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Phase synchronization in the two-dimensional Kuramoto model: Vortices and duality
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We study a system of Kuramoto oscillators arranged on a two-dimensional periodic lattice where the oscilla-
tors interact with their nearest neighbors, and all oscillators have the same natural frequency. The initial phases
of the oscillators are chosen to be distributed uniformly between (−π, π ]. During the relaxation process to
the final stationary phase, we observe different features in the phase field of the oscillators: initially, the state
is randomly oriented, then clusters form. As time evolves, the size of the clusters increases and vortices that
constitute topological defects in the phase field form in the system. These defects, being topological, annihilate
in pairs; i.e., a given defect annihilates if it encounters another defect with opposite polarity. Finally, the system
ends up either in a completely phase synchronized state in case of complete annihilation or a metastable phase
locked state characterized by presence of vortices and antivortices. The basin volumes of the two scenarios are
estimated. Finally, we carry out a duality transformation similar to that carried out for the XY model of planar
spins on the Hamiltonian version of the Kuramoto model to expose the underlying vortex structure.
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I. INTRODUCTION

The phenomenon of collective synchronization is one of
the most fascinating phenomena observed in nature [1,2] as
well as in many branches of science, such as biological, phys-
ical, chemical, and social sciences. A few typical examples of
collective synchronization include the rhythmic applause of
an audience, the chirping of crickets, the flashing of fireflies,
the synchronized firings of coupled neurons, and the coordi-
nated conduction of the heart’s pacemaker cells [3] seen in bi-
ological and social sciences. Synchronization can also be seen
in experimental systems such as arrays of Josephson junctions
[4], laser arrays [5,6], etc., in physics. The Kuramoto model is
a paradigmatic model to study synchronization in such many-
body interacting systems. The original model consists of a
population of oscillators where each oscillator is coupled to all
others with the same strength and their natural frequencies are
drawn from a given frequency distribution. This model with
mean-field coupling, being simple and analytically tractable,
has been studied in great detail for a long time [7–10]. It
exhibits a transition from an incoherent state to a coherent
state as the coupling strength varies. The critical coupling
value, beyond which the system starts to synchronize depends
on the frequency distribution. A phase transition is seen from
a desynchronized phase at low coupling-strengths to collec-
tive synchronization at high coupling-strengths. Although the
mean-field version of the model has found many applications
in different contexts; many variants with other kinds of cou-
pling have been found to be useful in various contexts. Hence,
many examples, such as the Kuramoto model with local cou-
pling [11–18], the Kuramoto model with frustration [19–22],
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Kuramoto model with time-delayed coupling [23–25], Ku-
ramoto oscillators based on different types of graphs [26–28],
etc., have also been studied over the years. Here, we consider
one such variation, where the oscillators based on a 2-d lattice
interact locally, with their nearest neighbors only.

Previous studies on locally coupled Kuramoto models
focused mainly on their stationary state dynamics. The pos-
sibility of phase transitions in such models was investigated.
Strogatz et al. [12] calculated the probability of phase-
locking in such locally coupled systems. This probability
tends to zero in the thermodynamic limit, i.e., there can not
be any entrainment transition in locally coupled system in
the thermodynamic limit. In fact, this is true for any spatial
dimensionality. However, in finite systems, the dynamics ex-
hibits a crossover from desynchronization to synchronization
as the coupling strength varies. Hong et al. [17] studied the
possibility of a phase transition for the full nonlinear system in
different spatial dimensions including two-dimensional (2D)
systems. Lee et al. [18] analyzed the transition for oscillators
in a two-dimensional lattice via the stability of vortex-
antivortex pairs formed in the phase-field of the oscillators.
Moreover, they also showed that the critical coupling-strength
(Kc) depends on system-size (N) as Kc ∼ log(N ) as long as
system-size is small. However, there have been no detailed
studies of its relaxation dynamics.

Here, in this communication, we consider a system of Ku-
ramoto oscillators based on a two-dimensional square lattice
with nearest-neighbor interactions and study its relaxation
dynamics. The manner in which a system of globally coupled
oscillators with distributed natural frequencies relaxes to the
steady state from an initial incoherent state has been studied
earlier [20,29–32]. During relaxation, metastable states are
found in some systems which are due to finite-size effects
[31]. In some oscillator models, there may exist synchro-
nized glassy phases [20,32]. Such systems are characterized
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by their slow relaxation dynamics. Moreover, relaxation dy-
namics also shows how a a system recovers its own stationary
dynamics once it gets perturbed from the stationary state.

In our present study, we choose the oscillators to be identi-
cal. This system of identical oscillators, being locally coupled,
admits a number of fixed point solutions and reaches different
stationary states. We call these states “metastable states,” as
these states are long lived and clearly represent local minima
in the interaction potential. The system can relax to different
metastable states depending on initial conditions. We start
with a random initial condition drawn from a uniform distri-
bution of phases of the oscillators and observe how the system
relaxes to the stationary state. During the relaxation process,
distinct configurations of the phase-field of the oscillators are
observed. Initially, locally synchronized clusters are formed.
As time progresses, the cluster sizes increase. At longer times,
we observe the formation of vortices which are topological
defects in the phase field of the oscillators. These vortices
interact with each other, and play a crucial role in the eventual
synchronization dynamics of the system.

We found that the stationary-state dynamics depends on
both the system-size and the initial distribution of phases of
the oscillators. Depending on the initial distribution of the
phases, the final stationary state can be broadly classified in
two categories, namely completely phase synchronized states
and phase-locked states. The basin of attraction of these states
is also studied. We observe, that the size of the basin of
the completely phase synchronized states decreases as the
system-size increases. Thus, the usual steady states for large
system-sizes are phase-locked states, which are primarily
dominated by presence of vortices and antivortices. Moreover,
we also study the system-size dependency of the average
relaxation time.

We attempt to uncover the underlying vortex structure in
the Kuromoto phase field dynamics using the methods used
for the XY model of statistical mechanics. For this, we need
the Hamiltonian version of the model. A recent study [33]
shows that a classical Hamiltonian system (in the action-angle
representation) with 2N state variables exhibits a family of
invariant tori (with homogeneous actions) on which the an-
gle variable follows exactly the same dynamics as that of
Kuramoto model. We use this Hamiltonian to calculate the
canonical partition function and apply the duality transfor-
mation on this partition function to expose the underlying
vortex-structures at low-temperatures.

