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Power laws and phase transitions in heterogenous car following with reaction times
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We study the effect of reaction times on the kinetics of relaxation to stationary states and on congestion
transitions in heterogeneous traffic using simulations of Newell’s model on a ring. Heterogeneity is modeled as
quenched disorders in the parameters of Newell’s model and in the reaction time of the drivers. We observed that
at low densities, the relaxation to stationary state from a homogeneous initial state is governed by the same power
laws as derived by E. Ben-Naim et al., Kinetics of clustering in traffic flow, Phys. Rev. E 50, 822 (1994). The
stationary state, at low densities, is a single giant platoon of vehicles with the slowest vehicle being the leader
of the platoon. We observed formation of spontaneous jams inside the giant platoon which move upstream as
stop-go waves and dissipate at its tail. The transition happens when the head of the giant platoon starts interacting
with its tail, stable stop-go waves form, which circulate in the ring without dissipating. We observed that the
system behaves differently when the transition point is approached from above than it does when approached
from below. When the transition density is approached from below, the gap distribution behind the leader has a
double peak and is fat-tailed but has a bounded support and thus the maximum gap in the system and the variance
of the gap distribution tend to size-independent values. When the transition density is approached from above,
the gap distribution becomes a power law and, consequently, the maximum gap in the system and the variance
in the gaps diverge as a power law, thereby creating a discontinuity at the transition. Thus, we observe a phase
transition of unusual kind in which both a discontinuity and a power law are observed at the transition density.
These unusual features vanish in the absence of reaction time, i.e., when the vehicles react instantaneously to a
perturbation ahead (e.g., automated driving). Overall, we conclude that the nonzero reaction times of drivers in
heterogeneous traffic significantly change the behavior of the free flow to congestion transition while it doesn’t
alter the kinetics of relaxation to stationary state.
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I. INTRODUCTION

Traffic systems are nonequilibrium driven systems that ex-
hibit rich collective phenomena in the kinetics of relaxation to
a nonequilibrium stationary state and in the phase transition
to the congestion regime. The problem becomes even more
complex when a quenched disorder is introduced into the
system. A quenched disorder, in a physical sense, implies
heterogeneous traffic in which each driver-vehicle unit has a
different set of parameters. At a fundamental level, two basic
kinds of approaches are used to model traffic: car-following
models [1] and cellular automata [2]. Physicists have studied
the effects of quenched disorder on the collective phenom-
ena using the totally asymmetric simple exclusion process
(TASEP) and the Nagel-Schkrekenberg (NS) models [3–5],
which are cellular automata, while such studies are rare in the
car-following literature. At the outset, it might appear that the
conclusions of the car-following model would be the same
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as those in the cellular automata. However, it is important
to understand if the subtle differences in basic assumptions
between the methods might lead to differences in the emergent
phenomena. It is also important to characterize these phenom-
ena in the jargon of car-following methods, which are widely
used in transportation engineering applications [6–8]. In pre-
vious work, we studied heterogeneous traffic by introducing
quenched disorders into the parameters of Newell’s model [9].
In this paper, we study the further effect of the reaction time of
drivers by means of numerical simulations of Newells’ model.
We observe that the presence of reaction times and quenched
disorders in them significantly changes the picture from one
with no reaction times and reveals interesting phenomena that
are not observed in the cellular automata. We first give a brief
review of related works that use cellular automata, specifically
the NS model in Sec. II and highlight points that prompted
the present study. In Sec. III, we present our car-following
model and explain briefly the role played by reaction times
in the formation of spontaneous stop-go waves. In Sec. IV,
we discuss the approach to stationary state. In Sec. V, the
giant platoon that forms in the stationary state is characterized.
In Sec. VI, the phase transition from the platoon-forming
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phase to the congestion phase is analyzed. The results are
summarized in Sec. VII.

II. COLLECTIVE PHENOMENA IN NS MODEL

The NS model for a one-dimensional lattice of L sites on
a ring is as follows: The speed of each vehicle is assumed to
be discrete with allowed integer values between 0 and vmax.
The time step is taken to be unity and dimensionless. Thus,
the space gap (d) and speed (v) have the same units. Starting
from a given initial configuration, the positions and speeds
of all the vehicles are updated at each time step according to
the following rules [2]: (i) The speed vi of the ith vehicle is
updated to min{vmax, vi + 1} if vi < di, where di is the gap
ahead of the ith vehicle. (ii) If vi � di, vi is updated to di − 1.
(iii) The speed of a vehicle is reduced by unity (vi �→ vi − 1)
with a probability p to account for randomness in hopping,
also called as random deceleration. (iv) Each vehicle advances
vi sites. The NS model is very similar to TASEP except that
in TASEP vmax = 1 and the positions of particles are updated
in a random sequential manner.

The traffic system as described by the TASEP or the NS
model is intrinsically a driven nonequilibrium system. The
evolution of such a system toward its stationary state reveals
its dynamical universality class which may be distinguished
based on the dynamical exponent z related to the emerging
length scale ξ (t ) in the system as ξ ∼ t1/z. In the case of
traffic, ξ (t ) is the length of the platoon of vehicles moving as
a cluster. While there have been early numerical studies in the
NS literature regarding the dynamical universality class of the
NS model [10,11], it has been only recently proven by Gier
et al. [12] using nonlinear fluctuating hydrodynamics that the
NS model belongs to the superdiffusive Kardar-Parisi-Zhang
universality class with dynamical exponent z = 3/2.

There has been intense debate in the literature over the
nature of the jamming phase transition and the corresponding
order parameter for the NS model [13–17]. Some studies
used the observation of a double peak in the distribution
functions of gap and speed to identify the critical density
[5,13,14,18,19]. Gerwinski and Krug [20] noted that the jams
can be observed at any density and argued the formation of
a stable jam as a criterion for the phase transition. Recently,
Bette et al. [21] decomposed the jams based on the mechanism
of their formation and observed that the formation of stable
jams leads to the phase transition while the unstable jams can
be present at any density. It may be noted that the basic reason
for the formation of jams is the stochasticity induced by p.

