics is hidden
in the higher order moments, the PDF at very large inten-
sities, the wave-action spectrum at large wave numbers, and
the autocorrelation of intensity at intermediate distances. The
evolution within the QSS toward the long-term statistically
stationary state turns out to be very long. To our knowledge,
the existence of such a state has not been reported previously.
The slow evolution of statistics in the QSS and a very distant
statistically stationary state are the reasons why we believe
that, for any possible practical application, examination of the
QSS is important.

In the QSS, the potential-to-kinetic energy ratio (i.e., the
nonlinearity strength) and the fourth-order moment increase
monotonically for vanishing initial spectral width (i.e., in-
creasing initial nonlinearity) but turn out to be bounded
from above, αQSS � 2 and κ4 � 4. Hence, by demanding
narrowness of the initial spectrum, we obtain the integrable
turbulence that develops with the maximum nonlinearity
strength αQSS ≈ 2 and the maximum fourth-order moment
κ4 ≈ 4, possible for the PCW initial conditions. Equivalently,
this limiting case could be reached by fixing the initial spec-
tral width and increasing the average intensity. The kinetic
and potential energies, as well as the fourth-order moment,
practically do not change during the QSS, and we think that
in the asymptotic stationary state they have the same values:
〈Hl〉∞ ≈ 1, 〈Hnl〉∞ ≈ −2, and κ4∞ ≈ 4.

In the beginning of the QSS, the PDF of intensity is slightly
smaller than the exponential distribution (2) at moderate in-
tensities I � 2, and exceeds it by orders of magnitude at large
intensities I � 5. The PDF does not depend on the shape
of the initial spectrum and represents practically a universal
function for the initial nonlinearities 16 � α0 � 128, which
is very well approximated by the Bessel function (24). The
corresponding probability PRW = 1.1 × 10−2 to meet inten-
sity above the rogue wave threshold, I > 8, is higher by 1.5
orders of magnitude than for the exponential PDF (2). To
our knowledge, these two results—the fourth-order moment
κ4 ≈ 4 and the observed frequency of rogue waves—are the
largest that have been reached so far for (quasi)stationary
states of the 1D-NLSE developing from various types of initial
conditions.

For the initial nonlinearity α0 = 256, we observe deviation
of the far tail I � 50 of the PDF from the universal function
(24) to lower values; however, this deviation does not affect
the probability PRW visibly. From consideration of the wave-
field dynamics in Sec. V, we expect that for larger initial
nonlinearity α0 > 256 (narrower spectrum) the tail of the PDF
will be even lower and the deviation will start from smaller
intensities.

In our numerical experiments, we routinely detect rogue
waves 10 times larger than the average amplitude. We have
examined the largest rogue waves detected in the beginning of
the QSS and found that all of these rogue waves are very well
approximated—both in space and in time—by the rational
breather solutions of either the first (the Peregrine breather)
or the second orders.

Generation of a PCW of narrowband spectrum in a real
physical system may be obstructed by presence of a wide-
spectrum noise that may affect statistics of the developing

integrable turbulence. However, as we have checked in Ap-
pendix E, even for significant noise levels, most of the basic
statistical functions in the QSS—including the potential en-
ergy, the moments, and the PDF of intensity—are practically
unchanged when the noise is present.

Our main motivation for this study was the fundamental
investigation of the integrable turbulence in a setting that
allows very frequent appearance of rogue waves. As such, we
hope that it will stimulate new experimental and theoretical
research in the field of nonlinear random waves. In particular,
the soliton gas theory may be promising to explain the long-
time statistics in the case of narrow initial spectrum (high
initial nonlinearity) and to understand the maximum value of
the stationary fourth-order moment κ4 = 4. Also, our results
may be useful for practical applications as well, for instance,
as a construction method for a wave field characterized by
frequent spikes, exceeding the average power by several hun-
dred times, and with nearly steady statistics during its time
evolution.
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APPENDIX A: SCALING TRANSFORMATIONS OF THE
1D-NLSE

The problem of evolution within the focusing 1D-NLSE
with arbitrary dispersion β > 0 and nonlinearity γ > 0 coef-
ficients,

i�T + β �XX + γ |�|2� = 0,

that starts from initial conditions �|t=0 = �0 of arbitrary
average intensity, |�0|2 = N0, can be renormalized to unit
dispersion and nonlinearity coefficients, and unit average in-
tensity,

iψt + ψxx + |ψ |2ψ = 0, ψ |t=0 = ψ0, |ψ0|2 = 1,

with the help of the scaling transformations � = √
N0 ψ ,

T = t/γ N0, and X = x
√

β/γ N0. With these transformations,
the wave number renormalizes as K = k

√
γ N0/β. This means

that the initial nonlinearity strength α0 that is connected with
the dimensionless spectral width δk as α0 = δk−2 (see Sec. II)
depends on the (original) spectral width δK = δk

