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Evaluating the phase dynamics of coupled oscillators via time-variant topological features
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By characterizing the phase dynamics in coupled oscillators, we gain insights into the fundamental phenomena
of complex systems. The collective dynamics in oscillatory systems are often described by order parameters,
which are insufficient for identifying more specific behaviors. To improve this situation, we propose a topological
approach that constructs the quantitative features describing the phase evolution of oscillators. Here, the phase
data are mapped into a high-dimensional space at each time, and the topological features describing the shape
of the data are subsequently extracted from the mapped points. These features are extended to time-variant
topological features by adding the evolution time as an extra dimension in the topological feature space. The
time-variant features provide crucial insights into the evolution of phase dynamics. Combining these features
with the kernel method, we characterize the multiclustered synchronized dynamics during the early evolution
stages. Finally, we demonstrate that our method can qualitatively explain chimera states. The experimental results
confirmed the superiority of our method over those based on order parameters, especially when the available data
are limited to the early-stage dynamics.
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I. INTRODUCTION

Coupled phase oscillators are widely used for investigat-
ing cooperative behaviors in complex systems. The coupling
schemes of natural oscillators are reflected in the dynamic be-
haviors of complex systems, which include synchronization,
multistability, chaos, and chimera states. For example, when a
synchronized state interchanges with an asynchronized state
during the one-day cycle of a circadian clock system, a
metabolic disorder, cataplexy, or narcolepsy may be present
[1,2]. An appropriate understanding of oscillator dynamics
would also promote the realization of electromechanical sys-
tems, which can behave as chaotic oscillators and operate
in noisy environments [3,4]. The chimera state is a counter-
intuitive phenomenon in which synchronized and asynchro-
nized states coexist in a system of identical oscillators.
Chimera states have recently drawn considerable attention in
studies of neural systems such as brain networks [5–8]. Of
particular interest in coupled oscillators is predicting the atten-
dant dynamics from the data obtained during the early stage
of the system. Because many collective dynamics can be mod-
eled by coupled oscillators, the early prediction of dynamics is
potentially helpful for the diagnosis of human diseases and the
detection of specific malfunctions. To realize these applica-
tions, we require theoretical and computational methods that
adequately represent the time profile of oscillators.

The intrinsic dynamic properties of coupled oscillators are
often described in terms of their phase variables. Meanwhile,
the degree of global synchronization is commonly expressed
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by the global order parameter, which represents the phase
coherence of the oscillators. The global order parameter takes
a value from 0 (for complete asynchrony) to 1 (for full
synchronization) [9]. However, the order parameter cannot
effectively analyze the synchronization situation under certain
conditions. For example, when the order parameter is 0, the
oscillators can be synchronized by symmetrizing their phase
distribution even when they should (by definition) be com-
pletely asynchronous.

Rather than representing collective dynamics by their
global parameters, our approach considers the topological as-
pects of phase variables, and we describe the phase dynamics
along the evolution timeline in terms of more efficient quan-
tities. At each oscillator, we define a phase-dependent point
in a high-dimensional space. We then track the time-variant
evolutionary change in the shape of these points known as
a point cloud P (t ) within the space. We hypothesize that
this evolutionary change is closely related to pattern forma-
tion, signal propagation, and the stochastic phenomena and
extensive chaos in oscillatory systems. We thus demonstrate
that tracking these changes provides crucial insights into the
early-stage dynamics of the system.

Our approach presumes that topological aspects can help
to reveal the underlying structure of the collective patterns of
oscillators as the system evolves. Using persistent homology
analysis [10] we evaluated the shape of P (t ) in terms of its
quantitative topological features, and we monitored the varia-
tion of these features throughout time t . Persistent homology
is an algebraic topology technique that represents the shape
of the data as topological structures, such as the connected
components, loops, or holes in the data. Persistent homology
can effectively capture the qualitative changes in the data
of various dynamical systems, including time series [11,12],
time-varying networks [13–15], and quantum data [16].
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FIG. 1. Illustration of time-variant topological features for coupled oscillator systems. (a) Representative sequence of the Vietoris-Rips
complex, i.e., a filtration constructed from a set of discrete points. Each ball of radius ε was placed at each point, and the shape of the union
of these balls was modeled with the Vietoris-Rips complex. If every pair of corresponding balls intersects, then each simplex in the complex
is formed from a subset of points. The evolutionary changes in the topological structures, e.g., the merging of connected components and the
emergence and disappearance of loops, were tracked by increasing ε until no change was observed. At ε = 0, nine points corresponded to nine
connected components in the space. At ε = 2, several edges were added into the complex, and a number of connected components perished
and merged. The two loops that emerged at birth radii of ε = 2 and 3 perished at death radii of ε = 3 and 4, respectively. (b) The collection
of birth and death radii is represented in a two-dimensional persistence diagram. (c) At each time step, the coupled oscillator phases were
mapped onto a set of discrete points, i.e., a point cloud within a metric space. The two-dimensional persistence diagram was constructed from
the point cloud at each time step. The time-variant topological features were obtained by concatenating the diagrams across all time steps into
a three-dimensional persistence diagram.

Given a non-negative threshold ε, we place one ε-radius
ball centered at each point in P (t ) and observe the shape
of the space overlapped by these balls [Fig. 1(a)]. When ε

is sufficiently small, the shape is obtained without altering
the original points. As ε increases, the balls intersect and
the topological structures (e.g., connected components and
loops) change within the space. The connected components
tend to merge, while loops emerge and then vanish with grad-
ual changes in the threshold. At each time point, we define
the topological features as the values of ε that represent the
emergence and disappearance of the topological structures
[Fig. 1(b)]. We then extend these features by adding the time
axis [Fig. 1(c)].

These extended features, referred to as time-variant topo-
logical features, can reflect the temporal behavior of the
oscillators and therefore provide useful knowledge for pre-
dicting the dynamics. In fact, these features can serve as
discriminate features in qualitative evaluations of the phase
dynamics of oscillators. We can input these features into ma-
chine learning kernel algorithms for statistical learning tasks
such as classifying the behaviors of multicluster synchroniza-
tion or predicting chimera states with coexisting synchronous
and asynchronous domains. Interestingly, our approach can
characterize the phase dynamics of oscillators at a very early

evolutionary stage, where conventional order parameters are
ineffective.