The paper is organized as follows. In Sec. II, we describe
the model explicitly and mention some of the previous results
in this context. We describe the different features observed
during relaxation and different stationary states in Sec. III.
Next, in Sec. IV, we apply the duality transformation on the
Hamiltonian to study the formation of vortices at low temper-
atures. Finally, in Sec. V, we summarize our results and future
scope.

II. THE MODEL

We consider a system of Kuramoto oscillators based on a
two-dimensional square lattice where, all the oscillators have
the same natural frequency and each oscillator interacts with
its nearest neighbors only. The phase evolution equation of the

(a) (b)

FIG. 1. A schematic diagram of a periodic array of oscillators
based on a two-dimensional square lattice. (a) A diagram of the cou-
pling scheme (diffusive coupling) in our model where each oscillator
(e.g., the one indicated in red) is coupled to its nearest neighbors
(indicated in blue). (b) To calculate the local order parameter of each
oscillator (red), nearest neighbors and next nearest neighbors (blue)
are taken into consideration.

(i, j)th oscillator is given by

dθi, j

dt
= ωi, j + K[sin(θi+1, j − θi, j ) + sin(θi−1, j − θi, j )

+ sin(θi, j+1 − θi, j ) + sin(θi, j−1 − θi, j )], (1)

where θi, j , ωi, j are the phase and the natural frequency of the
(i, j)th oscillator, respectively, and i, j = 1, 2, 3, ..., N . The
parameter K (> 0) is the coupling strength and N × N is
the size of the square array. Since the oscillators have identical
frequencies,

ωi, j = ω ∀i, j.

Fig. 1(a) shows a schematic diagram of the manner in which
each oscillator is coupled to its neighbors. We assume periodic
boundary conditions in our system.

We study complete phase synchronization in this system.
Let us assume that {θi j (t )}N

i, j=1 is the complete set of phases
for this model system [Eq. (1)]. The oscillators are said to be
phase synchronized if

lim
t→∞ |θi, j (t ) − θl,m(t )| = 0 for i, j �= l, m (2)

and phase-locked if

lim
t→∞ |θi, j (t ) − θl,m(t )| = constant for i, j �= l, m. (3)

To quantify the degree of coherence, the global order pa-
rameter ρ for the system is defined as follows:

ρ = 1

M

∣∣∣∣∣
∑
i, j

exp(iθi, j )

∣∣∣∣∣,
where M is the total number of oscillators in the system.

Since the oscillators are identical, the evolution equations
can be written as the gradient of some function, as follows:

∂θi, j

∂t
= − ∂

∂θi, j
K[cos(θi+1, j − θi, j ) + cos(θi−1, j − θi, j )

+ cos(θi, j+1 − θi, j ) + cos(θi, j−1 − θi, j )]. (4)
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For a gradient system, all the stationary states correspond
to the fixed points of the system. There are no limit cycles
or any other kinds of attractor. We note that distinct initial
configurations of the phases can lead to distinct fixed points
for any given value of the coupling constant. Thus, for any
stationary state, the fixed point condition gives

dθ st
i, j

dt
= 0, ∀ i, j

⇒ K[sin(θi+1, j − θi, j ) + sin(θi−1, j − θi, j )

+ sin(θi, j+1 − θi, j ) + sin(θi, j−1 − θi, j )] = 0 (5)

(for the choice, ω = 0). The solutions to the above equation
[Eq. (5)] can be of two types:

(1) All oscillators have the same phase, i.e., θ st
i, j =

θ0(constant) ∀ i, j, which is essentially the state of complete
phase synchronization.

(2) Oscillator phases are constant in time but their values
are different from each other satisfying the condition [Eq. (5)].
This corresponds to phase-locked solutions.

When the initial configuration of the oscillators has phases
which are distributed randomly following a uniform distribu-
tion, during their evolution following the governing dynamics
[Eq. (1)], they may either get phase locked or completely
phase-synchronized. We note also that many distinct solutions
of the phase locked type are possible corresponding to many
distinct fixed points for the system each with its own basin of
attraction. The system evolves to a given fixed point provided
the initial condition for evolution lies in the basin of attraction
of that fixed point. It is therefore pertinent to identify the fixed
points or equilibrium states of the system, and also to study
the modes of relaxation to these states. For this, the evolution
is initiated with different random initial configurations for
the phases of the oscillators and the system is evolved for
a sufficiently long time for the order parameter to settle
down to some value. Figure 7(a) indicates how the global
order parameter value changes as the system of finite size
(N = 50 × 50) relaxes to equilibrium for a particular value of
coupling strength for different initial conditions. Depending
on initial conditions, the system ends up in different
phase-locked states or completely phase-synchronized states.

Here, the relaxation dynamics of the system is studied
numerically using the fourth order Runge-Kutta method with
step size 0.02. The initial distribution of phases was uniformly
random distributed over the range (−π,+π ]. In the next
section the relaxation dynamics is described for the value
K = 1.0 for the coupling constant. However, we note that the
relaxation dynamics is the same for all values of K due to the
following rescaling argument.

The evolution equation [Eq. (1)], after a rescaling of time
and frequency via the equations t ′ = Kt and ω′ = ω/K , will
read

dθi, j

dt ′ = ω′ + [sin(θi+1, j − θi, j ) + sin(θi−1, j − θi, j )

+ sin(θi, j+1 − θi, j ) + sin(θi, j−1 − θi, j )]. (6)

Thus, K can be set equal to unity by the rescaling above.
Hence, it is sufficient to study the dynamics for the K = 1
case. Further, in this study, we have set the value of the
frequency, which is identical for all oscillators, to zero, which

can always be done by choosing a frame of reference rotating
with that identical frequency ω. We note that the synchronized
state is reached earlier for higher values of K , and different
stages in the dynamics will occur at earlier times for this case.