The presence of a quenched disorder in the system makes
it even more complex. Krug and Ferrari [22,23] studied a
version of TASEP with quenched disorder in p with prob-
ability distribution f (p) ∼ (p − pmin)n when p → pmin and
conjectured that the dynamical exponent z depends on the
exponent of the quenched disorder as z = (n + 2)/(n + 1).
Krug and Ferrari also argued that the phase transition from
platoon-forming phase to a laminar phase without platoon
formation would be of second order if n � 1 and first order
for n > 1. Evans [24] independently solved for the steady
state of the TASEP with quenched disorder in jump rates
and showed that the phenomenon of bunching of vehicles
behind the slowest vehicle is analogous to the Bose-Einstein

condensation. Ktitarev et al. [25] did simulations of the NS
model with quenched disorder [ f (p)] in p and concluded
that the dynamical exponent z and the exponent for the gap
distribution near the critical point are the same as those con-
jectured by Krug and Ferrari. Bengrine et al. [26] simulated
NS model for open boundary conditions. Their conclusions
also corroborated Krug’s conjectures regarding the order of
the transition and the exponent z.

It can be seen from the above discussion that the stochas-
ticity induced by the random deceleration (which occurs with
probability p as discussed above) plays a central role in the
collective phenomena exhibited by the NS model. The ran-
dom hopping probability p has been introduced to account
for spontaneous traffic jams (also called stop-go waves) and
various other aspects like nondeterministic acceleration by
drivers, etc. However, it is not directly related to any phys-
ically observable phenomenon in traffic flow. There is no
analogous parameter in car-following models as can also be
seen in Newell’s model explained in the next section. The
main effect of the random deceleration in the NS model (i.e.,
the formation of stop-go waves) is captured by driver reaction
times in car-following models and this basically models the
delay in response of a driver-vehicle unit to a perturbation
ahead of it. The process by which the stop-go waves form due
to reaction times has its origin in the flow instability, which is
a deterministic process and thus could be quite different from
the way stop-go waves form in the NS model, which is based
on stochasticity induced by p. This raises the question of
whether the collective phenomena exhibited by car-following
models would be the same as those observed in the NS model.
Our present study aims to address this point.

III. CAR-FOLLOWING MODEL FOR HETEROGENEOUS
TRAFFIC

Newell’s model [27] is a simple physical car-following
model that is known to reasonably capture the dynamics of
car following. It has been empirically validated in a number
of studies [28–31]. The equation of motion for an ith vehicle
in the model is

dxi(t )

dt
= V (si(t − τi )), (1)

where xi(t ) is the position of vehicle i at time t and V (·)
is a speed relation that takes the spacing between vehicle i
and their leader (si ≡ xi−1 − xi) as input. The assumptions of
Newell’s model are embedded in V , which basically couples
the dynamics of the ith vehicle with that of its leader, the
(i − 1)th vehicle, and accounts for i’s reaction time, denoted
by τi. The reaction time may be interpreted as the delay in
response of the driver to a perturbation ahead. A schematic of
the speed versus gap relation is shown in Fig. 1 Assuming no
overtaking, xi−1 > xi at all times. The equation above main-
tains total asymmetry in the interactions as the ith vehicle only
interacts with the vehicle ahead but not vice versa. Newell’s
conjecture for speed is as follows:

V (s) =
{
vf , s � Sc

wb max{S−1
j s − 1, 0}, s < Sc,

(2)
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FIG. 1. A schematic of the speed V (s) versus gap s profile of a
driver as per Newell’s model. A typical profile is shown by black
line. Below jam gap Sj, the vehicle is at rest. If the gap s is between
Sj and Sc, the speed increases at a rate of wbS−1

j and if the gap s is
above Sc, the speed is maximum and constant at vf . The filled blue
area encompasses various possible driver profiles in the system as all
the parameters of the model are random in our present study.

where Sc is the critical gap, beyond which vehicles travel
unrestricted by their leaders, Sj is the jam gap, which is the
smallest distance that a vehicle maintains from their leaders
(when the speed is zero), wb is the backward wave speed,
which is the speed at which a platoon grows in traffic from
standstill, and vf is the maximum speed when traveling unre-
stricted. Locally, the backward wave speed is related to both
the jam spacing and the reaction time as wb = τ−1Sj. Clearly,
these parameters will vary from one vehicle to another but are
bounded from both above and below. They are, thus, repre-
sented by probability distributions with bounded domains. To
this end, we will assume (without loss of generality) that the
parameters are drawn from generalized beta distributions. Let
A be any of the three parameters vf , wb, or Sj with minimum
and maximum values denoted by Amin and Amax, and let aA

and bA denote the shape parameters of the distribution of A.
The probability density function of A, denoted pA, is

pA(x) = (Amax − Amin)−aA−bA+2

B(aA, bA)
(x − Amin)aA−1

× (Amax − x)bA−1I[Amin,Amax](x), (3)

where B(·, ·) is the beta function and I[Amin,Amax](x) = 1 if x ∈
[Amin, Amax] and 0 otherwise.

The use of beta distribution has been justified in previous
works by one of us [31–34], the main advantages being the
bounded support from above and below and the flexibility in
the shape of the distribution afforded by the Beta distribu-
tion. The heterogeneity as introduced here is nothing but a
quenched disorder in each of the parameter. The τ , because
of its dependence on wb and Sj, is also a quenched disorder.
The above choice of τ ensures there are no numerical or
local instabilities. However, we can expect string instability
to appear and play a role in the collective dynamics of the
system.