In the following sections, we introduce the time-variant
topological features and the kernel method that incorporates
these features into statistical learning tasks. Using these fea-
tures, we then explore dynamic behaviors such as multicluster
synchronization and chimera states during the time evolution
of the Kuramoto model [17,18] for a system of oscillators.
Finally, we summarize our results and discuss interesting di-
rections for future work.

II. METHODS

A. Time-variant topological features

We adopted the Kuramoto model [17,18], the most com-
mon and best-suited model for understanding synchronization
phenomena in physical, chemical, and biological systems. The
Kuramoto model formulates a set of N coupled heterogeneous
oscillators as a set of first-order differential equations:

dθi

dt
= ωi + κ

N

N∑
j=1

gi j sin(θ j − θi − α). (1)
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Here, θi and ωi denote the phase and natural frequency of
oscillator i, respectively, and gi j � 0 represents the coupling
strength between oscillators i and j. The parameter κ is the
global coupling constant, and the angle α is a tunable param-
eter describing the phase lag.

To study the dynamics of the coupled oscillators, we con-
structed a mapping ϕ from the set {θ1(t ), θ2(t ), . . . , θN (t )} of
phases to the set Pϕ (t ) = {s1(t ), s2(t ), . . . , sN (t )} of points in
an L-dimensional space RL, where si(t ) = ϕ(θi(t )) ∈ RL. For
an appropriate mapping ϕ, the information on the evolution-
ary change in the configuration of Pϕ (t ) provides important
insights into the system dynamics. To quantify the features in
the configuration of Pϕ (t ), we applied persistent homology
theory. We defined a distance function dϕ : Pϕ (t ) × Pϕ (t ) →
R to evaluate the dissimilarity between oscillators i and j
at time t . We then centered a ε-radius ball at each point
si(t ) in Pϕ (t ), i.e., to form the set B(ε, si(t )) = {v ∈ RL |
dϕ (si(t ), v) � ε}. Taking the union of these balls, we obtain
the overlapped space

U (ε,P (t )) =
N⋃

i=1

B(ε, si(t )). (2)

The shape of this space represents the configuration of Pϕ (t )
at radius ε. Persistent homology tracks the changes in this
shape as the radius ε increases.

Methods in computational topology allow for modeling the
shape of U (ε,Pϕ (t )) in a mathematically and computationally
tractable representation, i.e., a simplicial complex, defined
as a complex of geometric structures called simplices. Here,
an n-simplex represents a generalization of the notion of a
triangle or tetrahedron to arbitrary dimensions. The convex
hull of any nonempty subset of the vertices defining a simplex
is called a face of the simplex. For example, a 0-simplex
is a point, a 1-simplex is a line segment (with faces com-
prising both end points), and a 2-simplex is a triangle and
its enclosed area (with faces composed of three edges and
three vertices). Similarly, a 3-simplex is a filled tetrahedron
(with faces composed of triangles, edges, and vertices), and a
4-simplex (beyond visualization) is a filled shape with faces
composed of tetrahedrons, triangles, edges, and vertices.

A main type of simplicial complex is the Vietoris-Rips
complex, which we now briefly review. A Vietoris-Rips com-
plex VR(ε,Pϕ (t )) is a collection of simplices, where each
simplex is built over a subset of points in Pϕ (t ) provided
that B(ε, si(t )) ∩ B(ε, s j (t )) �= ∅ for every pair of points
si(t ), s j (t ) in the subset. When ε = 0, the complex contains
only 0-simplices, i.e., the discrete points. As ε increases, the
points become connected, and edges (1-simplices) and filled
triangles (2-simplices) are introduced into the complexes.
At some considerably large ε, all points become intercon-
nected and no useful information is conveyed. The sequence
of embedded complexes obtained by this process is called a
filtration.

Persistent homology focuses on the emergence and dis-
appearance of topological structures such as connected
components and loops in the filtration. For example, in
Fig. 1(a), there were nine connected components in the space
at ε = 0 and 1. Several components were merged at ε = 2,
meaning that six connected components were destroyed and

three connected components remained in the space. Sim-
ilarly, one loop appeared at ε = 2, which disappeared at
ε = 3. Another loop that appeared at ε = 3 disappeared at
ε = 4. These topological structures are mathematically repre-
sented by 0- and 1-dimensional persistent homology groups,
which are vector spaces with dimensions corresponding to the
number of connected components and the number of loops,
respectively [19]. Using the emergence and disappearance
of topological structures in the filtration, we quantified the
evolving shape of U (ε,Pϕ (t )). Each topological structure was
assigned to a persistent pair of radii (εb, εd ) that originated
at birth radius ε = εb and perished at death radius ε = εd .
The collection of all persistent pairs in a two-dimensional
coordinate was presented as a two-dimensional persistence
diagram D(2)(Pϕ (t )) containing the topological features of
Pϕ (t ) [Fig. 1(b)]. We proposed the time-variant topological
features containing time-related information on the dynam-
ics, along with the birth and death radii. We constructed
three-dimensional persistence diagrams by concatenating the
two-dimensional persistence diagrams along the time-axis at
time steps τ0 < τ1 < · · · < τT −1 [Fig. 1(c)]. Mathematically,
this construction is described by

D(3)(ϕ) = {(εb, εd , τ ) | (εb, εd ) ∈ D(2)(Pϕ (τ )),

τ = τ0, τ1, . . . , τT −1}. (3)

B. The kernel method for topological features

In statistical-learning tasks using time-variant topological
features, we typically quantify the underlying patterns in a
collection of inputs D = {D1, . . . , DM} from a certain set of
diagrams, and we use these patterns to evaluate previously
unseen data. As a persistence diagram is a multiset of points
of variable size, algorithms that take vector inputs or that
require the inner product of the data are not easily applicable.
Instead, we employed kernel methods that take the similarity
measure κ (Di, D j ) between any two diagrams Di, D j . More
precisely, a function κ : D × D → R is called a kernel if
the kernel Gram matrix K with entries Ki j = κ (Di, D j ) is
positive-semidefinite. To define a kernel, a feature map 	 was
constructed by mapping a diagram Di to a vector 	(Di ) in a
Hilbert space Hb, in which we can define the inner product
〈·, ·〉Hb . Every feature map 	 defines the kernel κ (Di, D j ) :=
〈	(Di ),	(D j )〉Hb .