√
γ N0/β

and the average intensity N0 = 〈|�0|2〉 as

α0 = 1

δk2

∣∣∣∣
t=0

= γ

β

〈|�0|2〉
δK2

∣∣∣∣
T =0

;
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compare with Eq. (3). Hence, the nonlinearity strength can be
enhanced by both increasing the average intensity N0 and de-
creasing the spectral width δK . In particular, the experiments
in Ref. [34] with larger initial intensities (optical power),
which demonstrated the larger probability of rogue waves, are
equivalent in our formulation to the smaller (renormalized)
initial spectral width δk and the higher nonlinearity α0.

The advantage of criterion α0 � 1 for narrowness of the
initial spectrum comes from dimensionless nature of the quan-
tity α0, which can be computed readily using the dimensional
definitions of the kinetic and potential energies,

Hl = β |�X |2, Hnl = −γ |�|4/2;

compare with Eqs. (9) and (10). For this reason, we use the
nonlinearity strength α0 as a characteristic of the spectral
width, instead of setting the spectral width directly.

APPENDIX B: CONSTRUCTION OF NONSYMMETRIC
INITIAL SPECTRUM

We construct generic (nonsymmetric) Fourier spectrum
A(0)

k in Eq. (18) in the following way. At the first step, we
generate an “intermediate” spectrum

Ã(0)
k = C0 exp

[
fk − (1 − hk )

( |k|
θl

)nl

− hk

( |k|
θr

)nr
]
, (B1)

where fk ≈ 1 is generic real function, hk is the Heaviside step
function, and C0 is a constant determined from normalization
condition |ψ0(x)|2 = 1. The left and right decay exponents nl

and nr , together with the left and right “spectral widths” θl

and θr , enable the spectrum Ã(0)
k to decay differently in the

limits k → −∞ and k → +∞. The function fk is composed
as superposition of linear waves with Gaussian spectrum and
arbitrary phases, similar to how we define the initial condi-
tions (18) and (19).

The “intermediate” spectrum has nonzero momentum
∑

k

k
[
Ã(0)

k

]2 �= 0

[see Eq. (7)], and to eliminate it, at the second step we con-
struct the “final” spectrum A(0)

k by shifting the “intermediate”
one by a constant wave number k0,

A(0)
k = Ã(0)

k−k0
, k0 = −

∑
k

k
[
Ã(0)

k

]2
. (B2)

For the function fk , this shift is performed with (forward)
Fourier transform to the x space, multiplication by e−ik0x, and
then (backward) Fourier transform to the k space.

One of the examples of nonsymmetric spectra A(0)
k used

in our numerical experiments is shown in Fig. 9. It has left
and right decay exponents nl = 2 and nr = 32 and equal left
and right “spectral widths” θl = θr = 0.24, and is character-
ized by the ensemble-average potential-to-kinetic energy ratio
(nonlinearity strength) α0 ≈ 65.2. For our simulation param-
eters, in the region [−θl , θr] this spectrum is resolved with
(θl + θr )/	k ≈ 123 harmonics, where 	k = 2π/L = 1/256
is the distance between the neighbor harmonics and L = 512π

is the length of the simulation box.
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FIG. 9. Nonsymmetric initial wave-action spectrum [A(0)
k ]2/	k

for one of the numerical experiments. The spectrum has left and
right decay exponents nl = 2 and nr = 32, and equal left and right
“spectral widths” θl = θr = 0.24 [see Eqs. (B1) and (B2)] and is
characterized by the ensemble-average potential-to-kinetic energy
ratio (nonlinearity strength) α0 ≈ 65.2. The modulation at small
wave numbers seen in the figure comes from the function fk in
Eq. (B1).