III. RELAXATION DYNAMICS

In this section, we study the relaxation dynamics of the
system, by observing the time evolution of the global order pa-
rameter ρ as well as the phase structures during this relaxation
process. Initially, locally synchronized clusters are formed. As
time progresses, we observe spin waves and vortices in the
phase field of the oscillators. These vortices and antivortices
move in time and as soon as any two vortices of opposite
polarity meet, they annihilate. Whenever there is annihilation,
there is a clear jump in the ρ value. The vortex annihilation
process continues till the system reaches equilibrium. The
equilibrium state may be reached after a complete annihi-
lation of vortex pairs, or may still have some vortex pairs
left, depending on initial conditions. For some initial condi-
tions, there is complete annihilation of the defects resulting in
completely phase-synchronized states. Otherwise, the system
reaches a phase-locked state. The phase maps at different
times corresponding to complete phase synchronization for
one particular choice of initial condition are shown in Fig. 2.

The qualitative nature of the overall dynamics of the phase
structures is the same for all initial conditions in the be-
ginning; however, completely phase synchronized states are
reached asymptotically for only a fraction of initial condi-
tions. We note here that the states called the asymptotic states
here are long lived. In terms of simulation times, these are
stationary for 4 × 106 time steps with a Runge-Kutta time step
of 0.02. Several different dynamical states are observed in the
relaxation dynamics. These are as follows:

A. Clusters

Initially, we observe locally synchronized clusters in the
phase field of the system. As time progresses, the cluster size
increases. To investigate the formation of locally synchro-
nized clusters, a local order parameter λ is defined as follows:

λi j = 1

Nn

∣∣∣∣∣
∑
l,m

exp(iθlm)

∣∣∣∣∣,
where Nn is the number of nearest and next near-
est neighbors [Fig. 1(b)], and l, m run over the nearest
neighbors, and next nearest neighbors of the site (i, j),
i.e., (i, j + 1), (i, j − 1), (i + 1, j), (i − 1, j) and (i − 1, j −
1), (i − 1, j + 1), (i + 1, j − 1), (i + 1, j + 1) (see Fig. 2). If
an oscillator θi j is within a synchronized cluster, then λi j

will be nearly 1. If there is a local phase singularity in the
phase field, near (i, j), then λi, j takes a very small value.
Thus, the value of λi, j gives a measure of the local degree
of synchronization of the oscillators in the neighborhood of
the site (i, j). Using the local order parameter map we can
also identify the location of the vortices, as will be seen in
the next subsection. The formation of clusters at short times is
clear from the phase map, the local-order parameter map and
also from the phase-field as can be seen in Figs. 2(a), 2(e),
and 2(i), respectively, for a synchronized initial condition; and
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FIG. 2. In this figure, the phase-maps (a) → (d), local order parameter maps (e) → (h) and the phase-fields (i) → (l) of the system are
shown at different times during relaxation for lattice size N = 50 × 50 [(a), (e), (i) t = 80 time units, (b), (f), (j) t = 2400 t.u., (c), (g), (k)
t = 1 × 104 t.u., and (d), (h), (l) t = 5 × 104 t.u.]. All of these are obtained starting from a particular initial condition for coupling strength
K = 1.0. We set the intrinsic frequency of the oscillators to be zero. Phase-map (a) → (d): Each pixel represents one oscillator and the color
indicates its phase, where −π is represented by black while +π is by yellow. The local order parameter map (e) → (h): Each pixel represents
one oscillator and the color indicates its local order parameter value which can take any value between 0 and 1, with 0 being represented by
black while 1 is indicated by yellow. This quantity indicates the local degree of synchronization of each of the oscillators. Phase-fields (i) →
(l): Each arrow represents one oscillator and the direction is drawn depending on its phase.
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FIG. 3. Phase-maps (a) → (d), the local order parameter map (e) → (h), and Phase fields (i) → (l) are shown at different times during
relaxation for lattice size N = 50 × 50 [(a), (e), (i) t = 80 time units, (b), (f), (j) t = 2400 t.u., (c), (g), (k) t = 2 × 104 t.u., (d), (h), (l)
t = 5 × 104 t.u.]. All of these are obtained starting from a particular initial condition for coupling strength K = 1.0. We set the intrinsic
frequency of the oscillators to be zero. Phase-map (a) → (d): Each pixel represents one oscillator and the color indicates its phase, where −π

is represented by the color black while +π is represented by yellow. The local order parameter map (e) → (h): Each pixel represents one
oscillator and the color indicates its local order parameter value. It can take any value between 0 and 1, 0 being represented by black and 1 by
yellow. This quantity indicates the local degree of synchronization of each of the oscillators. Phase fields (i) → (l): Each arrow represents one
oscillator and the direction is drawn depending on its phase.

in Figs. 3(a), 3(e), and 3(i), respectively, for another initial
condition leading to a phase-locked state.

B. Vortices

In course of time, along with the formation of locally
synchronized clusters, structures where the phases organize

in the form of vortices are also formed. These vortices ap-
pear at the boundaries between locally synchronized clusters.
These are also called topological defects. These structures are
topological in the sense that, starting from a random initial
configuration of phases of the oscillators such a structure
cannot be obtained by simply deforming the system contin-
uously. The vorticity is defined as follows (in the continuum
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limit): ∮
∇θ (r̂, t ).dl̂ = ±2πn, (7)

where dl̂ is the integration path enclosing the defect (singular
point) and n is called the topological charge or vorticity. The
vorticity is said to have charge +1 if the total change in phase
around the defect is +2π (for a vortex) and −1 if it is −2π

(for an antivortex). The vortices appear in vortex-antivortex
pairs, at any coupling strength, making the total vorticity
zero. This is due to fact that the system is subject to periodic
boundary conditions. The formation of vortices becomes very
clear if we look at the vector plots, representing the orientation
of phase-field corresponding to the phase maps. These are
obtained in the following way: Each oscillator is treated as a
vector of unit radius and its phase is represented by the angle it
makes with the horizontal (the anticlockwise direction is taken
as positive). If we look at the phase maps carefully, then we
observe vortices as well as spin waves in the phase field of the
oscillators. The phase map in Fig. 2(b) and the corresponding
local-order parameter map and the phase-field in Figs. 2(f) and
2(j), respectively, show the formation of vortices in the phase-
field of the oscillators. The local degree of synchronization
is high at all points in the phase-field except for the singular
points, which helps us to locate the position of the vortices.
Another important point to notice is that the total number of
such defects is even. Thus, the vortices and antivortices appear
in pairs making the total vorticity zero, as expected. The same
phase structures are observed for other initial conditions also,
an example of which is shown in Figs. 3(b), 3(f), and 3(j).