As the kernel for two-dimensional persistence diagrams,
researchers have proposed the persistence-scale space kernel
[20] based on the heat diffusion kernel, the persistence-
weighted Gaussian kernel [21], which emerged from kernel
mean embedding, the sliced Wasserstein kernel formulated
in Wasserstein geometry [22], and the persistence Fisher ker-
nel [23], which relies on Fisher information geometry. From
theoretical and practical perspectives, the persistence Fisher
kernel is a superior choice for distinguishing persistence dia-
grams. For instance, it computes over the number of points in
the diagram with linear time complexity. It also outperforms
the other kernel methods on various benchmarks [23]. We
extended the persistence Fisher kernel to three-dimensional
persistence diagrams, as briefly explained below.

The persistence Fisher kernel considers each persistence
diagram as the sum of normal distributions and then measures
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the similarity between the distributions via the Fisher infor-
mation metric. Each persistence diagram D can be considered
as a discrete probability mass μD = ∑

p∈D δp, where δp is the
Dirac measure centered on p. We can smooth and normalize
μD by the summation ρD of normal distributions as

ρD =
∑
p∈D

1

Z
N (p, νI), (4)

where N (p, νI) is the Gaussian function centered at p
with bandwidth ν, I is an identity matrix, and Z =∫
�

∑
p∈D N (x; p, νI)dx is the normalization constant with the

integral calculated on a domain �. Given a positive β, we
define the following kernel:

κ̃F(Di, D j ) = exp( − βdF(Di, D j )), (5)

where dF(Di, D j ) = arccos(
∫
�

√
ρDi (x)ρD j (x)dx) is the

Fisher information metric between ρDi and ρD j (see Appendix
A). We set β = 1.0 in our experiments.

The kernel κ̃F(Di, D j ) takes a value in (0, 1] and equals 1 if
Di and D j are the same. However, this definition is ill-defined
if one diagram is empty, and it must be modified to deal with
such cases. Suppose that D j is empty and Di contains only one
element p = (b1, d1, τ1). The kernel should approximate 1 if
d1 − b1 approximates zero. Now consider ρD′

j
, where D′

j is the

set of elements p′ = ( b1+d1
2 , b1+d1

2 , τ1). Each p′ is the projected
point of p on the diagonal plane W = {a, a, τ | a, τ ∈ R}. Let
Di� and D j� be the point sets obtained by projecting two
persistence diagrams Di and D j on W . The kernel compares
two extended diagrams, D′

i = Di ∪ D j� and D′
j = D j ∪ Di�,

containing the same number of points. Therefore, we can write
� = Di ∪ Di� ∪ D j ∪ D j�, and the persistence Fisher kernel
becomes

κF(Di, D j ) = κ̃F(D′
i, D′

j ) = exp( − βdF(D′
i, D′

j )). (6)

Under this kernel, persistence diagrams are considered
close if the points that are distant from the diagonal plane
in the two diagrams belong to very near regions in the
space. Conversely, these diagrams are significantly different
if the points distant from the diagonal plane exhibit two
significantly different distributions in the two diagrams. We
can perform kernel principal component analysis (kPCA), an
extension of principal component analysis (PCA) that uses
kernel methods [24]. As our data D1, . . . , DM are mapped into
the feature space as 	(D1), . . . , 	(DM ), we can perform PCA
on the covariance matrix of the mapped data. Even when the
explicit form of 	 is unknown, the method in kPCA reduces
to finding the eigenvalues and eigenvectors of the kernel Gram
matrix.

III. RESULTS

A. Multicluster synchronization

A network system of multiple coupled oscillators can
demonstrate multicluster synchronization, i.e., the network
may split into several clusters of independent synchronized or
organized behavior rather than form an entire system of syn-
chronized behavior. Multicluster synchronizations are found
in asymptotic states [25–27], in transient states [28], and in
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FIG. 2. Schematic of oscillator networks with different coupling
configurations and their corresponding synchronization behaviors in
the middle and final (infinite time) stages. The vertices and edges in
(a), (b), and (c) represent the oscillators and their coupling relations,
respectively. Bold and thin edges imply strong coupling (gi j = 2)
and weak coupling (gi j = 0.01), respectively. (a) All oscillators were
symmetrically interactive and were globally coupled with the same
coupling strength. In the two-module (b) and four-module (c) net-
works, the coupling was stronger between oscillators in the same
module than in those belonging to different modules. The oscillators
exhibited different synchronized behaviors at sufficiently large times
in the midevolution stage: (d) single-cluster, (e) two-cluster, and (f)
four-cluster synchronization.

modular and hierarchical structures [29]. Here, we demon-
strate that our time-variant topological features obtained at
the early stage of the dynamics can help in predicting the
multicluster synchronized behavior of oscillators.

We configured oscillator networks with three different cou-
pling configurations but with the same constant κ = 1: a
globally coupled network in which all coupling strengths are
equal [Fig. 2(a)], a two-module coupled network [Fig. 2(b)],
and a four-module coupled network [Fig. 2(c)]. In the globally
coupled network, we set gi j = 2 for ∀i �= j. In the modular
coupled networks, we set gi j = 2 for the oscillators in the
same module and gi j = 0.01 for those in different modules.
We also set the number of oscillators to N = 128, the angular
frequency ωi = 1 for all i, and the tunable parameter to α = 0.
In these configurations, different synchronization behaviors
emerged at sufficiently large times in the middle stage of the
evolution: single-cluster [Fig. 2(d)], two-cluster [Fig. 2(e)],
and four cluster [Fig. 2(f)] synchronizations.