The system in the present paper is a set of N vehicles
on a single lane track of length L with periodic boundary
conditions (PBCs). Thus the (spatial) average density on the
road is ρ̄ = NL−1. The vehicles are assumed to be spaced
uniformly initially (i.e., at t = 0). The simulation consists
of evolving the N coupled delay differential equations with

PBCs. For the present paper, we use the following set of
parameters: vmin

f = 60 km/h, vmax
f = 80 km/h, wmin

b = 30
km/h, wmax

b = 40 km/h, ρmin
j = 1/Smax

j = 170 veh/km, and
ρmax

j = 1/Smin
j = 130 veh/km. The time step is taken to be

�t = 0.5 × 10−6 h. For the beta distributions of vf and ρj,
we chose avf = 2 and bvf = 2 (symmetric distribution), and
for the beta distribution of wb, we chose awb = 2 and bwb = 3
(skewed).

The method used for solving the N delay differential equa-
tions (DDEs) is similar to that discussed by Trieber and
Kesting [35]. The vehicles are placed at a uniform initial
gap, i.e., si(0) = LN−1 and each vehicle is initiated with its
free-flow speed, i.e., vi(0) = vf,i, where {vf,i}N

i=1 are drawn
from the beta distribution described above. For numerical
convenience, we approximate τi (� �t ) as τi ≈ nint(τi/�t )
in units of �t where nint(x) is the nearest integer to x. The
basic difference between a DDE and the ordinary differential
equation is that in a DDE the values of the coordinates for
the past nint(τi/�t ) time steps have to be memorized for each
vehicle. For simplicity, we assume that si(t − τi ) = LN−1 for
all t = 0, . . . , τi and all i, which implies that vi(t ) = vi(s(t −
τi )) = 0 for all t < τi. The update equations for each vehicle
at each time step are as follows:

si(t + �t ) = si(t ) + �t (vi−1(t ) − vi(t )), (4)

where

vi(t ) = V (si(t − τi )) (5)

as given in Eq. (2). After each step, the memory of speeds and
gaps is updated to include the past τi values.

A. Flow instability

The delayed reaction by drivers as modeled by the coupled
DDEs in Eq. (1) introduces oscillations in the gaps between
vehicles and in their speeds. This is considered as a form
of instability in traffic flow, similar to instabilities in fluid
dynamics. Instabilities in traffic flow are broadly classified as
local and string instabilities. A system of vehicles is locally
unstable if the gap and speed fluctuations of each vehicle do
not decay with time. A string instability, as the name suggests,
is that in which a perturbation in the gap (and the speed)
travels upstream in a manner similar to a traveling wave in
a string. If the conditions in the system are such that the am-
plitude of the perturbation increases as it travels upstream, the
perturbation eventually transforms into a jam, within which
the vehicles come so close to each other that they either move
very slowly or halt momentarily. The jam front thus formed
continues to move upstream, forming what is called a stop-go
wave. In the Appendix, we illustrate the role played by the
reaction time in inducing oscillations in the gap (and hence in
the speed) by deriving an approximate analytical expression
for the gap and speed for the case of a follower equilibrating
their speed to that of a slow-moving leader. Here, we explain
in simple terms the way in which a perturbation in the speed
of one vehicle gets amplified into a stop-go wave as it spreads
to the vehicles upstream. We refer the reader to Chap. 15 in
Treiber and Kesting’s book [35] for a more detailed discussion
on instabilities in traffic flow.
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FIG. 2. Top: Position (x) versus time (t) plot illustrating the
formation of a stop-go wave. The vehicles move from left to right
as depicted in the cartoon. The curves corresponds to the cars with
matching colors. Bottom: Speed (v) versus time (t) plot for the ve-
hicles in the top figure. Dotted arrows are guides to the eye. A small
trough in the speed of vehicle 1 induces a larger trough in vehicle 2
and so on. As this reaches vehicle 7, the perturbation develops into a
stop-go wave. The damped oscillations occur as the vehicle equalizes
its speed with that of its leader.

The speed versus time plot for a platoon of seven cars with
the ith car-following car i − 1 is shown in Fig. 2. The simu-
lations are done using the parameter settings described in the
previous section. For that choice of parameters, the system ex-
hibits only string instability. Cars 1 and 2 initially travel at the
same speed. Car 2 reacts to the slight slowdown of car 1 (see
the trough near top-left corner in the figure) with a delay equal
to its reaction time. Because of the delay, the gap ahead of car
2 shrinks by more than the steady state gap required for its
initial speed. As a result, car 2 reduces its speed to a value less
than that of car 1 to maintain a safe distance. Thus the depth of
the trough in its speed plot is more pronounced than that of car
1. Similarly, car 2 perceives the increased speed of car 1 with
a delay. The culmination of these two maneuvers (excessive
slowing and delay) is a large gap ahead of car 2. As a result,

car 2 increases its speed to more than that of car 1 briefly.
However, as the gap between them decreases, car 2 again
starts equilibrating its speed with that of car 1 and the de-
lay time again causes overshooting and undershooting of the
speed of car 2, which results in the oscillations seen in Fig. 2.
This effect cascades as it spreads upstream and car 7 comes
so close to car 6 at some point that it has to stop and thus
begins a stop-go wave, which continues to move upstream
with cars following car 7 completely stopping momentarily
and starting again to move. As can be seen from the figure, the
oscillations in each car tend to decay. However, in some cases,
a vehicle experiences another perturbation from its leading
vehicle before the oscillations from previous perturbation to-
tally decay, because of which the vehicle would experience
persistent oscillations. Thus, the heterogeneity of the system
and the delay in response due to reaction time make the
system extremely complex and are basically the origins for
the oscillations and the stop-go waves.