APPENDIX C: WAVE-ACTION SPECTRUM AND
AUTOCORRELATION OF INTENSITY

In the main part of the paper, we have focused on exami-
nation of the kinetic and potential energies, the moments, and
the PDF of intensity. In this Appendix, we consider two other
important statistical functions: the wave-action spectrum,

Sk (t ) = 〈|ψk|2〉/	k, (C1)

where 	k = 2π/L is distance between the neighbor harmon-
ics, and the autocorrelation of intensity,

g2(x, t ) = 〈|ψ (y + x, t )|2|ψ (y, t )|2〉
〈|ψ (y, t )|2〉2

. (C2)

In the latter relation, the overline means spatial averaging over
the y coordinate. Note that at x = 0 the autocorrelation equals
to the fourth-order moment, g2(0, t ) = κ4(t ), and at x → ∞
it must approach unity, g2(x, t ) → 1. For the wave-action
spectrum, we use normalization

∫
Sk dk = 〈|ψ |2〉 = 1.

1. Time evolution

First, we compare the ensemble-averaged statistical func-
tions, additionally averaged over time intervals t ∈ [20, 40]
(shown with black in Fig. 10), t ∈ [60, 80] (blue), t ∈
[180, 200] (green), and t ∈ [980, 1000] (red); concerning the
time averaging, see Appendix D below.

For the wave-action spectrum, time averaging in the inter-
vals t ∈ [20, 40] and t ∈ [60, 80] gives almost identical results
[Fig. 10(a)]. However, starting from t � 200, the triangular
shape of the wave-action spectrum at small wave numbers
|k| � 1 becomes less sharp, and at large wave numbers |k| �
10 the spectrum significantly decreases.

In contrast to the wave-action spectrum, the autocorrela-
tion of intensity changes pronouncedly over the whole time
interval t ∈ [20, 1000], as shown in Fig. 10(b). Its signifi-
cant evolution with time is observed at intermediate distances
1 � |x| � 20 between the steady bell-shaped central peak of
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FIG. 10. Averaged over ensemble and different time intervals statistical functions: (a) the wave-action spectrum Sk and (b) the autocorre-
lation of intensity g2(x). The initial spectrum is super-Gaussian with the exponent n = 32 and nonlinearity strength α0 = 64. The insets show
the same functions as in the main figures with smaller scales.

full width at half maximum 	FW HM � 1.4 and large distances
|x| � 20 where the autocorrelation reaches unity. Note that the
distance where the autocorrelation practically reaches unity
shrinks from |x| � 20 at t � 40 to |x| � 4 at t � 1000.

2. Statistics of the quasistationary state

Following the main part of the paper, we consider two
sets of numerical experiments. In the first set, we fix the
initial nonlinearity strength to α0 = 64 and consider different
profiles of the initial spectrum; the results of these experi-
ments are shown in Fig. 11. In the second set, we fix the
shape of the initial spectrum to super-Gaussian with the ex-
ponent n = 32 and study different levels of α0; see Fig. 12.
In addition to ensemble-averaging over random realizations
of the initial conditions, we also perform time averaging
over relatively short time interval t ∈ [ts, te] placed in the

beginning of the QSS. The start of the interval is determined
as ts/

√
α0 = 2.5 and its duration is set the same for all

experiments, te − ts = 20.
As shown in Fig. 11(a), the wave-action spectrum in

the beginning of the QSS practically does not depend on
the profile of the initial spectrum, even when the lat-
ter is rather arbitrary and nonsymmetric. In the QSS, the
wave-action spectrum turns out to be symmetric, decays
slightly slower than exponential at large wave numbers
|k| � 4, and has a sharp triangular shape at small wave
numbers |k| � 1.

The autocorrelation of intensity, in contrast, depends on
shape of the initial spectrum noticeably, and this depen-
dency is observed at intermediate distances 2 � |x| � 20
[Fig. 11(b)] between the universal central peak of full width
at half maximum 	FW HM � 1.4 and large distances |x| � 20
where the autocorrelation reaches unity. This dependency
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FIG. 11. Ensemble- and time-averaged statistical functions in the beginning of the QSS for four super-Gaussian initial spectra with the
exponents n = 1, 2, 8, 32 and one nonsymmetric initial spectrum: (a) the wave-action spectrum Sk and (b) the autocorrelation of intensity g2(x).
The initial nonlinearity strength is α0 = 64 for the four super-Gaussian spectra and α0 ≈ 65.2 for the nonsymmetric spectrum. The insets show
the same functions as in the main figures with smaller scales.
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FIG. 12. Ensemble- and time-averaged statistical functions in the beginning of the QSS for different initial nonlinearity levels α0 = 4, 16,
64, 128, and 256: (a) the wave-action spectrum Sk and (b) the autocorrelation of intensity g2(x). The initial spectrum is super-Gaussian with
the exponent n = 32. The insets show the same functions as in the main figures with smaller scales.

means that the integrable system “feels” the shape of the
initial spectrum even when it is very narrow.