Equation (1) was numerically solved with randomly ini-
tialized phases θ j (0) ∈ [0, 2π ) and θ j (t ) was recorded at each
time interval �τ = 0.8. The time sequence τ0, τ1, . . . , τT −1

was used in the persistence diagram calculations, where
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(b)(a) (c)

∞ ∞ ∞

FIG. 3. Examples of time-variant topological features corresponding to the coupled oscillator dynamics in Figs. 2(a), 2(b) and 2(c),
respectively. The top row presents the three-dimensional persistence diagrams of the loop patterns, and the bottom row plots the distributions
of death radii of the connected components during the phase evolution of the oscillators. In the bottom row, the color bar at the right of each
plot represents the probability densities of the death radius distribution, and the point clouds at the left show the phase plots of the coupled
oscillators at t = 4.8, 14.4, and 35.2. When the oscillators approached a single synchronized-state cluster, the loops quickly disappeared, and
the connected components quickly merged into one component [(a)]. When the oscillators divided into multiclusters of synchronized states,
the birth radii of the loops increased, and the more connected components survived for a longer period of evolution time [(b) and (c)]. The
number of long-lived components corresponded with the number of clusters in the synchronized state.

τ0 = 0, τk − τk−1 = �τ (k = 1, . . . , T − 1), and T is the
number of time steps. Through the mapping ϕ : θ →
(cos θ, sin θ ), the set of oscillator phases was transformed
to the point cloud Pϕ (t ) = {s1(t ), s2(t ), . . . , sN (t )}, where
s j (t ) = ( cos θ j (t ), sin θ j (t )) lay on the unit circle in two-
dimensional space. The shortest distance between s j (t ) and
sk (t ) along the unit circle was adopted as the distance func-
tion. In our practical implementation, ε in Eq. (2) only takes
values between 0 and π/2.

Figure 3 shows representative time-variant topological
features obtained from the globally coupled [Fig. 3(a)],
two-module coupled [Fig. 3(b)], and four-module coupled
[Fig. 3(c)] networks. The temporal transitions in the dynamics
appear as transitions in the temporal patterns of the topolog-
ical features. Along the top row of Fig. 3, the orange points
represent the loops formed along the phase-evolution timeline.
In the globally coupled network, the loops quickly disap-
peared as the oscillators approached a synchronized state, but
in the modular coupled networks, the birth radii of the loops
increased as the oscillators divided into multisynchronized,
uniformly dispersed clusters. Regarding the evolution of the
connected components, the birth radius was zero because the
N components corresponding to N oscillators appeared first.
Therefore, we focused on the evolution of the death radii
(bottom row of Fig. 3). As represented by the right column
in Fig. 3 (at index ∞), at each time t , one connected com-
ponent was always retained at a sufficiently large radius ε in
Eq. (2). For instance, if ε � π/2, then at each time t , only
one connected component remained in the simplicial complex
created by the oscillators.

To distinguish the synchronized behavior in each cou-
pling configuration, we examined the merging process of

other connected components along the evolution timeline.
In the globally coupled network, the connected components
quickly merged into a single component because the oscil-
lators reached a single synchronized-state cluster. At t > 8,
only one component existed [Fig. 3(a)]. When the oscillators
were distributed as multiclusters in the synchronized state,
more connected components existed over a longer time. The
number of such components corresponded to the number of
clusters in the synchronized state. For example, two connected
components survived from t = 20 to 50 [Fig. 3(b)], and four
connected components survived from t = 30 to 50 [Fig. 3(c)].
These values corresponded to the behaviors of the two-cluster
[Fig. 2(b)] and four-cluster [Fig. 2(c)] synchronizations, re-
spectively. In Appendix B, we demonstrate that time-variant
topological features are also useful for investigating asymmet-
ric networks of oscillators.

Applying the kernel method, we then characterized the
differences among the synchronized behaviors. Our ap-
proach does not label the synchronization behaviors a priori,
but it characterizes their differences in the kernel space.
This approach aligns with unsupervised learning schemes,
which fundamentally differ from the supervised learning
schemes often used in machine-learning methods. In su-
pervised learning schemes, the learning machine is first
trained on samples with predefined labels, and then it at-
tempts to predict the unknown label of a given sample.
Good performance demonstrates that the learning has been
generalized to samples not encountered before. In contrast,
unsupervised schemes require no prior labeling but char-
acterize the unknown dynamics via dimensional reduction
methods. In our study, the synchronized behaviors were iden-
tified by projecting time-variant topological features onto
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FIG. 4. Projection of the kernel principal components of time-variant topological features obtained at τ = τ0, τ1, . . . , τT −1, where τ0 =
0, τk − τk−1 = �τ = 0.8 (k = 1, 2, . . . , T − 1). The number of oscillators was N = 128, the angular frequency was ωi = 1 for all i, and the
tunable parameter was α = 0. Shown are the projections at T = 2, 4, 6, 8, 10, and 12 (left to right). The data of different synchronization
schemes are shown in different colors: purple (single cluster), blue (two clusters), and orange (four clusters).

a lower-dimensional space via kPCA of the kernel Gram
matrix.

We prepared 300 coupling configurations with 100 random
initializations for the oscillator phases with single, two-
module, and four-module synchronizations. Single-cluster,
two-cluster, and four-cluster synchronizations were observed
in the time evolutions. The persistence diagrams were com-
puted over a time sequence of τ0, τ1, . . . , τT −1, where τ0 =
0 and �τ = 0.8. The parameter T controls the periodicity
of detecting the synchronized behaviors. Prior to kPCA, the
kernel Gram matrix of the 300 three-dimensional persistence
diagrams was computed by Eq. (6). Figure 4 displays the
projections up to the third principal component. In the early
evolutionary stages (T = 2, 4), the points belonging to differ-
ent groups of synchronized behaviors were not well separated
in the principal component space. However, the separability
increased at later times (T = 6, 8, 10, 12).