B. Relation to three-phase theory

Before we conclude our brief introduction of car-following
theory, we briefly present three-phase theory and its relation
to the present context. Newell’s model, as presented above, is
considered to be a two-phase model; the two phases being the
free-flow phase (F) and the congested phase, which we will
refer to as the jam phase (J) to be consistent with the nomen-
clature used in three-phase theory. The two phases can be seen
in the two parts of Newell’s hypothecized speed relation in
Eq. (2). Three-phase theory was developed by Kerner [36,37],
who analyzed data from German autobahns and observed a
third phase sandwiched in between F and J, which he dubbed
synchronized traffic (S). The S phase is a congested phase
with no “wide-moving jams” (stop-go waves). The kinetics of
the transition are similar to a nucleation process; the S phase
forms (or nucleates) near a traffic bottleneck (e.g., off-ramps
and on-ramps on a highway) and if the conditions are favor-
able, the size of the ‘nucleus’ keeps growing in the upstream
traffic direction (from the bottleneck). However, as the size
of the region of the S phase increases, the flow becomes
unstable and stop-go waves emerge. The formation of the
stop-go waves is called an S → J transition. While the above
phenomenon occurs during a transient state, the system may
reach a nonequilibrium stationary state with the same flow
pattern. Thus, one finds a F phase ahead of the bottleneck and,
as one goes upstream, first an F → S transition is observed
near the bottleneck and then an S → J transition is observed
at a point further upstream.

Proponents of the three-phase theory have sharply crit-
icized two-phase theories on the grounds that they all fail
to capture the nucleation process described above (the most
recent criticism appeared in Appendix A in Ref. [38]). This
criticism has been extensively debated in the traffic flow
literature. A number of works showed that the empirical ob-
servations mentioned above can be simulated using standard
car-following models with a proper choice of parameters. See,
for example, Refs. [39–41]. For example, in the simulations
performed in this study depicted in Fig. 3, the dark patterns in
the plot that form somewhere in the middle of the platoon and
move upstream are the stop-go waves (phase J). The leader of
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FIG. 3. A plot of typical positions of the N vehicles versus time
after the stationary state is reached when reaction time is included.
Each line corresponds to a vehicle. The vehicles at the front of
the platoon move smoothly without any stop-go waves. Some small
oscillations generated in the vehicles at the front develop into stop-go
waves as they move upstream. The stop-go waves (dark patterns
moving upstream in the figure) get dissipated at the end of the
platoon.

the platoon is the slowest vehicle in the system. It experiences
free flow but, being the slowest vehicle in the system, it plays
the role of a moving bottleneck for the faster vehicles behind
it. It can be seen from the figure that the immediate followers
of the slowest vehicle experience synchronized flow, i.e., the
S phase. We can also see from the figure that the S phase
doesn’t spread indefinitely in space; it becomes unstable as it
moves upstream where stop-go waves appear in the system.
Therefore, starting from the leader of the platoon and moving
upstream, one sees a F → S transition near the leader (the
bottleneck in our case) and a S → J transition at a point
further upstream. Figure 3 may be compared to Fig. 1.3 in
Ref. [37]. We note that the presence of quenched disorders
in the parameters of our two-phase model is a unique feature
in our model. Further, it was argued by the defenders of the
two-phase theories that the classification of the S-phase and
the J-phase separately and the introduction of F → S and
S → J transitions was just qualitative with a different inter-
pretation being possible. It was also argued that the observed
pattern of transitions, F → S followed by S → J, does not
always occur in real traffic.

The purpose of the present paper is to investigate the im-
pact of a quenched disorder in the reaction times. We make
no claims of addressing the ongoing two-phase and/or three-
phase debate. While we elected to use a two-phase model for
simplicity of exposition, we believe that quenched disorders,
particularly in the reaction times, can have profound impacts
on emergent phenomena in traffic, independent of whether a
two-phase or three-phase theory is used.

IV. APPROACH TO STATIONARY STATE

We observed that the flow instability induced by the chosen
values of τ doesn’t hinder the formation of a single platoon
at low densities; see Fig. 3. As explained above, some small
perturbations in the gaps of the vehicles in the platoon get
amplified as they go upstream of the platoon and form stop-go

10-3 10-2 10-1 100 101

100

101

102

10-4 10-3 10-2 10-1

100

FIG. 4. Gap size as a function of time. Scaled gap length versus
scaled time is shown in the inset. Collapse of curves upon the scaling
implies Lg ∼ t2/3.

waves. However, the strength of the instability doesn’t grow
indefinitely. We observed that the stop-go waves may get
totally dissolved or the number of vehicles participating in the
stop-go waves keeps fluctuating. This may happen because
of various factors, e.g., a large gap between the leader and
the follower or an agile follower with small reaction time
and small critical gap. Thus, the phase ordering due to the
quenched disorder in speed wins over the instability due to
the reaction time when the single platoon forms.

As explained in the Introduction, the NS model with a
quenched disorder in hopping rates is understood to be be-
longing to a general dynamical universality class with z =
(n + 2)/(n + 1), where n is the exponent of the distribution
of the quenched disorder. Ben-Naim et al. [42] analytically
derived the same z value for the case of one-dimensional bal-
listic aggregation which may be related to a one-dimensional
car-following model with a quenched disorder in free-flow
speed. In this case, n was the exponent of the distribution for
vf close to vmin

f . Thus, for the beta distribution for vf used here,
n = avf − 1. In our previous work, we simulated Newell’s
model with quenched disorders in the vf , Sj, and wb with
zero reaction time and obtained the z numerically and using
finite size scaling, which matched with that of Ben-Naim et al.
and of the NS model. In the present case, where we include
a reaction time for each driver, it is not clear whether the
system belongs to the same universality class as the collective
effects due to the string instability induced by the reaction
time oppose the formation of a platoon and thus we determine
it below.

The fluctuations in the gaps between the vehicles made
it extremely difficult to identify the size (or length) of the
platoon after the string instability grows strong. Thus, we
determined the size of the largest gap (Lg) in the system as
a function of time instead of the average platoon size. As the
growth of Lg implies the growth of the platoon, both should
follow the same power-law. The averages have been calculated
typically over few tens of independent simulations each done
with a different random seed for the quenched disorders. From
Fig. 4, it can be seen that a typical gap grows as a power law.
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FIG. 5. Average speed as a function of time for various track
lengths. Scaled average relative speed is shown in the inset. Collapse
of curves with scaling implies that 〈v̄〉 ∼ t−1/3.

