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Application of topological resonances in experimental investigation of a Fermi golden
rule in microwave networks
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We investigate experimentally a Fermi golden rule in two-edge and five-edge microwave networks with
preserved time reversal invariance. A Fermi golden rule gives rates of decay of states obtained by perturbing
embedded eigenvalues of graphs and networks. We show that the embedded eigenvalues are connected with the
topological resonances of the analyzed systems and we find the trajectories of the topological resonances on the
complex plane.
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I. INTRODUCTION

There are many processes in physics that can be described
as a perturbation of a certain, usually quite symmetric system.
One example of this behavior is the eigenvalues of quantum
systems, which after the perturbation of the initial Hamilto-
nian become resolvent resonances. A simple system in which
this phenomenon can be studied is the model of quantum
graphs (see Ref. [1])—a netlike structure equipped with the
Hamiltonian of a single quantum particle. One can consider
an infinite quantum graph, consisting of internal (finite) edges
and external (infinite) edges. For rationally related lengths
of the internal edges, certain eigenfunctions corresponding
to eigenvalues embedded into the continuous spectrum can
be constructed as sine functions on some of the edges with
zeros at the vertices and vanishing on the infinite edges. How-
ever, if the rationality of the edge lengths is perturbed, the
former eigenvalues travel into the complex plane and become
resonances. Due to the topological nature of the former eigen-
states, these resonances are usually in the literature called
topological resonances. The behavior of the topological res-
onances and their trajectories near the initial eigenvalue have
been of interest for many papers recently [2–5]. In Ref. [2],
the trajectories of topological resonances depending on the
edge lengths were found, and the circumstances under which
the resonance again becomes an eigenvalue were studied. In
Ref. [3] the term “topological resonances” was first used, and
the statistical properties of these resonances were investigated.
Paper [5] proved that for tree graphs with at most one vertex
of valency 1, the resonances are far from the real axis (and,
hence, there are no “narrow” resonances), which is not the
case for the other types of graphs.

In the paper [4], the authors pointed out the link between
the so-called Fermi golden rule in physics and the speed
with which the former eigenvalue moves on the complex
plane. To be more precise, if the lengths of the edges are
parametrized by a parameter t , they found a formula for Im k̈,
the imaginary part of the second derivative of the wave vector
k (the square root of the complex energy of the resonance)
with respect to the parameter t . Another version of the for-

mula, obtained by Lee and Zworski in the case of standard
(Kirchhoff’s) coupling conditions, was later found in Ref. [6]
using the pseudo-orbit expansion method for general coupling
conditions.

In the present paper, we put under the experimental test
the results of Lee and Zworski [4] using microwave networks.
We find the trajectories of the resonances for two particular
networks and compare them with the numerical simulations.
As opposed to abstract open quantum graph microwave net-
works [7] are real-world open systems which are additionally
characterized by intrinsic absorption. Yet, we find a good
correspondence of the experimental and theoretical results;
the experimental trajectories match the theoretical ones [4].
Moreover, we verify a Fermi golden rule by computing Im k̈
theoretically and comparing it with the fit of the experimental
data. We find a good correspondence for both systems.

II. THEORETICAL MODEL AND FORMULATION OF A
FERMI GOLDEN RULE

In this section, we introduce the well-known model of
quantum graphs. Since the telegraph equation for microwave
networks has a similar form as the Schrödinger equation for
quantum graphs, our experiment can very precisely simulate
the theoretical predictions made for quantum graphs.

Let us consider a metric graph consisting of a set of
vertices V and a set of edges E including M external (infi-
nite) edges, which are parametrized by the intervals (0,∞)
and denoted by {es}M

s=1, s = 1, . . . , M and N internal (fi-
nite) edges, which can be parametrized by the intervals
(0, � j ), j = M + 1, . . . , M + N , connect two vertices and
are denoted by {e j}M+N

j=M+1. We can denote �s = ∞ for s =
1, . . . , M. In the Hilbert space H = ⊕M+N

j=1 L2(0, � j ) we de-
fine the operator H acting as the negative second derivative on
the domain consisting of functions belonging to the Sobolev
space

⊕M+N
j=1 W 2,2(0, � j ) and satisfying the standard (Kirch-

hoff’s) coupling conditions at each vertex v, namely, the
continuity of the function values and vanishing of the sum of
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the derivatives,

ui(v) = u j (v), v ∈ ei ∩ e j,
∑
e j�v

∂νu j (v) = 0, (1)

where ∂νu j (v) is the derivative at vertex v in the direction into
the vertex: ∂νu j (0) = −u′

j (0), ∂νu j (� j ) = u′
j (� j ). For more

details on quantum graphs we refer the reader to the mono-
graph [1].