C. Vortex annihilation and spin waves

The vortices formed in the phase-field of the oscillators are
observed to move along the boundaries between the locally
synchronized clusters. Since a vortex is topological, when it
meets with another one with opposite polarity, they annihilate.
Through the annihilation, the system reaches a steady-state
where vortices and antivortices, may or may not exist, but
there is no further annihilation. The complete annihilation
of vortices in time can be seen from the phase-maps in
Figs. 2(b) → 2(d) and the corresponding local-order pa-
rameter maps and phase-fields in Figs. 2(f) → 2(h) and
Figs. 2(j) → 2(l), respectively. However, the phase-maps in
Figs. 3(b) → 3(d) and the corresponding local-order pa-
rameter maps and phase-fields in Figs. 3(f) → 3(h) and
Figs. 3(j) → 3(l), respectively, show an example where there
is annihilation, but the steady state is reached before the
complete annihilation of vortices, and a phase locked state is
achieved.

In the phase field of the oscillators, we observe spin waves
along with the presence of vortices. If there is complete anni-
hilation between the vortices and antivortices, then spin waves
are observed before the system reaches final steady state. With
time, these spin waves get suppressed and the completely
phase synchronized state emerges as the asymptotic state.

D. Routes to complete Phase-synchronization
and to Phase-locking

The complete phase synchronization of the asymptotic
state occurs only in the case of complete annihilation of the
defects. Otherwise, the system gets phase-locked with these
defects in the phase-field of the oscillators. Since the system
is spatially extended, multi-attractor solutions are possible
for the same values of the parameters, depending on initial
conditions. Hence, the system reaches different steady states
(i.e., fixed points of the evolution equations of the system) for
different initial distributions of the phases of the oscillators.
An example of the completely phase-synchronized state is
shown in Fig. 2, whereas Fig. 3 shows a case where, starting
from a completely disordered state, the system ends up in a
phase-locked state.

Figure 4 shows schematically how the system relaxes to
equilibrium through the formation of different features in the
phase-field. We note that the two routes to the two asymptotic
states have the first three steps in common. The initial disor-
dered state organizes itself into locally synchronized clusters,
which develop into spin waves and vortices. In the case of
the first route, the vortices annihilate each other in vortex-
antivortex pairs until only spin waves are left. The spins then
synchronize with each other until the final phase synchronized
state is reached. In the case of the second route, all the vortex-
antivortex pairs do not annihilate each other. The asymptotic
state is phase locked with both spin waves and vortices. A
plot of the global order parameter as a function of time shows
signatures of all the features described above. Figure 5 shows
these plots for two typical initial conditions, one of which
leads to a phase synchronized state [Fig. 5(a)], and another
which leads to a phase locked state [Fig. 5(b)], both for a
particular value of the coupling constant (K = 1.0). It is clear
from the plot that there are three distinct time scales in the
problem. The first scale can be seen in the inset of the figure.
This is up to about 125 time steps, and has been called Region
I. In this region, the formation of synchronized clusters is
seen, as can be seen in the Figs. 2(a), and 3(a), respectively, for
the time step t = 80 which lies in this interval. As mentioned
above, these evolve into vortices and spin waves. The vortices
carry topological charge and occur in pairs of opposing charge

Locally synchronized 
clusters

Spin waves and 
vortices

Spin waves
Complete Phase 
Synchronization

Disordered 
Initial phase

Locally synchronised 
clusters

Spin waves and 
vortices

Spin waves and vortices
(No further annihilation)

Phase locked stateDisordered 
Initial phase

FIG. 4. A schematic diagram which shows the route by which the oscillators make a transition to either the completely phase synchronized
asymptotic state (a) or a phase locked asymptotic state (b) starting from a disordered initial configuration of phases.
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FIG. 5. Time evolution of the global order parameter is shown at coupling strength K = 1.0 for a system of size N = 50 × 50 for
two different initial conditions. Panel (a) corresponds to the initial condition leading to completely phase-synchronized state, while panel
(b) corresponds to a phase-locked state. The dotted vertical lines separate the different regions in the phase-space during relaxation. We set the
intrinsic frequency of the oscillators to be zero.

which move on the lattice and annihilate each other. The
annihilation of vortex-antivortex pairs enhances local as well
as global order and the value of the global order parameter
increases steeply over the annihilation process. This is seen
over the time scale labeled region-II. It can be seen that in
the case of the initial condition that reaches the synchronised
state, the synchronized state is reached after about 15 000 time
steps. It is clear that in the case of the other initial condition
that the vortex-antivortex configurations persist till the phase
locked state is reached and the order parameter flattens at a
value which is much less than one. The phase locked state
may eventually relax to a phase synchronized state, but the
phase locked state has a very long life time which depends
on the system size, and is not reached during numerical sim-
ulations of length 4 × 106 Runge-Kutta time steps of step
size 0.02. We discuss this further in the next subsection. We
note here that the time scales noted here are K dependent,
and decrease with increasing coupling. However, finite-time,
finite-size studies are required for any definitive comment.
These are planned elsewhere.

E. Local stability analysis of the phase-locked states

We examine the local stability of the phase locked solutions
by applying a uniform perturbation of a given strength to
the phase locked state. For this, the random initial conditions
are allowed to settle into a phase locked state with an order
parameter which is independent of time, and the phases of the
oscillators are identified at some given instant. At this point,
each one of these phases is perturbed by a random number
δθ such that δ is the perturbation strength and θ lies between
(−π,+π ]. The evolution of the order parameter after the ap-
plication of the perturbation is examined for several different
perturbation strengths. We observe that for smaller values of
perturbation, these states are locally stable, i.e., the system set-
tles down again into a phase locked state with the same order
parameter, whereas for higher values, there exists a possibility
for the system to go to some other phase-locked state. Thus,
the phase locked states are at least metastable states and do not
evolve into the phase synchronized state within the parameters