Clearly, the finite-size effects are quite dominant. A finite-size
scaling form is also depicted in the inset of Fig. 4 and confirms
the power-law exponent to be z = 3/2, which matches that of
the NS model with quenched disorder. Similarly, the power-
law exponents for the average relative speed 〈v − vmin

f 〉 turns
out to be the same as the previous case, i.e., αs = −1/3 which
also matches with that derived by Ben-Naim et al. A typi-
cal power-law decay of 〈v − vmin

f 〉 and its finite-size scaling
form are shown in Fig. 5. Thus we see that while the string
instability complicates the platoon dynamics, it doesn’t alter
the dynamical exponent for platoon formation which may be
a confirmation of the kinematic wave criterion as argued by
Tripathy and Barma [43,44].

V. CHARACTERIZATION OF THE GIANT PLATOON

As seen in Fig. 3, at low densities, the system which was
initially spatially homogeneous drifts into a stationary state
where all the vehicles segregate into a single platoon with the
slowest vehicle leading it and a large system size dependent
gap ahead of the slowest vehicle. The difference between the
present case with reaction time and the case with no reaction
time is the presence of stop-go waves. For a finite system, the
stop-go waves are not observed at very low densities. How-
ever, when the system size is increased, keeping the density
constant, the stop-go waves emerge. Therefore we note that
the stop-go waves exist at all nonzero densities in the large
system limit (or in the thermodynamic limit).

The stationary gap distribution p(s) helps in characterizing
the state of the system. We calculated p(s) using the binning
method. To coarse grain the fluctuations at small time scales,
we took averages over sufficiently long times, which is typi-
cally a few tens of thousands of steps after the stationary state
is reached. Although the system is expected to be ergodic
(having a unique stationary state) and self-averaging in the
thermodynamic limit, to avoid any initial state dependence
because of finite system size and to smooth the fluctuations
further, we do an ensemble average. To perform calculations,

10-2 10-1 100

10-4

10-2

100

102

FIG. 6. Stationary state probability of gap p(s); one part of it
is the gap distribution behind the leader of the platoon pp (the left
curve) and the other part is the gap distribution ahead of the leader
pg (the right curve).

we set a bin size of �s and compute the probability density as

p(s) = 1

E

1

T

E∑
e=1

T∑
t=1

Ne
t (s)

N�s
, (6)

where E is the number of ensemble copies, T is the number
of time steps over which averaging is done, and Ne

t (s) is the
number of vehicles in ensemble e during time step t that have a
gap between s and s + �s. We determined the distributions for
track lengths L = 5, 10, 20, 50, and 100 kms. For L = 5 km,
the ensemble averaging is done over 200 copies while for
L = 100 km, averaging is done over 24 copies. The number
of copies for remaining lengths are between 200 and 24. The
copies are chosen as a compromise between the smoothness
of the obtained curves and the computational time.

A typical p(s) at a low density where the platoon formation
happens is depicted in Fig. 6 for various track lengths. p(s)
has two distinct components: the probability of gap behind the
slowest vehicle [pp(s)] and pg(s), which is the probability of
the gap ahead of the slowest vehicle. When there is no reaction
time [9], we showed that pp(s), in the thermodynamic limit,
is identical to pc,l (s), which is the critical gap distribution of
the leader. In the present case, pp(s) significantly differs from
pc,l (s). However, a peak in the distribution still appears at the
gap where the pc,l (s) has a peak. In addition, another peak can
be seen close to the jam gap Sj. This peak appears as a result
of stop-go waves. The broadening of the pp(s) on the right
side is because of the gaps of various sizes that get created
due to the stop-go waves. It can be seen from Fig. 6 that the
upper bound of the distribution increased with the increase
in track length but tends toward a converged value. Thus, it
becomes a fat-tailed distribution in the thermodynamic limit.
The pp part is found to be independent of density until the
phase transition point is reached. The pg(s) can also be seen
in the figure. The distribution is much broader than the case
with no reaction time. Thus, the p(s) is dominated by the
flow instability and the stop-go waves. As density is increased,
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pg(s) shifts closer to pp(s) and merges with it on approaching
the phase-transition point.

VI. THE DYNAMICAL PHASE-TRANSITION

As one goes from low density to high density, a density
point is reached after which the giant platoon doesn’t form
in the stationary state. In simple terms, one may anticipate
the transition to happen when the head of the platoon starts
interacting with the tail of the platoon. For the case with no
reaction time, we showed that the transition is always of first
order, following the conjecture by Krug and Ferrari [22] that
there is no divergence in the variance of the stationary gap
distribution at the transition point for any choice of parameters
describing the quenched disorders. We also showed that, in the
thermodynamic limit, the density (ρc) at which the transition
happens is actually the reciprocal of the expectation value of
the gap distribution pp(s) behind the slowest vehicle. In the
present case, when a reaction time for each driver is consid-
ered, we observed that this is still approximately valid, i.e.,

1

ρc
≈ 〈s〉p ≈

∫
dspp(s)s, (7)

which becomes exact in the thermodynamic limit. We noted
from numerical calculations that the ρc in the present case is
less than that with zero reaction time. Because of the finite size
effects in pp, the calculated ρc also has a length dependence.
However, we found that the tail of the distribution has much
lesser weight and therefore the expectation values calculated
for track lengths of 50 km and 100 km were pretty close. To
determine the transition density in the thermodynamic limit
(ρc∞), we fitted the the numerically observed ρc for various
lengths to the below form:

ρc(L) = ρc∞ + B

Lν
(8)

and obtained ρc∞ ≈ 48.71, B ≈ 13.22, and ν ≈ 1.03 for the
present case.