Before stating the main formula, let us define one of
its components, the generalized eigenfunctions. Let es(k, x),
where k is the square root of energy, i.e., k2 = E , s =
1, . . . , M be for k2 not belonging to the spectrum of H char-
acterized as follows:

(1) es(k, x) locally belongs to the domain of H ,
(2) (H − k2)es(k, x) = 0,
(3) es

j (k, x) = δ jse−ikx + s jseikx, j = 1, . . . , M, where es
j

is the component of es on the jth infinite edge, and δ js is the
Kronecker delta,

(4) we holomorphically extend es
j (k, x) to all k ∈ R.

A Fermi golden rule can be formulated as follows [4,
Theorem 1]:

Let H (t ) be the above defined Hamiltonian for which
the lengths of the internal edges depend on the parameter

t via � j (t ) = � je−a j (t ), a j (0) = 0. Let ȧ j = ∂a j (t )
∂t |t=0, j =

M + 1, . . . M + N be the components of ȧ = {ȧ j}M
j=1. Let

k2 > 0 be a simple eigenvalue of H (t ) for t = 0, and let
u be its corresponding normalized eigenfunction. Then there
is a smooth function k(t ), where k(0) = k is the eigenvalue
and k2(t ), t �= 0 are resolvent resonances. For the second
derivative k̈ of k(t ) with respect to t at t = 0, it holds

Im k̈ = −
M∑

s=1

|Fs|2, (2)

where

Fs = k〈ȧu(x), es(k, x)〉 + 1

k

∑
v

∑
e j�v

1

4
ȧ j[3∂νu j (v)es(k, v)

− u(v)∂νes
j (k, v)]. (3)

In Eq. (3) the inner product on H is denoted by 〈·, ·〉, and the
overline denotes the complex conjugation.

In order to demonstrate the connection of this formulation
of a Fermi golden rule to its usual form in the physics lit-
erature let us consider a perturbation H (t ) = H0 + tV of the
Hamiltonian H0. Let E0 = E (0) be a simple eigenvalue of H0,
and let E (t ) = ∑∞

n=0 antn be the complex resonance for the
operator H (t ). Then the second derivative of �(t ) = 2 Im E (t )
can be expressed by an integral expression (18.3) in Ref. [8].
Moreover, �(t ) can be related to the transition probability
between the initial and the final states, which is connected
to the usual definition of a Fermi golden rule (for details see
Ref. [9]).

III. SIMULATION OF QUANTUM GRAPHS BY
MICROWAVE NETWORKS

Quantum graphs can be considered as idealizations of
physical networks in the limit where the widths of the wires
are much smaller than their lengths. They can be successfully

used to model theoretically a broad range of physical prob-
lems, see, e.g., Ref. [10]. From the experimental point of view
the recent epitaxial techniques allow for designing and fabri-
cation of relatively simple quantum nanowire graphs [11,12].
However, to deal experimentally with much more complex
systems characterized by many controllable parameters one
has to use microwave networks. Hul et al. [7] demonstrated
that quantum graphs with preserved time (T ) reversal invari-
ance can be successfully simulated by microwave networks
containing microwave junctions and coaxial cables. In the
investigations presented here the microwave networks were
built of microwave T junctions and the SMA-RG402 coaxial
cables. The SMA-RG402 cables consist of two conductors.
The inner conductor of a cable with radius r1 = 0.05 cm is
surrounded by a concentric conductor of inner radius r2 =
0.15 cm. The space between the conductors is filled with
Teflon with a dielectric constant ε 
 2.06. For the specified
parameters of the cables inside them only the fundamental
TEM mode propagates below the cutoff frequency of the TE11

mode νc 
 c
π (r1+r2 )

√
ε


 33 GHz [13], where c is the speed of
light in vacuum. The lengths of the edges in the corresponding
quantum graph are defined by the optical lengths �i = �

g
i

√
ε,

where �
g
i ’s are the geometric lengths of the coaxial cables.