Accordingly, we could quantify the extent to which the
time-variant topological features identified the synchroniza-
tion behaviors. Here we compared this extent with those of
other methods based on global order parameters, local order
parameters, and dynamic connectivity. The latter method is
described in Appendix C and Ref. [28]. The global order
parameter is defined as

r(t ) = 1

N

∣∣∣∣∣
N∑

j=1

eiθ j (t )

∣∣∣∣∣, (7)

where r(t ) takes values in the range [0, 1]. Note that r(t ) = 1
when all oscillators are completely synchronized. The local
order parameter for each oscillator [30,31] is defined as

l j (t ) =
∣∣∣∣∣∣

1

2δ + 1

∑
| j−k|�δ

eiθk (t )

∣∣∣∣∣∣, (8)

where j = 1, 2, . . . , N , and θk represents the phase of oscilla-
tor k in a region of side length 2δ + 1 centered at oscillator j.
The local order parameter describes the local synchronization
properties of the oscillators, and is controlled by the parameter
δ.

The performances of the compared methods were de-
termined under the supervised learning scheme. The data
were classified into three labels representing single-cluster,

two-cluster, and four-cluster synchronizations. The accuracy
of classifying the test data was evaluated in each model. In
the case of constant angular frequency (Fig. 4), the topological
features characterized the synchronization schemes during the
early-stage dynamics. We further demonstrated the effective-
ness of the topological features under more flexible settings,
in which the natural frequency of each oscillator followed
the standard normal distribution N (0, 1). The data in the
order parameter vector, the eigenvalue-spectrum vector of the
dynamic connectivity matrix, and the kernel Gram matrix of
the persistence diagrams were classified by the support vector
machine (SVM) method [32] (see Appendix C).

Figure 5 shows the average test accuracies of the meth-
ods over 100 train-test random splits at each value of T .
In this task, the 100 realizations were randomly split into
50 realizations for training and 50 realizations for testing.
At T > 40, the classification accuracy based on topologi-
cal features reached nearly 76%, versus nearly 64% for the
dynamic connectivity matrix and global order parameters.
The classification results of the local order parameters were

FIG. 5. Classification of synchronized states based on the time-
variant topological features (blue), dynamic connectivity (purple),
global order parameters (orange), and local order parameters with
δ = 3 (green) and δ = 6 (yellow). The natural frequency of each
oscillator follows a standard normal distribution N (0, 1). The lines
depict the average test accuracy across 100 random train-test splits
of the data. The shaded areas indicate the confidence intervals (one
standard deviation) calculated in the same ensemble of runs.
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significantly dependent on the value of the tunable parameter
δ, which controls the region over which the local property
of each oscillator is evaluated. In the local order parameter
method with δ = 3 and 6, the classification accuracy was gen-
erally lower and higher than our topological feature method,
respectively. These trends occurred because the local order
parameters capture the local features describing the synchro-
nization behavior. Therefore, the local order parameters are
effective when the connectivity and strength of the coupling
depend on the oscillator locations, but δ must be appropriately
adjusted. If δ is too small, the information is restricted to the
individual oscillators, whereas if δ is too large, only the global
information is available, and the method becomes equivalent
to that based on the global order parameter. In this sense, our
approach provides a versatile and independent classification
method that avoids the parameter-adjustment bottleneck.

In Appendices D and E, we investigate how varying the
time interval �τ and randomly selecting the number of
oscillators influence the classification result. We confirmed
that lowering the sampling interval improves the classifica-
tion accuracy. We also demonstrated the impact of collecting
time-variant topological features over a wide temporal range.
Overall, the topological features well described the collective
behaviors even when calculated from a sparse configuration
of oscillators.

B. Chimera states

Using the time-variant topological features, we investi-
gated the evolutions of the coherent and incoherent dynamics
in the oscillatory systems, including the chimera states. In a
chimera state, the oscillators form a region of mutually coher-
ent populations and another region of incoherent populations
[33,34]. The chimera states were initially explored in homoge-
neous oscillator systems [35,36], and were then demonstrated
experimentally [37,38] to establish their connection with real-
world systems such as human brain networks [39]. Referring
to previous works [40,41], we generated chimera states in
the Kuramoto model by setting the constant κ = πη

γ
and the

coupling strength gi j in Eq. (1) to

gi j =
{ 1

2η
if

2

N
|i − j| > η,

0 otherwise.
(9)

Here, γ is a tunable parameter characterizing the coupling
strength among the oscillators, and η ∈ [0, 1] controls the
range of nonlocal coupling. In our numerical simulation, we
set N = 256, ωi = 0, α = 1.39, η = 0.6, and γ = 0.6 for the
synchronized and chimera states, and γ = 6 for the asynchro-
nized states.

The coherence-incoherence transition was observed in the
time trace of the local order parameter l j (t ) for each oscillator,
given by Eq. (8). The local order parameter quantifies the
degree of the coherent and incoherent regions around an oscil-
lator and describes the local properties of the chimera states.
More specifically, if oscillator j at time t exists in the coherent
domain, l j (t ) ≈ 1, but if oscillator j exists in the incoherent
domain, then l j (t ) will be much lower. Figure 6(a) shows three
time profiles of the local order parameters with δ = 12. In
the first example, l j (t ) approximated 1 for all j and t > 10,

indicating that the oscillators became globally synchronized at
t > 10. In the second example, the l j (t ) values of oscillators
80 � j � 200 were below 0.6 while the l j (t ) values of the
other oscillators exceeded 0.8 at t > 10. Based on the l j (t )
values, the oscillators were roughly divided into a coherent
area and an incoherent area, indicating the emergence of a
chimera state. In the final example, the incoherent area domi-
nated as all l j (t ) values were lower than 0.5.

The time trace of the local order parameters provides a
useful qualitative indicator of chimera states, but determining
the side length 2δ + 1 of the local region surrounding each
oscillator is nontrivial. As δ enlarges, more of the globally
coherent domains are captured, but these domains become
merged with incoherent domains. In contrast, reducing δ will
identify more incoherent and spatially localized domains, but
the global coherent domains will not be recognized. We thus
decided that to characterize the chimera states, we should
examine the coexistence of two spatially separated domains,
in which one part of the oscillator network operates coher-
ently while the other is incoherent. By using the time-variant
topological features to track the time trace of these domains,
we could better understand how chimera states are evolved,
which would allow for a qualitative prediction of the chimera
states in the early stage of the dynamics.