of our simulation, or our class of random initial conditions.
Figure 6 shows the evolution of the order parameter to station-
ary phase-locked states subject to perturbations of different
strengths, δ = 0.1, 0.2, 0.3, and 0.4, with δ as defined earlier,
at the time 2.5 × 105. The sudden jump in the order parameter
value (as shown in the inset) at time 2.5 × 105 corresponds to
the instant at which the system is perturbed and for the smaller
perturbation strengths, namely δ = 0.1, 0.2, and 0.3, the sys-
tem regains its previous state with time, characterized by the
same order parameter value. For the higher value δ = 0.4, the
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FIG. 6. The time evolution of the order parameter for system-size
N = 50 × 50 is shown where the final phase locked state is perturbed
with various perturbation strengths, namely δ = 0.1, 0.2, 0.3, and
0.4 at time 2.5 × 105. The data is obtained by integrating the govern-
ing dynamics for K = 1.0. The sudden jump in the order parameter
value (as shown in the inset) at the time 2.5 × 105 corresponds to the
instant at which the system is perturbed and for the smaller pertur-
bation strengths, namely δ = 0.1, 0.2, and 0.3, with time, the system
regains its previous state, characterized by the same order parameter
value. For δ = 0.4, the system goes to another phase-locked state
characterized by a different value of the order parameter value after
a transient.
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FIG. 7. Panel (a) shows the time evolution of the global order parameter for different initial conditions at coupling strength K = 1.0 for
a system of size N = 50 × 50. The fraction of initial conditions which leads to complete phase synchronization for various system-sizes is
shown in panel (b). The initial phases are chosen from a uniform distribution from (−π, π ]. We set the intrinsic frequency of the oscillators to
be zero.

system goes to another phase-locked state characterized by
a different time-independent order parameter value in long
time. We note that the perturbation did not lead to a phase
synchronized state for any of the phase locked states studied.
Given this, and also given the lengths of the transient, the
phase locked states appear to be quite stable. In addition, the
Lyapunov spectrum contains all negative eigenvalues which
also suggest that phase-locked state is locally stable.

F. Basin stability of the synchronized state

We have thus observed that the stationary states of
the system can be broadly classified into two categories
- phase-locked or completely phase-synchronized states.
These phase-locked states are actually metastable states,
characterized by presence of topological defects (vortices
and antivortices). For a particular system-size, whether a
stationary state would be a phase-locked or completely phase-
synchronized, depends on the initial conditions. As long as
the system size is small, the probability that the system
reaches one of its its global minima, i.e., the completely phase
synchronized states is high. This probability decreases as N
increases.

We perform a simple numerical experiment with various
system sizes. For each system-size, we start with 1000 initial
conditions and count the number of initial conditions that
lead to complete phase synchronization at large times. Here,
we plot the fraction (ratio of number of initial conditions
for which the system reaches its asymptotic state to the total
number of initial conditions) for different system sizes. This
is shown in Fig. 7(b). The fraction tends to zero as N becomes
infinitely large. In other words, in the limit of large system
size, the system tends to phase lock and is characterized by
the presence of topological defects in the phase-field of the
oscillators.

One can compute the average relaxation time, defined by
τav = ∫ ∞

0 dt ′ρnorm(t ′) for the completely phase-synchronized
states [29,34]. Here, ρnorm is the normalized order parameter
and is defined as: ρnorm(t ) = ρ(t )−ρst

ρ(0)−ρst
, where ρst is order pa-

rameter value in the stationary state. At t = 0, ρnorm = 1 and
at saturation (t → ∞), it takes the value 0.

In our case, for a given coupling strength (K = 1.0), we see
indications of scaling behavior and τav increases with the lin-
ear system-size as τav ∼ Lz with z ≈ 2.4 over a small range of
L values (L < 50). However, since this cannot be extended to
larger system sizes (e.g., L � 100), as for such systems, very
few initial conditions reach completely phase-synchronized
states. However, the approximate scaling makes it clear that
the relaxation times increase faster than L2. Hence, very long
relaxation times have been observed for these systems, as seen
in all the cases here.

Further, we investigate the order-parameter (ρ) of the
phase-locked states for different system-sizes for the former
case. The phase-locked states with larger numbers of defects
correspond to lower values of ρ. We obtain the distribution
of ρ for various system sizes numerically as is shown in
Fig. 8. The peak of the distribution shifts towards zero as the
system-size increases. We expect the order parameter value
to tend to zero in the thermodynamic limit. In such a case,
the behavior of the system is expected to be governed by the
presence of the vortices in the phase-field of the oscillators.

We note that the stationary states depend on the initial
distribution of the phases of the oscillators. Here, we have
used a uniform distribution. Other types of initial conditions,
e.g., a biased distribution, may lead to completely different
behaviours.

We note that vortices have been observed earlier in
Kuramoto oscillator systems [18], where a system of 2D
Kuramoto oscillators with frequencies drawn from a Gaus-
sian intrinsic frequency distribution is studied. The vortices
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FIG. 8. P(ρ ), the discrete distribution of the order parameter ρ in the stationary state, is shown in the form of histogram for system-sizes
(a) N = 20 × 20, (b) 50 × 50, (c) 70 × 70, and (d) 100 × 100, respectively. The peak of the distribution tends towards zero as the system-size
increases indicating vanishing of ρ in the thermodynamic limit. For each system-size, this distribution is obtained over 1000 initial conditions,
at K = 1.0, by integrating the dynamics of Eq. (1).

play an important role in synchronization in such a system.
In fact, it is shown that, the transition from the unentrained
phase at lower coupling strength to the entrained phase at
higher coupling strength happens due to different behavior
of the vortices in these two different phases. In the entrained
phase, vortices are locally confined. They move in fixed paths
around clusters only. However, in the unentrained phase, their
motion is inconsistent and sometimes they wander off. We
must note one important difference between our system and
the system studied by Lee et al. [18]. In the previous case, the
initial phases are all chosen to be zero and the vortices arise
from randomness in the intrinsic frequencies. In our case, the
intrinsic frequencies are identical and we study the role of ran-
domness in the initial phase configurations. Thus, the origin
of the vortices is different in these two different cases. We
note that to the best of our knowledge, the underlying vortex
structure for Kuramoto oscillators has not been uncovered via
an explicit calculation. In the case of 2D statistical mechanics
models, such as the 2D XY model, the underlying vortex struc-
ture can be exposed via the duality transformation [35]. We
carry out the duality transformation for the Kuramoto model
in the next section. We note that we start with a Hamiltonian
version of the model for this.