Microwave networks provide a very rich platform for the
experimental and the theoretical studies of quantum graphs
possessing the same topology and boundary conditions at
the vertices. The spectral and scattering properties of mi-
crowave networks have been studied in Refs. [7,14–22]. The
microwave networks allow for simulations of a variety of
chaotic systems whose spectral properties can be described by
the three main symmetry classes: Gaussian orthogonal ensem-
ble [7,14,23], Gaussian unitary ensemble [7,18,20,24,25], and
Gaussian symplectic ensemble [21,24] in the random matrix
theory.

In this way microwave networks have become other impor-
tant model systems to which belong flat microwave cavities
[15,26–37] and experiments using Rydberg atoms strongly
driven by microwave fields [38–50] that are successfully used
in simplifying experimental analysis of complex quantum
systems.

In order to test experimentally a Fermi golden rule in
microwave networks we consider two examples of quantum
graphs shown in Figs. 1(a) and 1(c). A two-edge graph in
Fig. 1(a) consists two vertices, two internal edges, and two
infinite leads. The second graph, a five-edge graph in Fig. 1(c),
is more complex. It contains four vertices, five internal edges,
and two infinite leads. The corresponding microwave net-
works constructed from microwave coaxial cables are shown
in Figs. 1(b) and 1(d).

IV. THEORETICAL RESULTS FOR A FERMI RULE

A. A two-edge graph

Let us consider a graph consisting of two vertices, two
internal, and two external edges [see Fig. 1(a)]. Let the lengths
of the internal edges e3 and e4 be �3 < ∞ and �4 < ∞, respec-
tively, whereas edges e1 and e2 have infinite lengths. We will
consider the dependence of the edge lengths on parameter t
as �3 = �0(1 − t ), �4 = �0 and the eigenvalue for t = 0 with
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FIG. 1. Panels (a) and (b) show the schemes of a two-edge quan-
tum graph with V = 2 vertices and a microwave network with the
same topology. Panels (c) and (d) show the schemes of a five-edge
quantum graph with V = 4 vertices and a microwave network with
the same topology. The microwave networks were connected to the
vector network analyzer with the flexible microwave cables which
are equivalent to attaching infinite leads to quantum graphs in panels
(a) and (c).

k = 2π
�0

. In the Appendix we prove that for a two-edge graph
a Fermi golden rule is expressed by the formula,

Im k̈ = − π2

2�0
. (4)

Furthermore, we show that the imaginary part of k(t ) near the
eigenvalue behaves as

Im k ≈ − π2

4�0
t2. (5)

B. A five-edge graph

Let us consider a graph in Fig. 1(c), having five in-
ternal edges and two external edges. Let the edge lengths
be �3 = �0(1 − t ), �4 = �0(1 + t ), �5=�0(1−t ), �6=�0(1+t ),
�7=�0(1+t ) (this corresponds to the case of Ref. [4,
Fig. 4(c)]). Let us start from the eigenvalue with k�0 =
arccos (−1/3) = 1.9106. For our choice we have

ȧ3 = 1, ȧ4 = −1, ȧ5 = 1, ȧ6 = −1 . (6)

The computation of Im k̈ is given in Ref. [8, Sec. 18.2] and a
Fermi golden rule takes the form

Im k̈ = − 1

�0
[(ȧ3 − ȧ6)2 + (ȧ4 − ȧ5)2]0.1711

− 1

�0
(ȧ3 − ȧ6)(ȧ4 − ȧ5)0.1141 = −0.9124

�0
. (7)

V. EXPERIMENTAL RESULTS

Both microwave networks shown in Figs. 1(b) and 1(d) can
be described in terms of the 2 × 2 scattering matrix Ŝ(ν),

Ŝ(ν) =
(

S11(ν) S12(ν)
S21(ν) S22(ν)

)
, (8)

relating the amplitudes of the incoming and outgoing waves
of frequency ν in both infinite edges (leads). It should be
emphasized that it is customary for microwave systems to
make measurements of the scattering matrices in a function
of microwave frequency ν which is related to the real part of
the wave number Re k = 2π

c ν.
To measure the two-port scattering matrix Ŝ(ν) the vector

network analyzer (VNA) Agilent E8364B was connected to
the microwave networks shown in Figs. 1(b) and 1(d). The
microwave test cables connecting microwave networks to the
VNA are equivalent to attaching of two infinite leads e1 and
e2 to quantum graphs in Figs. 1(a) and 1(c).