To illustrate the phenomenon, we plot in Fig. 7 the po-
sitions of the N vehicles versus time just below and above
the predicted ρc. For ease of visualization, the L = 10 km
case is depicted in the plot. The following points may be
noted by observing the plots. Below ρc, the collective effect
of platoon formation is dominant and a single giant platoon is
formed. Some stop-go waves generated in the middle of the
platoon are stable and travel upstream to the end of it where
they get dissipated. Above ρc, the collective effect due to flow
instability becomes dominant and the formation of the giant
platoon is hindered by strong stop-go waves, which move
uninterrupted upstream all around the ring. As a result, there is
a continuous process of formation and destruction of platoons.
Therefore, as the density is increased from a low value to ρc,
the transition occurs when the stop-go waves start to dominate
over the platoon formation due to the quenched disorder in
vf . Thus, the phenomenon happening at the phase transition
is more complicated than mere interaction of the head of the
platoon with its tail.

To characterize the transition, we determined some phys-
ical quantities in the stationary state over a range of

FIG. 7. Positions of the N vehicles versus time on a 10-km track.
For this case, ρc lies between 49 and 50 veh/km. Top plot is for ρ =
49 veh/km, which is below ρc. Bottom plot is for ρ = 50 veh/km,
which is above ρc.

densities above and below ρc for various track lengths,
which we analyze below. The flow-density diagram is
plotted for various track lengths in Fig. 8. The finite-
size effects appearing in the diagram (see inset) are
similar to those observed by Balouchi and Browne [45]
and become negligible for track length of 100 km and
the diagram converges to a triangular shape. It can be
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FIG. 8. Flow versus average density when reaction time is
included
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FIG. 9. Maximum gap versus density when the reaction time

is included. Inset: Plot depicting the scaling 〈smax〉 ∼ (ρ̄ρ−1
c − 1)

−γ

with γ = 3/4.

observed that the free flow to congestion transition also hap-
pens at the density predicted by Eq. (7).

The average maximum gap 〈smax〉 observed in the system
after the stationary state is reached is plotted against average
density ρ̄ = NL−1 in Fig. 9 (scaled by ρc∞ ). For small values
of ρ̄ρ−1

c∞ , 〈smax〉 is proportional to L. As ρ̄ approaches ρc from
below, 〈smax〉 decreases and reaches a minimum value at ρc.
As ρ̄ approaches ρc from above, 〈smax〉 increases and resem-
bles a power law. A numerical fit of 〈smax〉 to (ρ̄ρ−1

c − 1)−γ

using data for a 100-km road gave γ ≈ 0.8. Assuming the
below finite-size scaling form:

〈smax〉 � L−γ ν f (XL−ν ), (9)

where X = (ρ̄ρ−1
c − 1) and f (X ) ∼ X −γ , the curves for vari-

ous lengths collapsed when ν = 1 and γ = 3/4. The value of
ν agrees with that determined from Eq. (8) and the value of γ

agrees well with the above numerically determined value. The
gap variance

�2 = 〈(s − 〈s〉)2〉 =
∫

dsp(s)s2 −
(∫

dsp(s)s

)2

(10)

is plotted as a function of ρ̄ in Fig. 10 for various L. Similar
to 〈smax〉, �2 is proportional to L for a given ρ̄ and tends
to a minimum size-independent value as ρc is approached
from below. As ρc is approached from above, �2 increases
as shown in Fig. 10. A numerical fit of �2 to (ρ̄ρ−1

c − 1)−η

using data for 100 km road gave η ≈ 1.05. We assumed the
finite-size scaling form

�2 � L−ην f (XL−ν ), (11)

where f (X ) ∼ X −η and found that the curves for different
lengths collapse in the power-law regime as shown in the inset
of Fig. 10 when ν = 1 and η = 1.

Thus, in both 〈smax〉 and �2, we notice power-law behavior
as the ρc is approached from above. There is lack of data for
much larger track lengths to clearly visualize the power law
over an extended domain in the log plots as simulations be-

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

-3.5

-3

-2.5

-2

-1.5

-5 -4 -3 -2
-2.5

-2

-1.5

-1

FIG. 10. Variance of the gap distribution as function of density.
Inset: Plot depicting the scaling �2 ∼ (ρ̄ρ−1

c − 1)−η with η = 1.

come highly computationally costly because of the power-law
relaxation time required to reach the stationary state. How-
ever, we believe that the finite-size scaling clearly revealed
the exponents γ and η. As a consequence of the different
behaviors of 〈smax〉 and �2 as ρc is approached from above and
below, a kink can be observed in these quantities in the neigh-
borhood of ρc whose sharpness increases with an increase in
track length L. We attribute the kinks observed in Figs. 9 and
10, when L gets large, to the emergence of vehicle clusters in
between the stop-go waves. When ρ is only slightly larger than
ρc, the stop-go waves start to become pronounced but occur
infrequently. For large L, the distances separating the stop-go
waves also get large, allowing for large 〈smax〉 to emerge in
between the stop-go waves. In this regime (ρ → ρ+

c ), large L
also allows for higher variability in the cluster sizes to emerge
near ρc, hence the increase in �2 observed above. These kinks
become less pronounced (and start to vanish) when L gets
small. In the thermodynamic limit (L → ∞), we expect the
kinks to become infinite discontinuities.

In addition, we observed that the gap distribution p(s)
decays as a power law just above ρc. A finite size scaling plot
of p(s) for various Ls is shown in Fig. 11, from which we
deduced that p(s) ∼ s−α with α = 3 asymptotically before the
finite size effects take over. The power-law distribution of gaps
just above ρc indicates presence of multiple length scales in
the system, which correspond to the gaps of various sizes that
form between the platoons of various sizes with the largest gap
being proportional to the size of the system. This is related to
the power-law divergence seen in �2 and 〈smax〉.