Here, we present a mapping to transform the jth oscillator
to a point on a torus surface

ϕ : θ j → (xθ j , yθ j , zθ j ), (10)

where

xθ j = (Rm + Rp cos θ j ) cos

(
2π j

N

)
, (11)

yθ j = (Rm + Rp cos θ j ) sin

(
2π j

N

)
, (12)

zθ j = Rp sin θ j . (13)

We set the major radius Rm and minor radius Rp of the torus
as Rm = 4 and Rp = 1, respectively. Through this mapping,
chimera states can be identified in higher-order topological
structures such as loops. For example, in the globally syn-
chronized state, the mapped points tend to distribute along one
major loop on the torus surface, and more minor loops form
as the number of incoherent regions increases.

Figures 6(b) and 6(c) present the three-dimensional per-
sistence diagrams of the loop patterns and the death-radius
distributions of the connected components, respectively, dur-
ing the phase evolution of the configurations corresponding to
the examples in Fig. 6(a). To compute the three-dimensional
persistence diagrams, we set the time step as τ0 = 0, τk −
τk−1 = 1 (k = 1, 2, . . . , T − 1). The corresponding patterns
of the mapped points in three-dimensional space at t = 40 are
illustrated in Fig. 6(d). At each time point, the point cloud
formed one large loop around the torus hole. This loop was
born at a low radius and died at a high radius. Over time,
the loops corresponded to a thinning column in the three-
dimensional persistence diagram [Fig. 6(b)]. The many loops
with low birth and death radii presented as minor circles of
point clouds on the torus surface.

In the global synchronized state, for example at t � 25
[top row of Fig. 6(a)], a single loop appeared along the torus
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(a) (b) (c) (d)
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255

255

∞

∞

∞

FIG. 6. Examples of different phase dynamics along the evolution: synchronized state (top row), chimera state (middle row), and
asynchronized state (bottom row). Their differences can be evaluated by tracking the time trace of local order parameters (a), or studying
time-variant topological features such as the three-dimensional persistence diagrams of loop patterns (b) and the distribution of the death radii
of the connected components (c). The colored bar for each plot in (b) and (c) represents the density of the points in the corresponding plot. The
persistence diagrams were obtained from the mapped points of the oscillator phases on a torus surface. (d) The shape of these mapped points
corresponds with each phase of dynamics at t = 40.

tube in the mapped space, meaning that one point appeared
in the three-dimensional diagram [Fig. 6(b)] at each t . The
middle panel of Fig. 6(b) shows the emergence of coherent
and incoherent dynamics (i.e., a chimera state). Small loops
appeared around the minor circles of the torus surface, mean-
ing that more points were generated along the time axis in the
three-dimensional diagram of the loop patterns. The density
of these points in the persistence diagram increased as the in-
coherent dynamics dominated the phase dynamics [Fig. 6(b),
bottom panel]. In the globally synchronized state, even when
the phase values θi(t ) were invariant with respect to i, they
changed along time t . Therefore, the death radius of the large
loop around the torus hole fluctuated over a large range. This
fluctuation was reduced when both coherent and incoherent
dynamics emerged in the chimera state. In the asynchronized
state, the phase values θi(t ) differed with both i and t , so
the death radius of the large loop did not greatly fluctuate.
Therefore, a thinner column persisted in this case.

The differences among the oscillator phase dynamics were
further evaluated by observing the death-radius distributions
of the connected components [see Fig. 6(c)]. In the globally
synchronized state, connected components emerged and then
quickly merged at almost the same death radii [Fig. 6(c), top
panel]. Conversely, in the asynchronized state, the mapped

points of the oscillators on the torus surface were randomly
distributed. The death radii were concentrated in the range 0–
1, and their distributions were almost constant throughout the
time evolution [Fig. 6(c), bottom panel]. In the chimera state,
the death radii of the connected components were smaller
in the coherent region than in the incoherent region, and the
death radius was widely distributed along the timeline [middle
of Fig. 6(b)]. It should be noted that time-variant topological
features provide a novel means of recognizing chimera states
in quantitative terms without having to rely on the tuning
parameter δ of the local order parameter.

We now demonstrate that the kernel method based on the
time-variant topological features can characterize the chimera
states in early-stage dynamics. Specifically, we prepared 150
temporal phase data under different initial-phase conditions.
The phase data were labeled as synchronized, chimera, or
asynchronized (50 cases in each state). In general, global
order parameters at the early stages cannot properly distin-
guish local structures such as chimera states. When labeling
the dynamics in the present setting, we relied on the global
order parameter r(t ) at sufficiently large t ; specifically, we set
synchronized states for r(t = 40) > 0.85, chimera states for
0.45 � r(t = 40) � 0.85, and asynchronized states for r(t =
40) < 0.45. We did not quantitatively compare the topological
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(a)

(b)

Synchronized Chimera Asynchronized

( ( ( ( ( ( ))))))

FIG. 7. Dimensional reduction of the time-variant topological features of (a) the connected components (top row) and (b) loops (bottom
row), obtained in the kernel principal component analysis. Shown are the distributions of each dynamical case at T = 5, 10, 15, 20, 25, and 30
(corresponding to t = 5, 10, 15, 20, 25, and 30) from left to right. Each point is in a synchronized (purple), chimera (blue), or asynchronized
state (orange).

features using the order parameters, but we emphasized that
the time-variant topological features can infer the long-time
dynamic patterns at an early stage.

Figure 7 displays the projection up to the third component
of the kPCA of the kernel Gram matrix constructed from
150 three-dimensional persistence diagrams. To compute the
three-dimensional persistence diagrams, we set the time step
as τ0 = 0, τk − τk−1 = 1 (k = 1, 2, . . . , T − 1). During the
initial evolution (T = 5), no clear differences appeared among
the points representing different behaviors. The points rep-
resenting the asynchronized states were clearly separated
from the other states at T = 10 and 15 (i.e., t = 10, 15),
and all three states were separated around T = 20 and 25
(i.e., t = 20, 25). This separation also appeared in the three-
dimensional diagrams of Fig. 6(b).