The dependency of statistical functions on the level of
initial nonlinearity (i.e., spectral width) is more pronounced.
In particular, the wave-action spectrum changes with α0 most
noticeably at small wave numbers |k| � 1, Fig. 12(a), where
the spectrum forms a triangular that sharpens with increasing
α0. For sufficiently large α0, the spectrum at these wave num-
bers resembles the asymptotic spectrum of the noise-induced
MI [25]. Note that the spectra for the smallest values of initial
nonlinearity α0 = 4 and 16 presented in Fig. 12(a) are very
similar to the spectrum obtained in Ref. [33] for the pure
PCW and the largest correlation length Lc = 1.8 studied in
that paper.

The autocorrelation of intensity g2(x) keeps its universal
bell-shaped profile at small distances |x| � 1.4, while chang-
ing significantly with α0 at intermediate distances where it
approaches to unity [Fig. 12(b)]. The distance where the
autocorrelation practically reaches unity increases with α0

roughly as |x| ∝ √
α0, as can be seen in the figure [compare

g2(x) for α0 = 4, 16, 64, and 256]. Note that for α0 = 4 the
maximum of the autocorrelation function is slightly smaller
than 4, which reflects the smaller value of the fourth-order
moment κ4 in the QSS for this experiment; see Figs. 3(b)
and 5.

APPENDIX D: TIME AND ENSEMBLE AVERAGING
VERSUS ENSEMBLE AVERAGING

In this Appendix, we compare time and ensemble averag-
ing in the beginning of the QSS versus ensemble averaging
only for four statistical functions: the moments, the PDF of
intensity, the wave-action spectrum, and the autocorrelation
of intensity. As one can see in Fig. 13, the statistical functions
with and without time averaging differ only marginally. The
two significant distinctions consist in (i) slightly elevated val-
ues of the higher order moments at t = 20 compared to t = 40
and time-averaged moments [see the inset in Fig. 13(a)] and

(ii) the higher accuracy in measurement of the PDF when the
time-averaging is applied [see Fig. 13(b)] that highlights the
main advantage of this technique. Hence, we conclude that in
the QSS the considered statistical functions change with time
very slowly, and the averaging within relatively short time
intervals can be used to improve accuracy of our results.

APPENDIX E: EFFECTS OF AN ADDITIONAL
WIDE-SPECTRUM NOISE

In the main part of the paper, we have examined integrable
turbulence developing from PCW of narrowband spectrum.
However, real physical systems have noise that may change
the spectral “portrait” of initial conditions and affect our
results. In this Appendix, we demonstrate two numerical ex-
periments with inclusion of additional wide-spectrum noise of
small and moderate levels and discuss effects on the statistical
results.

The initial conditions for both experiments represent a sum
of two PCW,

ψ0(x) = ψ (1)(x) + χ ψ (2)(x)√
1 + χ2

, (E1)

where ψ (1,2) are determined from Eqs. (18) and (19); the
average intensity of these PCW is unity, 〈|ψ (1,2)|2〉 = 1. In
Eq. (E1), ψ (1) is the (original) narrowband PCW with super-
Gaussian spectrum with the exponent n = 32 and nonlinearity
strength α0 = 64, and ψ (2) is a wide-spectrum wave modeling
noise, while the parameter χ sets the average noise amplitude
in the x space.

For the first experiment with small noise level, we use
noise amplitude χ = 10−3 and super-Gaussian spectrum for
ψ (2) with the exponent n = 32 and spectral width θ = 4; see
Eqs. (18) and (19). For the second experiment, we set these
parameters at χ = 10−1, n = 32 and θ = 8. The left inset in
Fig. 14(c) illustrates the initial wave-action spectrum Sk at
t = 0 for these two additional experiments with green and
red lines, in comparison with the original experiment without
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FIG. 13. Time- and ensemble averaging vs ensemble averaging for four statistical functions: (a) the moments [M (p)]1/p, (b) the PDF of
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are shown with green and red, respectively. The initial spectrum is super-Gaussian with the exponent n = 32 and nonlinearity strength α0 = 64.
In panels (b) and (a), the black dash-dotted lines indicate the exponential PDF (2) and the corresponding moments (17), while the cyan dashed
lines indicate the Bessel PDF (24) and the corresponding moments (25). The inset in panel (a) shows the higher order moments M (p) (without
the 1/p power), while the insets in panels (b)–(d) show the same functions as in the main figures with smaller scales.

noise (black line). As in the case of the original experiment, all
statistical characteristics discussed below are averaged over
the ensemble of 1000 random realizations of initial conditions
and those statistical functions that relate to the QSS, addi-
tionally over time interval t ∈ [20, 40] accommodated in the
beginning of the QSS.