A. The two-edge network

The internal edge lengths of the two-edge network [see
Figs. 1(a) and 1(b)] were parametrized by parameter t as
�3 = �0(1 − t ) and �4 = �0, with �0 = 1.0068 ± 0.0002 m.
The length of edge e3 was changed using microwave cables
and a microwave phase shifter. The eigenvalue for t = 0 is
given by k = 2π

�0
which in the frequency domain defines the

resonance at 0.2978 GHz. Therefore, in order to analyze the
dynamics of the topological resonance in a function of param-
eter t the scattering matrix Ŝ(ν) of the network was measured
in the frequency range of ν = 0.01–0.5 GHz.

As an example, the modulus of the determinant of the
scattering matrix | det[Ŝ(ν)]| of the two-edge network for
t = −0.2 is shown in Fig. 2(a) in the frequency range of 0.30–
0.36 GHz (open circles). For t �= 0 we deal for this network
with two nearly degenerated resonances rm = νm + igm, m =
1, 2. Therefore, the parameters of the resonances, including
the real Re k = 2π

c ν1 and the imaginary Im k = 2π
c g1 parts of

the topological resonance, were obtained from the fit of the
modulus of a sum of two Lorentzian functions [51],

f2(ν) =
2∑

m=1

iνAm

ν2 − (νm + igm)2
+ B(ν − ν1) + C, (9)

to the modulus of the determinant of the scattering ma-
trix | det[Ŝ(ν)]|, where Am, B, and C are complex constants
and rm = νm + igm, m = 1, 2 are frequencies of the complex
nearly degenerated resonances. The fit of | f2(ν)| [see Eq. (9)]
to the modulus | det[Ŝ(ν)]| in the frequency range of ν =
0.314–0.347 GHz is marked in Fig. 2(a) by the red line. The
topological resonance of the network is marked with a red dot,
and the other resonance is marked with a blue dot. The right
vertical axis g in Fig. 2(a) shows the imaginary part of the
resonances in gigahertz.

In Fig. 3 full circles show the trajectory of the topological
resonance obtained experimentally for the two-edge network.
Even for the parameter t = 0 the imaginary part of the experi-
mental topological resonance g1 = −43 ± 20 kHz is different
than 0 suggesting that the topological resonance is influenced
by the intrinsic absorption of the network. To analyze this
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FIG. 2. (a) The modulus | det[Ŝ(ν )]| of the determinant of the
scattering matrix of the two-edge network for parameter t = −0.2
in the frequency range of 0.30–0.36 GHz (open circles). The fit of
| f2(ν )| [see Eq. (9)] to the modulus | det[Ŝ(ν )]| in the frequency
range of ν = 0.314–0.347 GHz is marked by the red line. The
topological resonance of the network is marked with a red dot,
and the other one is marked with a blue dot. The right vertical
axis g shows the imaginary part of the resonances in gigahertz.
(b) The modulus | det[Ŝ(ν )]| of the determinant of the scattering
matrix of the five-edge network for parameter t = −0.05 in the
frequency range of 0.06–0.12 GHz (open circles). The fit of | f3(ν )|
[see Eq. (10)] to the modulus | det[Ŝ(ν )]| in the frequency range of
ν = 0.074–0.116 GHz is denoted by the red line. The topological
resonance of the network is marked by a red dot, whereas the two
other ones are marked by blue dots. The right vertical axis g shows
the imaginary part of the resonances in gigahertz.

situation we performed the numerical calculations using the
method of pseudo-orbits [52–54]. In the calculations we took
into account the internal absorption of the microwave cables
forming the edges of the microwave network. To do this we
replaced the real wave vector k by the complex one with the
absorption-dependent imaginary part Im k = β

√
2πν/c and

the real part Re k = 2πν/c, where β = 0.009 m−1/2 is the
absorption coefficient and c is the speed of light in vacuum.
This method is described in detail in Ref. [7].

The results of the calculations are shown with diamonds
in Fig. 3. The agreement between the experimental results
(full circles) and the numerical ones (diamonds) is very good
showing that the nonzero value of the imaginary part of the
topological resonance at t = 0 is due to intrinsic absorption in
the network.