In the time trace of the local order parameters [Fig. 6(a)],
the states became obviously separated at a relatively early
time (around t = 10–15). From this observation, one might
question the advantage of the topological features over the
local order parameters (the traditional indicators of chimera
states). Although Fig. 6(a) presented a specific example,
the local order parameters well characterized the synchro-
nization behaviors of oscillators. However, their calculation
requires careful calibration of δ, which controls the parameter-
computation region around each oscillator. The same tradeoff
was clarified in the classification of multicluster synchro-
nizations in Sec. III A (see Fig. 5). From this perspective,
the time-variant topological features can obtain the global
and robust features of oscillator behaviors independently of
hyperparameters. That is, the separation between topological
features can reveal novel behaviors of oscillator systems. In
data analysis, this approach might infer or discover unknown
properties of physical systems.

IV. CONCLUDING REMARKS AND DISCUSSION

In this paper, we demonstrated that the time-variant topo-
logical features constructed from the phase evolution in
oscillatory systems can be used to characterize the behavior
of the dynamics, even in the early stages of the evolution.
Such behaviors include global synchronization, multicluster
synchronization, and chimera state emergence, which conven-
tional global order parameters fail to sufficiently recognize.
This indicates that our topological approach is an effective
approach for understanding the phase dynamics of oscillators.

In previous applications of persistent homology to os-
cillatory systems, only the average temporal patterns were
considered [42,43]. Our approach fundamentally differs from
such an approach in that it allows us to trace the temporal
patterns, which are more helpful to investigating the specific
behavior of dynamics. Furthermore, by combining our ap-
proach with the machine-learning kernel method, we provided
an unsupervised scheme to characterize the phase dynamics
without predefined label training. This aspect is highly signif-
icant from a physical perspective, since unknown dynamics
can be revealed using this unsupervised scheme, including in
terms of characterizing the different types of chimera state.

It remains unclear as to whether mapping from a set of
oscillator phases to a point cloud can be regarded as optimal
mapping. In fact, it can be argued that other mapping methods
involving various manifolds could extract more meaningful
and higher dimensional topological information. Moreover,
in addition to the values of the phases, other information,
such as the phase derivatives, could be used to construct the
time-variant topological features. In view of this, we expect
that our study will be successfully applied to more practical
situations in the future, including research involving noisy en-
vironments, nonuniform coupling strengths, or asymmetrical
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network structures, all of which may have oscillator networks
with topological configurations that change over time.

Networks of coupled oscillators represent many systems
in neuroscience and biology. The functionality of these net-
works depends on the collective dynamics of the interacting
oscillators. Understanding how the underlying properties of
these networks (coupling topology, interaction strengths, and
characteristics of the individual nodes) describe their collec-
tive dynamics is a challenging task. Our study focused on
synchrony, the most typical collective behavior of oscillator
networks. We characterized the shape of the collective dynam-
ics through the time-variant topological features computed
in the simplest oscillator model, namely the phase oscillator
model, in which the dynamics are captured by the evolution
of phase variables. The idea can be extended to oscillatory
networks beyond phase oscillators. For example, synchronous
behaviors can be described in terms of frequency synchrony
(coincidence of the oscillator frequencies). In these cases, the
time-variant topological features can be calculated by map-
ping not the phase variables, but other descriptive variables of
the oscillators. One could then investigate how the emergence
of topological features during the dynamics evolution relates
to the functionality of oscillatory networks.
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APPENDIX A: FISHER INFORMATION METRIC

The persistence Fisher kernel was constructed in Fisher
information geometry, in which each ρD in Eq. (4) is regarded
as a point in the probability simplex P = {ρ | ∫

�
ρ(x) =

1, ρ(x) � 0}. To define the Fisher information metric be-
tween ρi = ρDi and ρ j = ρD j , we use the Hellinger mapping
h(·) = √·, where the square root is an elementwise func-
tion that transform P into S+ = {χ | ∫

�
χ2(x) = 1, χ (x) � 0}.

Here, S+ is the positive orthant of the sphere. Therefore, we
can naturally define the metric between ρi and ρ j in P as
the geodesic distance between h(ρi ) and h(ρ j ) in S+. This
geodesic distance, known as the Fisher information metric
[44], is calculated as

dF = arccos(〈h(ρi ), h(ρ j )〉) (A1)

= arccos

(∫
�

√
ρi(x)ρ j (x)dx

)
, (A2)

where 〈·, ·〉 is a dot product.
In practical implementations, the Fisher information metric

between two diagrams Di and D j is computed over � = Di ∪
D j� ∪ D j ∪ Di�. We first write

ρ̄i = ρDi∪D j� =
⎡
⎣ 1

Z

∑
p∈Di∪D j�

N (x; p, νI)

⎤
⎦

x∈�

, (A3)

where ν is the smoothing bandwidth, and the normalization
constant is given by

Z =
∑
x∈�

∑
p∈Di∪D j�

N (x; p, νI). (A4)

We then compute ρ̄ j = ρD j∪Di� similarly to ρ̄i. Finally, the
Fisher information metric becomes

dF(Di, D j ) = arccos(〈h(ρ̄i ), h(ρ̄ j )〉). (A5)

APPENDIX B: ASYMMETRIC NETWORK STRUCTURE

In this Appendix, we demonstrate that our time-variant
topological features are applicable to asymmetric network
structures, in which the modules are imbalanced. We prepared
four different network structures of N = 128 oscillators. All
oscillators were divided into an n1-oscillator module and an
n2-oscillator module, where n1 + n2 = N . The networks were
denoted by n1–n2; for example, the 80–48 structure means
that 80 and 48 oscillators were assigned to the first and sec-
ond modules, respectively. We generated networks with the
following structures: 64–64, 80–48, 96–32, and 112–16. Note
that the 80–48, 96–32, and 112–16 networks were asymmetric
whereas the 64–64 network was symmetric. In this task, we
set gi j = 2 for oscillators in the same module and gi j = 0.01
for those in different modules. The global coupling constant
and natural frequency were κ = 1 and ωi = 0, respectively.