IV. DUALITY

Recent studies show that a classical Hamiltonian system (in
action-angle representation) with 2N state variables exhibits
a family of invariant tori (on which all actions are homoge-

neous) on which the angle variables follow exactly the same
dynamics as that of the Kuramoto model [33]. We use this
Hamiltonian to calculate the canonical partition function to
analyze the vortex and spin wave contributions of our system.
We apply the duality transformation to this partition function
in the next subsection.

A. Hamiltonian formulation

Consider the Hamiltonian function

H ′ =
N∑

j=1

{
ω j

2

(
q2

j + p2
j

) + L

4

(
q2

j + p2
j

)2
}

+ 1

4

∑
〈 jm〉

Kj,m(q j pm − qm pj )
(
q2

m + p2
m − q2

j − p2
j

)
, (8)

where ω j, L are local parameters and Kj,m’s are symmetric
coupling strengths.

Under the canonical transformation

I j =
(
q2

j + p2
j

)
2

and θ j = tan−1

(
q j

p j

)
, (9)

j ∈ {1, 2, ......, N}, the Hamiltonian takes the form

H (I1, θ1, ....., IN , θN )

=
N∑

j=1

{
ω j I j + LI2

j

}

−
∑
〈 jm〉

Kj,m

√
I jIm(Im − I j ) sin(θm − θ j ). (10)
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So the equation of motion in terms of the action-angle vari-
ables is

θ̇ j = ω j + 2LIj +
∑
〈m j〉

Km, j{2
√

ImIj sin(θm − θ j )

−
√

Im

Ij
(Im − I j ) sin(θm − θ j )}, (11)

İ j = −
∑
〈m j〉

Km, j (Im − I j )
√

ImIj cos(θm − θ j ). (12)

Now, for any state with homogeneous action variables I j =
I > 0(say), İ j = 0. This means that all action variables remain
invariant. For a given value of I ,

θ̇ j = ω j + 2LI +
∑
〈m j〉

2IKm, j sin(θm − θ j )

= ω̃ j +
∑
〈m j〉

K̃m, j sin(θm − θ j ). (13)

Thus, this Hamiltonian function gives the evolution equations
of the Kuramoto model on the invariant tori with the rescaled
coupling matrix K̃m, j = 2IKm, j and shifted frequencies
ω̃ j = ω j + 2LI .

B. Duality transformation

To start with, we consider nearest neighbor interactions and
assume that all oscillators have the same intrinsic frequency
and all I ′

js are nearly equal. This case has also been studied in
Ref. [33]. We write

Im = I j+μ = I j + εI j + O(ε2), (14)

where ε is a very small quantity. Thus,√
ImIj ≈ I j

(
1 + ε

2

)
+ O(ε2) (15)

and

θm − θ j = θ j+μ − θ j = �μθ j .

Thus, the Hamiltonian takes the form

H =
∑

j

{
ω j I j + LI2

j

} −
∑
〈〉

KεI2
j sin(�μθ j ). (16)

The partition function is

Z =
∏

j

∫∫
dIjdθ j exp

[
− H

kBT

]

=
∏

j

∫∫
dIjdθ j exp

[−β
{
ω j I j + LI2

j

}]

× exp

[
K

kBT

∑
〈〉

εI2
j sin(�μθ j )

]
. (17)

Since all actions are nearly equal, the partition function
takes the form

Z =
∏

j

∫∫
dIjδ(I j − I )dθ j exp

[−β
{
ω j I j + LI2

j

}]

× exp

[
K

kBT

∑
〈〉

εI2
j sin(�μθ j )

]
(18)

=
∏

j

∫
dθ j exp[−β{ωI + LI2}]

× exp

[
K

kBT

∑
〈〉

εI2 sin(�μθ j )

]
. (19)

We can choose L to be zero. Moreover, since we choose
all oscillators to have identical frequencies, we can set the
frequency ω to be zero without loss of generality. Hence,

Z =
∏

j

∫
dθ j exp

[
K

kBT

∑
〈 〉

εI2 sin(�μθ j )

]
(20)

=
∏

j

∫
dθ j exp

[
β

∑
〈〉

sin(�μθ j )

]
, (21)

where β = εI2K
kBT . Here in our notation, μ represents the direc-

tion. This is done in the following way: We represent the phase
difference between two sites i, j, say, equivalently by one of
the site index j and the direction μ from j to i. Therefore,

θi − θ j ≡ θ j+êμ
− θ j ≡ �μθ j, (22)

where êμ is unit vector along the direction μ.
This partition function can also be written as

Z =
∏

j

∫
dθ j exp

[
β

∑
〈〉

cos(�μθ j + αμ; j )

]
, (23)

where the quantity αμ; j (which is π/2 in our case) is defined
as a bond variable connecting lattice sites i and j, can be
interpreted as a “frustration parameter.” This equation maps
to the partition function of the frustrated 2D XY model with
nearest neighbor interactions (we discuss details of this in the
Appendix). We will carry out a duality transformation [35]
on the partition function with an arbitrary value αi j for the
frustration parameter, and in the final expression we substitute
αμ, j = π/2 to obtain the results for our model.

The duality transformation mentioned above, is a very
useful tool in statistical physics and field theory. This transfor-
mation, under certain approximations, enables us to obtain a
mapping from the low temperature phase of a given system, to
the high temperature phase of the systems, and hence permits
the inference of the low temperature properties of the statisti-
cal system by studying the high-temperature version and vice
versa [35]. The basic idea is to rewrite the partition function
in terms of the link variables on the original lattice and the
constraint condition imposed by the form of the partition
function on these link variables enables us to express them in
terms of another set of variables, the dual variables, defined on
the dual lattice sites, which is essentially the reciprocal lattice
of the system [35]. For a square lattice in two-dimensions, the
dual lattice is also a square lattice, which is constructed by
displacing the usual lattice by half the lattice spacing in both
x and y directions. Figure 9 shows an example of a square
lattice in two dimensions and its dual.