The existence of both the power-law divergence and the
discontinuity in 〈smax〉 and �2 in the neighborhood of the
phase- transition is not reported in the traffic flow theory
literature to our knowledge. The power-law divergence in
�2 and the power-law tail of p(s) have been observed in
TASEP and NS models. Krug and Ferrari [22] found, using
heuristic arguments, that η = (1 − n)/n for n ∈ (0, 1) and it
logarithmically diverges when n = 1 where n = avf − 1. They
also found that α = n + 2. These results have also been ob-
served in simulations of the NS model. For the present study,
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FIG. 11. Scaled gap distributions near ρc for various {L, N} pairs.

avf = 2 and, therefore, according to Krug et al., �2 should
have diverged logarithmically but we have shown above that
η = 1, which is a different value. However, the value of the
exponent α we got agrees with those predicted for TASEP
and NS models. The above results and analysis show the
complex nature of the transition. The power-law divergence
of �2 as ρ → ρ+

c resembles a second-order transition. How-
ever, the infinite discontinuity in the �2 is unexpected of a
second-order transition. On the contrary, the transition may
not be called first order, owing to the power-law divergence
of �2. Thus we see the transition to be of unusual sort and its
properties do not match with that observed in the NS model
except for the power-law gap distribution just above ρc.

VII. SUMMARY AND DISCUSSION

In this paper, we have studied the effect of reaction time
on the emergent phenomena in a heterogeneous traffic us-
ing numerical simulations of a version of Newell’s model.
The heterogeneity is incorporated using quenched disorders
in each of the parameters of the model and in the reaction
time. The dynamical exponents describing the platoon form-
ing phenomenon at low density are noted to be the same as
those derived by Ben Naim et al. for ballistic aggregation and
those observed in the NS model.

In the single giant platoon that forms in the stationary state
at low densities, we observed that spontaneous stop-go waves
form somewhere inside the platoon and move upstream until
the tail of the jam is reached where they dissipate. The phase
transition happens when the head of the giant platoon interacts
with its tail and the stop-go waves circulate continuously all
through the ring without dissipation. The transition density
closely matches with the reciprocal of the expectation value of
the gap distribution in the giant platoon in the thermodynamic
limit and it is numerically observed to be lower than the tran-
sition density when there is no reaction time. To understand
and characterize the transition, we determined the gap distri-
bution [p(s)], the maximum gap in the system (〈smax〉), and

the variance (�2) of the gap distribution for various densities
across the transition density ρc.

The following picture emerges from the observations we
made: First, it may be noted that the phase transition in the
present system happens because of a competition between the
phase ordering due to the quenched disorder in the free-flow
speed and the formation of stable stop-go waves which de-
stroy the phase ordering. Below ρc, the phase-ordering effect
wins and the system segregates into a single giant platoon
and a large gap ahead of it, 〈smax〉 simply represents the gap
ahead of the platoon leader, which diverges in the thermo-
dynamic limit. As density is increased, keeping the system
size constant, the gap ahead of the leader reduces and in
the limit ρ → ρ−

c the gap ahead of the leader becomes less
than their critical gap, thus 〈smax〉 becomes finite and size
independent. This may also be seen from the fact that pg(s)
merges with pp(s) as ρ → ρ−

c , thus making p(s) normaliz-
able with a finite variance �2. On the other hand, as the
critical density is crossed (ρ → ρ+

c ), the stop-go waves be-
come dominant and obstruct the formation of a giant platoon.
However, between two stop-go waves, the vehicles form clus-
ters of various possible sizes because of the phase-ordering
effect. As the system size becomes very large, it is possi-
ble to have a large enough distance between two stop-go
waves that allows the formation of large platoons and, thus,
gaps proportional to the size of the system. Evidence of this
happening in the system is the power-law distribution of the
gaps p(s) ∼ s−3 which renders the variance �2 and 〈smax〉
to diverge. Thus, we have a complex situation in which the
quantities �2 and 〈smax〉 become finite as ρ → ρ−

c and diverge
as ρ → ρ+

c thereby creating a discontinuity at ρc. Thus, the
phase transition observed here is of unusual sort with prop-
erties of both first- and second-order transitions. We note that
such transitions with properties of both first- and second-order
transition are observed in other systems like granular media
and various other systems like foams and colloids. However, a
unified picture of all these transitions is still an open question
and with our present study, perhaps heterogeneous traffic joins
this class of systems.1

Overall, we find that the present paper reveals some aspects
of phase transitions in heterogeneous traffic flow in the context
of car-following models. Insights from our paper may be use-
ful in developing continuum theories for heterogeneous traffic
flow, which have applications in transportation engineering
and traffic management. Further, the unusual nature of the
phase transition may have implications on fuel economy and
pollution as there would be frequent breaking and acceleration
maneuvers. Modeling of these aspects and applications that
aim to avoid stop-go maneuvers are gaining traction in the en-
gineering literature; see, e.g., Ref. [46] and references therein.
The power laws concerning kinetics would give an idea about
the timescale of buildup of traffic on a highway. This is
of particular importance in the context of network control
techniques that aim to “stabilize” traffic networks, which are
gaining a lot of popularity in the engineering literature (see,

1We thank an anonymous reviewer for bringing this to our
attention.
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e.g., the work of the second author on the subject [47,48]),
and are even being tested in the real world for feasibility (see,
e.g., Ref. [49]).
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APPENDIX: EQUILIBRATION OF A FOLLOWER’S SPEED
TO THAT OF A SLOWER LEADER