As shown in Fig. 14, results for the first experiment with
small additional noise practically coincide with those for the
original experiment without noise. The largest distinctions
that we observe are very small deviations of the PDF at large
intensities, together with by less than 10% smaller value of the
tenth-order moment M (10); see the inset in Fig. 14(b). As we
have mentioned earlier, differences of the same order appear
when we repeat an experiment using another 1000 random
realizations of the initial data. For this reason, we think that
the observed discrepancies come mainly from finiteness and
randomness of the ensemble of initial conditions and disre-
gard them.

Stronger effects are observed for the second experiment
with moderate noise level. In this case, the difference is seen
already for the transient regime, in which the fourth-order

moment starts to increase noticeably earlier and reaches
smaller maximum value at slightly different time compared
to the original experiment without noise [Fig. 14(a)]. In the
QSS, the fourth-order moment and the potential energy reach
the same values, κ4 ≈ 4 and 〈Hnl〉 ≈ −2, as without noise;
however, the kinetic energy becomes larger, 〈Hl〉 ≈ 1.2 versus
〈Hl〉 ≈ 1 without noise. The moments practically coincide
with those for the experiment without noise [Fig. 14(b)]; the
measured value for the tenth-order moment M10 turns out to
be about 10% smaller than without noise.

Note that in the presence of noise, the initial kinetic en-
ergy 〈Hl〉|t=0 ≈ 0.2 is also larger than that without noise,
〈Hl〉|t=0 ≈ 0, by approximately the same value as in the QSS.
The corresponding contribution to the initial kinetic energy
comes from wave numbers |k| � 8, where noise has intensity
in the k space |ψ (2)

k |2/	k ≈ 6.5 × 10−4; see the left inset in
Fig. 14(c). Calculating the integral sum for the kinetic energy
in the k space in Eq. (9), one can easily get the difference of
� 0.2 originating from this effect.

The wave-action spectrum in the beginning of the QSS is
affected by noise very slightly at small wave numbers |k| � 1
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FIG. 14. Influence of an additional wide-spectrum noise on the statistics. The black lines indicate the original experiment with super-
Gaussian initial spectrum with the exponent n = 32 and nonlinearity strength α0 = 64, the green lines indicate the experiment with additional
small noise (E1) with amplitude χ = 10−3 and super-Gaussian spectrum with n = 32 and θ = 4, and the red lines indicate the one with
moderate noise χ = 10−1, n = 32, and θ = 8. (a) Evolution of the ensemble-averaged kinetic energy 〈Hl〉 (thin solid lines), potential energy
〈Hnl〉 (thick dashed lines), and the fourth-order moment κ4 (thick dash-dotted lines). [(b)–(e)] Ensemble- and time-averaged statistical
characteristics in the beginning of the QSS: (b) the moments [M (p)]1/p, (c) the wave-action spectrum Sk , (d) the PDF P (I ), and (e) the
autocorrelation of intensity g2(x). The inset in panel (b) shows the higher order moments M (p) (without the 1/p power), the left inset in panel
(c) shows the initial wave-action spectrum at t = 0, and the right inset in the same panel together with the insets in panels (d) and (e) show the
same functions as in the main figures with smaller scales. In panels (d) and (b), the black dash-dotted lines indicate the exponential PDF (2)
and the corresponding moments (17), while the cyan dashed lines indicate the Bessel PDF (24) and the corresponding moments (25).

and significantly at wave numbers |k| � 8 where the spectrum
acquires “wings” approximately at the level Sk � 6 × 10−4

of the initial noise; see Fig. 14(c). These “wings” are the
source for larger value of the kinetic energy 〈Hl〉 in the QSS,
compared to the experiment without noise. The PDF and the
autocorrelation of intensity turn out to be practically unaf-
fected by noise in the second experiment [Figs. 14(d) and
14(e)].

We conclude that a significant additional noise may no-
ticeably change the transient regime, modify the wave-action
spectrum with “wings” appearing at the noise level, and in-
crease the kinetic energy. However, even with notable noise
levels, it leaves the potential energy, the moments, the PDF
and the autocorrelation of intensity practically unaffected in
the QSS. In our opinion, this opens possibilities for experi-
mental observation of the latter statistical functions.
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