We now use the relation

exp{β cos τ } =
+∞∑

n=−∞
In(β )einτ , (24)
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i

j

kij

φj

FIG. 9. This figure shows a two dimensional square lattice and its
dual lattice. The original lattice is shown by black continuous lines,
while the square in dotted lines represents the dual one. The ki j is a
link variable defined on the link connecting the sites i and j; while
φ j (circle in gray) is the dual variable.

where In(β ) is the modified Bessel function of the first kind,
to rewrite the partition function as

Z =
∏

j

∫ +π

−π

dθ j exp

[
β

∑
〈〉

cos(�μθ j + αμ; j )

]

=
∏

j

∫ +π

−π

dθ j

∏
〈〉

exp[β cos(�μθ j + αμ; j )]

=
∑
{kμ; j}

∏
j

∫ +π

−π

dθ j

∏
〈〉

Ikμ; j (β )eikμ; j (�μθ j+αμ; j ), (25)

where we have introduced a set of link variables {k} on the
original lattice. Each link variable kμ; j is defined on the sites
at i and j (see Fig. 9) and can take only integer values.
Now,

Z =
∑
{kμ; j}

∏
〈〉

Ikμ; j (β )eikμ; jαμ; j
∏

j

∫ +π

−π

dθ je
ikμ; j (�μθ j ) (26)

(since Ikμ; j is independent of θ ).
This can be further reduced to [35]

Z =
∑
{kμ; j}

∏
〈〉

Ikμ; j (β )eikμ; jαμ; j
∏

j

∫ +π

−π

dθ j exp{−iθ j (�μkμ; j )}

=
∑
{kμ; j}

∏
〈〉

Ikμ; j (β )eikμ; jαμ; j
∏

j

δ(�μkμ; j ). (27)

This δ function constraint helps us to find the representation
of kμ; j . The constraint enforces that kμ; j are divergence-
less at each lattice site. Hence, kμ; j can be expressed as
the curl of some new field φ defined at the dual lattice
sites j,

kμ; j = εμν�νφ j . (28)

Thus, we can write the partition function in terms of dual
space variables as

Z =
+∞∑

{φ=−∞}

∏
j

exp

(∑
ld

ln
[
Iεμν�νφ j (β )ei(εμν�νφ j )αμ; j

])

=
+∞∑

{φ=−∞}

∏
j

exp

(∑
ld

ln
[
Iεμν�νφ j (β )

] + i(εμν�νφ j )αμ; j

)
,

(29)

where the φ j are now dual-space variables with the label j
representing the dual-lattice sites. We now carry out the low
temperature expansion of In(β ).

C. Low temperature expansion

We start with the integral representation of In(β ).

In(β ) = 1

π

∫ π

0
dxeβ cos x cos(nx)

=
∞∑

p=0

(−1)pn2p

(2p)!

1

π

∫ π

0
dxx2peβ cos x. (30)

So,

In(β )

I0(β )
=

∞∑
p=0

(−1)pn2p

(2p)!

1

π I0(β )

∫ π

0
dxx2peβ cos x

=
∞∑

p=0

(n2)p

p!
Mp(β ). (31)

Thus, we can express In(β )/I0(β ) as a moment generating
function for n2 where the moments are

Mp(β ) = (−1)p p!

(2p)!

1

π I0(β )

∫ π

0
dxx2peβ cos x. (32)

Thus, ln[In(β )/I0(β )] can be written as a cumulant gener-
ating function the pth cumulant of which would be given by

Cp(β ) = ∂ p

∂ (n2)p
ln[In(β )/I0(β )]|n=0. (33)

Using this expansion of In(β ) in Eq. (29) and dropping the
overall multiplicative factor of I0

2N (β ) (N being the system-
size), we obtain [36]

Z =
+∞∑

{φ j=−∞}
exp

(∑
ld

∞∑
p=1

Cp(β )

p!
(�μφ j )

2p+iεμν (�νφ j )αμ; j

)

=
+∞∑

{φ j=−∞}
exp

(∑
ld

∞∑
p=1

Cp(β )

p!
(�μφ j )

2p−iεμν (�ναμ; j )φ j

)

=
+∞∑

{φ j=−∞}
exp

(∑
ld

∞∑
p=1

Cp(β )

p!
(�μφ j )

2p + i2π f jφ j

)
,

(34)

where f j is the frustration over a plaquette.
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Now, using Poisson’s summation identity,

+∞∑
n=−∞

Gn =
+∞∑

p=−∞

∫ +∞

−∞
dxG(x)ei2π px. (35)

We can write the partition function as follows:

Z =
+∞∑

{mj=−∞}

∏
j

∫
dφ j exp

(∑
ld

∞∑
p=1

Cp(β )

p!
(�μφ j )

2p + i2π (mj + f j )φ j

)
, (36)

where the field φ is now a continuum field where −∞ < φ < +∞. We also have

C1(β ) = M1(β ), C2(β ) = M2(β ) − M1(β )2, (37)

where Mp(β )’s are the moments. In the low temperature limit (β � 1), it can be shown that the main contribution comes from
the series expansion of Cp(β ) up to the term β1−2p. Keeping the first term alone [35] we can rewrite this partition function as

Z =
+∞∑

{mj=−∞}

∫ +∞

−∞
Dφ exp

(∑
ld

− 1

2β
(�μφ j )

2 + i2π (mj + f j )φ j

)
, (38)

where M1(β ) ≈ − 1
2β

was evaluated from approximate expan-
sion of C1(β ). We note that the low temperature expansion
series is convergent.

This functional integral over φ can be carried out straight-
forwardly and has the result

Z = Z (0)
+∞∑

{mj=−∞}
exp

[
2π2β

∑
i, j

(mi + fi )Vi j (mj + f j )

]
,

(39)
where

Vi j = (∇2)−1
i j

is the lattice Green function in two dimension. Here the quan-
tities {m} can take integer values only whereas the quantities
{ f } can be integer or fraction depending on the value of the
frustration parameter α. For our model we have seen that,
α = π

2 which correspond to integer values of fi. In two dimen-
sions, the fields {m} interact through a logarithmic potential.
This expression is similar to the partition function in the low
temperature regime for the 2D XY model with frustration.
The fields are vortex excitations. We observe integer-valued
vortices in our model at very low temperatures.

Thus, the duality transformation has successfully uncov-
ered the vortices which appear in the Kuramoto model. The
high temperature expansion of In(β ) can also yield insights
into the behavior of the model which we will discuss else-
where.

V. CONCLUSION

The relaxation dynamics of a 2D system of Kuramoto
oscillators with identical frequencies coupled via nearest-
neighbor coupling is investigated in detail using random initial
conditions for the phases, drawn from a uniform distribu-
tion. The phase field of the oscillators of the system displays
regimes with distinct characteristic features during the process
of relaxation to the asymptotic states. The asymptotic states
observed in the numerical simulations, which are of very long

duration, are of two distinct kinds, viz the synchronized states,
and the phase locked states with vortices.