Due to the presence of the intrinsic absorption we fitted the
experimental dependence of Im k on t to the function Im k =
at2 + b (see the inset in Fig. 3). Using nine experimental
points (the central point corresponding to the topological

5 5.5 6 6.5 7 7.5 8

Re k [1/m]

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Im
 k

 [
1/

m
]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

t 
- 

p
er

tu
b

at
io

n
/c

h
an

g
e 

in
 le

n
g

th
 o

f 
ed

g
e

-0.2 -0.1 0 0.1 0.2
t

-0.15

-0.1

-0.05

0

Im
 k

 [
1/

m
]

FIG. 3. The trajectory of the topological resonance obtained ex-
perimentally for the two-edge network (full circles). The numerical
calculations taking into account the intrinsic absorption of the net-
work are marked by diamonds. The color coding on the right vertical
axis indicates parameter t . In the inset we show the fitted dependence
Im k = at2 + b (red line) to the experimental points (full circles).
Using nine experimental points (the central point corresponding to
the topological resonance and four points to the left and four to
the right from it) the values of aexp = −2.11 ± 0.40 m−1 and b =
−0.00097 ± 0.00051 m−1 were obtained. The experimental value
of aexp corresponds within the experimental error to the theoretical

value of ath = − π2

4�0
= −2.45 m−1.

resonance and four points to the left and four to the right
from it) we obtained the values of aexp = −2.11 ± 0.40 m−1

and b = −0.00097 ± 0.00051 m−1. In the inset in Fig. 3 the
theoretical fit is marked by the full red line. The experimental
value of aexp = −2.11 ± 0.40 m−1 is within the experimen-
tal error in agreement with the theoretical one ath = − π2

4�0
=

−2.45 m−1 obtained for �0 = 1.0068 ± 0.0002 m. Moreover,
the value of b = −0.00097 ± 0.00051 m−1 (−46 ± 24 kHz)
is in agreement with the imaginary part of the experimental
topological resonance g1 = −43 ± 20 kHz.

B. The five-edge network

In the case of the five-edge network the internal edge
lengths of the network [see Figs. 1(c) and 1(d)] were
parametrized by parameter t as

�3 = �0(1 − t ), �4 = �0(1 + t ), �5 = �0(1 − t ), �6 =
�0(1 + t ), and �7 = �0(1 + t ) with �0 = 1.0025 ± 0.0002 m.
The lengths of edges e3–e6 were changed using microwave
cables and microwave phase shifters. The eigenvalue for
t = 0 can be found from the equation k�0 = arccos (−1/3) =
1.9154 [4]. In the frequency domain it specifies the resonance
at 0.0912 GHz. That is why to analyze the dynamics of
the topological resonance in a function of parameter t the
scattering matrix Ŝ(ν) of the five-edge network was measured
in the frequency range of ν = 0.01–0.5 GHz. Figure 2(b)
shows the modulus of the determinant of the scattering
matrix | det[Ŝ(ν)]| of the five-edge network for t = −0.05
in the frequency range of 0.06–0.12 GHz (open circles).
Here, the situation is even more complicated than in the
case of the two-edge network because we deal with a structure
of three nearly degenerated resonances with the topological
resonance placed between the other two. That is why the
parameters of the resonances, including real Re k = 2π

c ν2 and
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FIG. 4. The trajectory of the topological resonance obtained
experimentally for the five-edge network (full circles). The numer-
ical calculations taking into account the intrinsic absorption of the
network are marked by diamonds. The color coding on the right
vertical axis indicates parameter t . In the inset we show the fitted
dependence Im k = at2 + b (red line) to the experimental points
(full circles). Using five experimental points (the central point with
Re k 
 1.9 m−1, two points to the left and two point to the right)
we obtained the values of aexp = −0.46 ± 0.03 and b = −0.0113 ±
0.0002 m−1. The experimental value of aexp corresponds within the
experimental error to the theoretical value of ath = −0.46 m−1.

imaginary Im k = 2π
c g2 parts of the topological resonance,

were obtained from the fit of the modulus of a sum of three
Lorentzian functions,

f3(ν) =
3∑

m=1

iνAm

ν2 − (νm + igm)2

+ B1(ν − ν1) + B2(ν − ν2) + C, (10)

to the modulus of the determinant of the scattering matrix
| det[Ŝ(ν)]|, where Am, B1,2, and C are complex constants
and rm = νm + igm, m = 1, . . . , 3, are frequencies of the
complex nearly degenerated resonances. The fit of | f3(ν)|
to the modulus | det[Ŝ(ν)]| in the frequency range of ν =
0.074–0.116 GHz for t = −0.05 is denoted in Fig. 2(b) by the
red line. The topological resonance of the network is marked
by a red dot whereas the two other ones are marked by blue
dots. The right vertical axis g in Fig. 2(b) shows the imaginary
part of the resonances in gigahertz.