Figure 8 shows the death-radius distributions of the
connected components during the phase evolutions of the
oscillators. At all ratios of n1 and n2, the number of connected
components corresponded to the number of clusters in the
oscillator dynamics. For example, the two connected compo-
nents surviving from t = 40 to 50 indicate that at this stage of
the evolution, the oscillators evolved into two clusters. At the
earliest time when only two clusters existed in the oscillator’s
dynamics, we observe that increasing the difference |n1 − n2|
between the number of nodes in the two clusters increased
this value and lowered the density of components with low
death radii. As the modules were imbalanced, the oscillators
in each module converged to clustered synchronization at dif-
ferent times. Therefore, the time-variant topological features
can reveal how network structures imply function through the
synchronization behaviors of their oscillators.

APPENDIX C: CLASSIFICATION METHODS

We constructed a vector of the temporal sequence r =
{r(τ0), r(τ1), . . . , r(τT −1)}, where r(t ) is the global order pa-
rameter defined in Eq. (7). We also constructed vectors of the
temporal sequences of the local order parameters defined by
Eq. (8) for all coupling configurations. The authors of [28]
constructed the dynamic connectivity matrix among the oscil-
lators from the local order parameters averaged over random
initializations of the correlation between pairs of oscillators.
To classify the individual coupling configurations, we modi-
fied the dynamic connectivity matrix in Ref. [28] as follows:

D�(t )i j =
{

1, qi j (t ) � �,

0, qi j (t ) < �,
(C1)
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FIG. 8. Examples of time-variant topological features corresponding to the networks with different structures: (a) 64-64, (b) 80-48, (c) 96-
32, and (d) 112-16. Plotted are the death-radius distributions of the connected components during the phase evolutions of the oscillators. The
colored bar to the right of each plot represents the probability densities of the death-radius distribution.

where � is some threshold, and the pairwise correlation is
qi j (t ) = cos (θi(t ) − θ j (t )). We constructed the global vectors
describing the temporal evolution of the eigenvalue spectrum
of D�(t ). Among different trials of � (0.9, 0.8, and 0.7), � =
0.99 achieved the best result.

The input data were the constructed vectors x1, x2, . . . , xM

of coupling configurations. Each element in each vector was
computed at each time point. In SVM, we therefore search
for the hyperplanes separating the data belonging to different
labels. This kind of problem reduces to a dual constrained op-
timization problem in which the original data are represented
by an M × M Gram matrix K in the original space defined
by Ki j = x�

i x j . If we classify the kernel of the persistence
diagrams, the Gram matrix in the original space is replaced by
the kernel Gram matrix of the diagrams, avoiding the conver-
sion of each diagram into a separate vector. When solving the
kernel Gram matrix, the SVM becomes a linear classifier in
the feature space. The implementation of SVM and its variants
with kernel tricks are detailed elsewhere [45,46].

APPENDIX D: EFFECT OF THE TIME INTERVAL �τ

We also investigated the impact of the time interval on the
topological method that distinguishes different synchroniza-
tion scenarios. Table I lists the average test accuracies over
100 random train-test splits and their standard deviations at
t = 8, 16, and 32 for different sampling intervals (�τ = 0.4,
0.8, and 1.6). The final row of Table I gives the result of ex-
tracting the topological features at a single point (the last time

TABLE I. Averages and standard deviations (mean ± sd) of
the classification accuracies (%) of synchronized states using the
time-variant topological features computed from the connected com-
ponents at t = 8, 16, and 32 with different time intervals (�τ = 0.4,
0.8, and 1.6) and (last row) using the topological features at the last
time point.

�τ t = 8 t = 16 t = 32

0.4 68.7 ± 4.0 73.7 ± 3.6 80.1 ± 2.5
0.8 68.4 ± 4.1 70.0 ± 4.9 76.9 ± 3.4
1.6 67.7 ± 4.4 70.9 ± 4.4 73.6 ± 4.3
Single 63.9 ± 3.8 64.9 ± 2.9 64.4 ± 2.9

point). As shown in this table, lowering the time interval �τ

improved the classification accuracy. The topological features
extracted at a single time point yielded the worst performance.
Moreover, the effect of reducing the time interval became
more vital at later times t . These results demonstrate the
importance of collecting the time-variant topological features
over a wide temporal range. However, computing the persis-
tent homology and kernel at small sampling intervals over a
wide time range is time- and memory-intensive.

APPENDIX E: EFFECT OF CHANGING THE NUMBER OF
SELECTED OSCILLATORS

Finally, we examined the effect of randomly selecting a
number of oscillators for the classification. In this examina-
tion, we used the time-variant topological features at �τ =
0.8 and t = 8, 16, and 32, corresponding to T = 10, 20, and
40 in Fig. 5, respectively. Table II shows the average test
accuracies over 100 random train-test splits and their stan-
dard deviations after randomly selecting 100%, 75%, 50%,
and 25% of the oscillators. As a reference for comparison,
we computed the classification accuracies of the traditional
methods using the global order parameters and dynamic con-
nectivity matrix. In both comparative methods, we included
100% of the oscillators in each sample.

As clarified in Table II, decreasing the number of os-
cillators decreased the classification accuracy; nonetheless,

TABLE II. Averages and standard deviations (mean ± sd) of
the classification accuracies (%) of synchronized states based on
the time-variant topological features extracted from the connected
components of 100%, 75%, 50%, and 25% randomly selected oscil-
lators, and from the global order parameter and dynamic connectivity
matrix of all oscillators (last two rows).

Method t = 8 t = 16 t = 32

100% oscillators 68.4 ± 4.1 70.0 ± 4.9 76.9 ± 3.4
75% oscillators 67.3 ± 4.5 67.5 ± 4.5 72.9 ± 4.2
50% oscillators 61.7 ± 3.4 65.2 ± 3.4 69.4 ± 4.4
25% oscillators 56.4 ± 3.1 63.1 ± 3.2 64.3 ± 3.6
Global order parameter 51.7 ± 4.4 62.4 ± 3.8 71.9 ± 3.1
Dynamic connectivity 59.3 ± 3.7 63.5 ± 3.6 67.2 ± 3.3
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our approach based on the time-variant topological features
outperformed the other methods, even when the number of
oscillators was reduced to 75%. This result demonstrates the
strong effectiveness of the topological features. The time-
variant topological features obtain the essential behaviors

even when the oscillators are sparsely configured. In contrast,
the utility of the global information (global order parameter
and dynamic connectivity) is limited when the configuration
is sparse.
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