Below we discuss, in mathematical terms, the effect of
the delay induced by the reaction time (τ ) in the Newell’s
car-following model when a follower vehicle moving at a
high speed equilibrates its speed with that of a slow-moving
leader. Denote vf,φ , Sj,φ , and wb,φ and vf,λ, Sj,λ, and wb,λ as
the free-flow speed, jam gap, and the backward wave speed
of the follower (φ) and the leader (λ), respectively. Suppose
vf,φ > vf,λ and assume that both vehicles were far apart and
moving at their respective free flow (or desired) speeds, and
that the follower reaches their critical gap Sc,φ at time t0.
The follower then begins to adapt to the speed of the leader.
For simplicity, let’s assume that the follower remains in the
congestion regime, i.e., at a gap Sj,φ < s < Sc,φ for all t > t0.
The leader continues to coast at their initial speed even after
t0 as there is no vehicle ahead of it. Thus,

xλ(t ) = xλ(t0) + (t − t0)vf,λ. (A1)

The equation of motion of the follower is

xφ (t ) = xφ (t0) +
∫ t

t0

dt ′V (sφ (t ′ − τ )). (A2)

Equation (A2) can be integrated analytically in a piecewise
manner in intervals of reaction time. In the interval [t0, t0 +
τ ), since sφ (t0 − τ ) > Sc,φ , the follower doesn’t change their
speed because of the delay due to reaction time. Therefore,

xφ (t ) = xφ (t0) + (t − t0)vf,φ (A3)

for t ∈ [t0, t0 + τ ). Thus,

sφ (t ) = xλ(t ) − xφ (t ) = Sc,φ − (t − t0)δvf (A4)

for t ∈ [t0, t0 + τ ), where δvf = vf,φ − vf,λ. In the next time
interval [t0 + τ, t0 + 2τ ), the follower starts responding to the
reduction in gap in the previous time interval and reduces their
speed in accord with Eq. (2). Combining Eqs. (A3) and (A4)
with Eq. (A2) and integrating, we get for t ∈ [t0 + τ, t0 + 2τ ):

sφ (t ) = Sc,φ − (t − t0)δvf + δvf

2!

wb,φ

Sj,φ
(t − (t0 + τ ))2. (A5)

Similarly, for t ∈ [t0 + 2τ, t0 + 3τ ):

sφ (t ) = Sc,φ − (t − t0)δvf + δvf

2!

wb,φ

Sj,φ
(t − (to + τ ))2

− δvf

3!

(wb,φ

Sj,φ

)2
(t − (t0 + 2τ ))3. (A6)
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FIG. 12. Gap ahead of the follower (φ) as a function of time for a
typical case calculated using Eq. (A13). For small τ , the relaxation to
stationary gap is monotonic. As τ approaches Sj,φw−1

b,φ , sφ (t ) becomes
nonmonotone.

In general, we obtain

sφ (t ) = Sc,φ +
∞∑

n=0

(
(−1)n+1δvf

(n + 1)!

(wb,φ

Sj,φ

)n

× (t − (t0 + nτ ))n+1I[t0+nτ,∞)(t )

)
. (A7)

Equation (A7) is essentially a polynomial with new terms
added as time evolves. It can be easily checked using the ratio
test that the series converges. Below we analyze the equation
in the limit of small τ and obtain some insights regarding the
effect of reaction time.

First, we investigate the limiting (in time) behavior of sφ

when τ = 0. When τ = 0, we have that

sφ (t ) = Sc,φ + (t − t0)vf,λ −
∫ t

t0

dt ′V (sφ (t ′)). (A8)

Since sφ (t ) < Sc,φ for t > t0, it can be shown that Eq. (A8)
has the following solution:

sφ (t ) = Sc,φe
− wb,φ

Sj,φ
(t−t0 )

+ Sj,φ

wb,φ

(vf,λ + wb,φ )
(

1 − e
− wb,φ

Sj,φ
(t−t0 )

)
, (A9)

which tends to the equilibrium gap exactly as dictated by
Eq. (2) in the long time limit. This is also the case in Eq. (A7),
when τ → 0. To demonstrate this, we first assume without
loss of generality that t0 = 0 and write Eq. (A7) as

sφ (t ) = Sc,φ + B
∞∑

n=1

(−1)n

n!
An(t − (n − 1)τ )n, (A10)

where A ≡ wb,φS−1
j,φ and B ≡ δvf A−1. As τ → 0,

sφ (t ) → Sc,φ + (e−At − 1)B, (A11)

which converges to the equilibrium gap given by Eq. (2) in
the long time limit. Equation (A9) indicates the presence of
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a characteristic timescale Sj,φw−1
b,φ for relaxation of the speed

of the follower to that of the leader. This should imply that if
τ � Sj,φw−1

b,φ , the reaction time will have little to no effect on
the speed equilibration process. To see this, we approximate
the series Eq. (A10) as follows:

sφ (t ) = Sc,φ + B
∞∑

n=1

(−A)n

n!

n∑
r=0

(
n

r

)
t n−r (−(n − 1)τ )r

≈ Sc,φ + B
∞∑

n=1

(−A)n

n!

(
t n − n(n − 1)t n−1τ

+ n(n − 1)

2
t n−2(n − 1)2τ 2

)
, (A12)

where we have truncated the inner binomial expansion after
the second term. Next, using the series expansion of exponen-

tial and after some algebra, we get

sφ (t ) ≈ Sc,φ − B + B
(
1 − tA2τ + 1

2 A2τ 2(A2t2 − 3tA)
)
e−At .

(A13)

The above expression for sφ clearly illustrates the effect of
a nonzero reaction time; see also Fig. 12. For very small
reaction time τ � Sjw

−1
b,φ , the quadratic polynomial multiply-

ing the exponential term in Eq. (A13) has no real roots and
converges monotonically to the stationary value Sc,φ − B. In
fact, Eq. (A13) tends to Eq. (A11) in the limit τ → 0. As τ

is increased slightly, the quadratic polynomial begins to have
positive real roots and thus sφ becomes nonmonotonic with
its value overshooting and undershooting the stationary gap
Sc,φ − B at various instances before finally relaxing to this
value. As τ ∼ Sj,φw−1

b,φ , the higher order terms in the series be-
come dominant, resulting in more vigorous oscillations which
decay slowly.
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