The trajectory of the topological resonance obtained ex-
perimentally for the five-edge network (full circles) is shown
in Fig. 4. In this case the departure from 0 of the imaginary
part of the topological resonance g2 = −0.55 ± 0.04 MHz at
t = 0 is even more significant than in the case of the two-
edge microwave network. The agreement of our numerical
calculations (diamonds in Fig. 4) with the experimental results
(full circles) clearly demonstrates that also in this case we deal
with the effect of the internal absorption in the network. The
fitted dependence Im k = at2 + b to the experimental points
is marked by the full red line in the inset in Fig. 4. Using five
experimental points (the central point, two points to the left,
and two point to the right) we obtained the values of aexp =
−0.46 ± 0.03 and b = −0.0113 ± 0.0002 m−1. Within the
experimental error the value of aexp = −0.46 ± 0.03 m−1 cor-
responds to the theoretical one obtained for �0 = 1.0025 ±

0.0002 m (this is the average of edge lengths �3–�6 for t = 0),

ath = 1

2
Im k̈ = − 1

2 × 1.0025
{[22 + (−2)2]0.1711

+ 2(−2)0.1141} m−1 = −0.46 m−1 . (11)

Also in this case the value of b = −0.011 ±
0.001 m−1 (−0.54 ± 0.05 MHz) is in agreement with the
imaginary part of the experimental topological resonance
g2 = −0.55 ± 0.04 MHz.

VI. SUMMARY

Using microwave networks with preserved time reversal
invariance we investigated experimentally a Fermi golden
rule which gives rates of the decay of states obtained by
perturbing embedded eigenvalues of graphs and networks.
We show that for the two-edge and five-edge microwave
networks the embedded eigenvalues are connected with the
topological resonances of the systems. Microwave networks
are characterized by the intrinsic absorption which was taken
into account in the numerical simulations of the networks.
We found the trajectories of the topological resonances on
the complex plane and showed that the experimental values
of parameter a in the formula Im k = at2 + b are very close
to the expected theoretical ones in the formula Im k = atht2

for the two-edge and five-edge graphs, respectively. We show
that the constant b in the formula Im k = at2 + b accounts
for the intrinsic absorption of the networks. Although, we
illustrated a Fermi rule for two particular graphs, Theorem (1)
from Ref. [4] holds true for all quantum graphs with standard
coupling conditions and, at least, one infinite lead, provided
they support an eigenvalue embedded into the continuous
spectrum for some edge lengths. It should be possible to
obtain similar results for the corresponding microwave net-
works.
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APPENDIX: THEORETICAL RESULTS FOR A FERMI
RULE. A CASE OF A TWO-EDGE GRAPH

Let us consider a graph consisting of two vertices, two
internal, and two external edges [see Fig. 1(a)]. Let the lengths
of the internal edges be �3 < ∞ and �4 < ∞, whereas edges
e1 and e2 have infinite lengths. Let us consider the dependence
of the edge lengths on parameter t as �3 = �0(1 − t ), �4 = �0

and the eigenvalue for t = 0 with k = 2π
�0

. This situation cor-
responds to the case in Ref. [4, Fig. 2(b)]. Let the edges be
parametrized from x = 0 at v1 to x = �3 and x = �4 at v2. We
find from the above expressions that

ȧ3 = − 1

�0

∂�3

∂t
= 1, ȧ4 = − 1

�0

∂�4

∂t
= 0.
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The normalized eigenfunction for t = 0 and k = 2π
�0

has edge components u1(x) = 0, u2(x) = 0, u3(x) =
1√
�0

sin (kx), u4(x) = − 1√
�0

sin (kx).
Let us now compute the form of the generalized eigen-

functions es(k, x), s = 1, 2. The form of the components of
e1(k, x) follows from its definition:

e1
1(k, x) = e−ikx + s11eikx,

e1
2(k, x) = s12eikx,

e1
3(k, x) = α3 sin (kx) + β3 cos (kx),

e1
4(k, x) = α4 sin (kx) + β4 cos (kx)

with unknown constants s11, s12, α3, β3, α4, and β4. The
coupling conditions (1) yield

1 + s11 = β3 = β4,

i(−1 + s11) + α3 + α4 = 0,

s12 = α3 sin (k�3) + β3 cos (k�3)

= α4 sin (k�4) + β4 cos (k�4),

is12 − α3 cos (k�3) + β3 sin (k�3)

−α4 cos (k�4) + β4 sin (k�4) = 0.