The routes for relaxation to the two kinds of asymptotic
states feature characteristic structures such as synchronized
clusters, vortices or topological defects, and spin waves. In
the case where the final state was synchronized, the vortex-
antivortex pairs annihilated each other leaving spin waves
which organized themselves into a synchronized final state.
For the phase locked final state, the vortex-antivortex states
survive to the final asymptotic phase locked state. The basin
stability of the final states was investigated. The nature of
the asymptotic states was seen to be dependent on both the
initial conditions as well as the system-sizes. For small system
sizes, most of the initial conditions lead to complete phase-
synchronized states. As system size increases, the fraction of
initial conditions that lead to complete phase-synchronized
states becomes small and it tends to zero in the thermody-
namic limit, for the class of initial conditions studied, viz.
randomly distributed phases drawn from a uniform distribu-
tion. For the large lattice sizes, the system mainly relaxes
to phase-locked states which are governed by the presence
of vortices or topological defects. The formation of these
vortices is exposed by applying the duality transformation to
the Hamiltonian version of the model.

It is interesting to note that the transition to synchronization
via cluster, vortex and spin wave intermediate phases can
be observed in an experimentally realisable system. Systems
of magnetic spin torque oscillators are frequently studied in
modern magnetism. The dynamics seen in such systems has
been modelled by Kuramoto models with distance dependent
coupling that falls off as d−3

i j , where i and j are oscillator
labels and di j is the Euclidean distance between them [37].
The oscillator frequencies differ from each other by a small
amount. Numerical studies of such oscillators on 2D arrays
show dynamics which is qualitatively similar to that observed
here. Such systems should also exhibit the relaxation effects
we discuss here.

We note that our initial random distribution of phases is
drawn from a uniform distribution. The effect of different
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distributions on the nature of the asymptotic states, and the
routes to relaxation remain unexplored. Our system of oscilla-
tors also has identical frequencies. If the oscillator frequencies
are drawn from a distribution, then this can also constitute a
source of disorder in the system. Both these factors can intro-
duce defects in the system. We hope to explore the interplay
between these factors, and their effect on the nature of the
asymptotic states and the routes to relaxation to these states in
future work.

The Hamiltonian system studied over here maps onto the
equilibrium XY model which exhibits phenomena like the
topological phase transition in the form of the Kosterlitz-
Thouless vortex binding-unbinding transition [38,39], despite
the fact that no phase transition to long range order is expected
in two-dimensions due to the Mermin-Wagner theorem [40].
The duality transformation carried out by us exposes these
vortices explicitly. The perturbed Hamiltonian examined here,
also contains these vortices. The duality transformation can
be further exploited via the low and high temperature ex-
pansions so that the term by term contribution of the vortex
configurations is exposed. Further studies via the behavior
of the vortex-vortex correlation, and its behavior at low and
high temperatures are possible and are planned elsewhere. For
the present, we confine our numerical analysis to the vortex
structures and their evolution as seen in the transient to the
stationary synchronized and phase locked states.

Finally, we comment on the relation between the dynamics
of the full Hamiltonian system and the Kuramoto dynam-
ics. In the case of Hamiltonian dynamics, the over all phase
space is mixed and contains sticky regions which can pro-
mote synchronisation, as well as chaotic regions and regular
regions [41]. These sticky regions can have important con-
sequences for synchronisation. Synchronization can occur in
the neighbourhood of invariant curves in the phase space,
where periodic trajectories can provide locally transverse sta-
ble directions. The effect of stable periodic trajectories [42],
and unstable periodic trajectories [43] on synchronisation has
been analysed in the case of coupled area preserving systems.
The mixed nature of the phase space leads to a strong de-
pendence on initial conditions as we see in the present case.
Similar effects are seen in the study of the perturbed Hamilto-
nian by Witthaut et al. [33], where the behavior transverse
to the synchronization manifold is consistent with the area
preserving property. It is therefore reasonable to speculate
that the Kuramoto like behavior, and the vortex effects seen
here are related to mixed phase space effects seen for syn-
chronisation in Hamiltonian systems. However, the complete
confirmation of this, the study of the stability of the synchro-
nization manifold in directions parallel and transverse to it,
the role of initial conditions, and the size of the volume basin
of each type of solution, requires an independent study.

APPENDIX: HAMILTONIAN FOR THE 2D XY MODEL
WITH FRUSTRATION

The Hamiltonian for frustrated 2D XY model with nearest
neighbor coupling is given by

H = −
∑
〈〉

K cos(θi − θ j − αi j ). (A1)

+

+

++

+

_

++

FIG. 10. Left: frustration-free plaquette. Right: frustrated
plaquette.

Here, the disorder is introduced in this system by adjusting
the interaction in such a way that the neighboring spins at i,
j get tilted by the angle αi j at each bond connecting the sites
i and j. Thus, generally, the ground state will no longer be
ferromagnetic with all spins aligned in the same direction;
instead, the direction will vary from site to site to minimize
the angle difference (θi − θ j − αi j ).

In general, all bonds are satisfied in the ground state of
frustration-free configurations; however, configurations with
frustrations always have unsatisfied bonds and hence, in terms
of energy considerations, have higher energy than the other
one (Fig. 10). The frustration angle Ai jkl at a plaquette i jkl
(Fig. 11) is defined by

2πAi jkl = αi j + α jk + αkl + αli (mod 2π ). (A2)

Using the same notation as before, we write αi j ≡ αμ; j . A
plaquette can be represented by one site j and two directions
μ and ν from that site. We can write the frustration field as

2πAμν; j = εμν�μαν; j = �μαν; j − �ναμ; j . (A3)

We can associate this frustration over a plaquette to the dual
site which resides at the center of the plaquette. The scalar
frustration at dual site is defined as

f j = 1
2εμνAμν; j . (A4)

The detailed analysis of the frustrated XY model can be found
in Ref. [44].

FIG. 11. One possible ground state configuration of frustrated
plaquette is shown schematically. The arrows denote the orientation
of spins, θi. The αi j is the bond variable connecting the sites i and j.
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