If one writes this set of six equations for six variables into
the matrix form, one finds that its solutions are not prop-
erly defined for �3 = �4 = �0 (i.e., the case of t = 0) since
the determinant of the corresponding matrix is 0. However,
following the definition of es, one can use the holomorphic
extensions of the solutions to k = 2π

�0
and obtain the unknown

coefficients as the limits for t → 0. We find

α3 = α4 = i

2
, β3 = β4 = 1, s11 = 0, s12 = 1.

This corresponds to

e1
1(k, x) = e−ikx,

e1
2(k, x) = eikx,

e1
3(k, x) = e1

4(k, x)

= cos (kx) + i

2
sin (kx).

We proceed similarly for e2(k, x). Using the ansatz,

e2
1(k, x) = s21eikx,

e2
2(k, x) = e−ikx + s22eikx,

e2
3(k, x) = γ3 sin (kx) + δ3 cos (kx),

e2
4(k, x) = γ4 sin (kx) + δ4 cos (kx),

the coupling conditions (1) yield the set of equations,

s21 = δ3 = δ4,

is21 + γ3 + γ4 = 0,

1 + s22 = γ3 sin (k�3) + δ3 cos (k�4)

= γ4 sin (k�4) + δ4 cos (k�4),

i(−1 + s22) − γ3 cos (k�3) + δ3 sin (k�3)

−γ4 cos (k�4) + δ4 sin (k�4) = 0.

The solutions after the holomorphic extension to k = 2π
�0

are

s21 = δ3 = δ4 = 1,

γ3 = γ4 = − i

2
,

s22 = 0.

This corresponds to

e2
1(k, x) = eikx,

e2
2(k, x) = e−ikx,

e2
3(k, x) = e2

4(k, x)

= cos (kx) − i

2
sin (kx).

Hence,

〈ȧu(x), e1(k, x)〉 = 1√
�0

∫ �0

0
sin (kx)

(
cos (kx)+ i

2
sin (kx)

)
dx

= i

4

√
�0,

〈ȧu(x), e2(k, x)〉 = 1√
�0

∫ �0

0
sin (kx)

(
cos (kx)− i

2
sin (kx)

)
dx

= − i

4

√
�0.

Moreover, using

∂νu3(v1) = − k√
�0

= − 2π

�
3/2
0

,

∂νu4(v1) = k√
�0

= 2π

�
3/2
0

,

∂νu3(v2) = k√
�0

cos (k�0)

= 2π

�
3/2
0

,

∂νu4(v2) = − k√
�0

cos (k�0)

= − 2π

�
3/2
0

,

e1(k, v1) = e1(k, v2)

= e2(k, v1)

= e2(k, v2) = 1,

u(v1) = u(v2) = 0,
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and we can find

∑
v

∑
e j�v

1

4
ȧ j[3 ∂νu j (v)es(k, v) − u(v)∂νes

j (k, v)]

= 1

4
× 1

[
3

(
− 2π

�
3/2
0

)
− 0

]
+ 1

4
× 1

[
3

2π

�
3/2
0

− 0

]
= 0.

Hence, only the first terms of the functions Fs are nonzero,

|F1|=
∣∣∣∣2π

�0

i

4

√
�0

∣∣∣∣ = π

2
√

�0
, |F2|=

∣∣∣∣2π

�0

(−i)

4

√
�0

∣∣∣∣ = π

2
√

�0
,

and

Im k̈ = − π2

2�0
.

One can simply prove (see, e.g., Refs. [4,6]) that Im k̇|t=0 =
0 and clearly Im k|t=0 = 0. Therefore, we see from Taylor’s
expansion that the imaginary part of k(t ) near the eigenvalue
behaves as

Im k ≈ − π2

4�0
t2.
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