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Although lattice gases composed of particles preventing up to their kth nearest neighbors from being occupied
(the kNN models) have been widely investigated in the literature, the location and the universality class of the
fluid-columnar transition in the 2NN model on the square lattice are still a topic of debate. Here, we present
grand-canonical solutions of this model on Husimi lattices built with diagonal square lattices, with 2L(L +
1) sites, for L � 7. The systematic sequence of mean-field solutions confirms the existence of a continuous
transition in this system, and extrapolations of the critical chemical potential μ2,c(L) and particle density ρ2,c(L)
to L → ∞ yield estimates of these quantities in close agreement with previous results for the 2NN model on
the square lattice. To confirm the reliability of this approach, we employ it also for the 1NN model, where
very accurate estimates for the critical parameters μ1,c and ρ1,c—for the fluid-solid transition in this model
on the square lattice—are found from extrapolations of data for L � 6. The nonclassical critical exponents for
these transitions are investigated through the coherent anomaly method (CAM), which in the 1NN case yields
β and ν differing by at most 6% from the expected Ising exponents. For the 2NN model, the CAM analysis
is somewhat inconclusive, because the exponents sensibly depend on the value of μ2,c used to calculate them.
Notwithstanding, our results suggest that β and ν are considerably larger than the Ashkin-Teller exponents
reported in numerical studies of the 2NN system.
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I. INTRODUCTION

Entropy-driven phase transitions have received a lot of
attention for their role in the packing of dense fluids [1],
in granular systems [2,3], in adsorption of molecules onto a
surface [4], and so on. In fact, a large number of studies have
considered hard-disks, hard-spheres, and other hard-objects,
through analytical treatments and numerical simulations, in
the continuous space (see, e.g., Refs. [5,6] and references
therein). In another front, lattice gases (LGs) composed of
hard-particles have also been widely investigated through
different methods for a number of particle shapes, such as
triangles [7], dimers [8], rectangles [9], pentagons [10], tetro-
minoes [11], rods [12], Y-shaped [13], cubes [14], etc. on
different lattices.

Among these hard-LGs, certainly the most studied ones
are those of particles that prevent up to their kth-nearest-
neighbor sites from being occupied by other particles—the
kNN models—once they are discrete approximations for hard-
spheres and hard-disks and find applications in several areas
[15]. While the k = 0 case is boring, since the point parti-
cles present only a trivial thermodynamic behavior, for k � 1
these simple athermal LGs can present single or multiple
transitions from disordered to ordered phases. For instance,
on the simple-cubic lattice, the 1NN model displays a continu-
ous order-disorder transition [16–19] in the three-dimensional
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(3D) Ising universality class [18], while in the 2NN case this
transition seems to be discontinuous [19,20], as well as for
some larger values of k [19]. Results for the body-centered-
and face-centered-cubic lattices can be found, e.g., in [21,22]
and references therein. On the honeycomb lattice, the 1NN
model has long been known to present a continuous fluid-solid
transition belonging to the 2D Ising class [23,24], whereas
only very recently systems for larger k’s were analyzed on this
lattice [25], revealing that the 2NN case presents three stable
phases: columnar, solidlike, and fluid, with a first-order tran-
sition separating the first two phases [25]. On the triangular
lattice, the 1NN case is Baxter’s hard-hexagon model [26,27],
the single kNN one for which an exact solution is available,
showing that it displays a continuous fluid-solid transition
in the class of the three-state Potts model. The 2NN model
[28–31] and more recently larger k’s [32,33] have also been
investigated on the triangular lattice, where the continuous
fluid-solid transition in the 2NN case seems to be in the four-
state Potts class [30,31].

Despite all these works, most of the studies on kNN models
have been performed on a square lattice, which is also the
case of interest here. Since its introduction approximately
70 years ago [34], the 1NN hard-square model has been
considered in a vast number of works [21,35–53] and it is
well-known to undergo a continuous fluid-solid transition in
the 2D Ising class. This was firmly established in particular
in the transfer-matrix study by Guo and Blöte (GB) [50],
where the critical chemical potential and particle density
were accurately estimated as μ1,c = 1.334 015 100 277 74(1)
and ρ1,c = 0.367 742 999 041 0(3). More recent works have
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focused on extended hard-core exclusions [15,51,54]—for
instance, k � 820 302 was analyzed in Ref. [54]—and some
of them revealed the existence of multiple phase transitions in
these systems for large k’s [15,54].

The 2 × 2 hard-square model (i.e., the 2NN case on the
square lattice) has also received much attention in the lit-
erature [6,39,42,51,55–67], and it is known to present a
disordered fluid and an ordered columnar phase for low and
high particle densities, respectively. However, the nature, the
location, and even the existence of a transition between such
phases have been a subject of constant debate. In fact, this is
a difficult system for which different approximation methods
usually return quite different outcomes for μ2,c, ρ2,c and the
order of the transition (see, e.g., the tables in Refs. [51,55]
for summaries of the existing results). While the most recent
studies on this model agree that the transition is continuous,
different universality classes have been suggested for it. For
instance, it was claimed in Ref. [51] that it is the class of the
2D Ising model, similarly to the 1NN case, while exponents
that are close but that deviate from the Ising ones were sub-
sequently reported in [63,64,66]. In particular in Ref. [66],
convincing evidence that this system presents Ashkin-Teller
criticality was reported, as previously hinted at in [64].

In view of this discussion—and considering that it is being
mainly guided by Monte Carlo (MC) simulations, once other
finite-size analysis successfully applied to the 1NN model
[50] has proved to be inconclusive in the 2NN case [64]—
it is important to further investigate the 2 × 2 hard-square
model considering other approaches. Here, we address this
through semianalytical grand-canonical solutions on Husimi
lattices whose building blocks are diagonal square lattices
with 2L(L + 1) sites [68]. See Figs. 1, 2, and 3. Continuous
fluid-columnar transitions are found at all levels of approx-
imation analyzed (up to L = 7), yielding a series of even
better mean-field results for the critical parameters μ2,c(L)
and ρ2,c(L). Extrapolations of these numerically exact criti-
cal points to L → ∞ return values close to the best known
estimates for them (from extensive MC simulations on the
square lattice). Similarly, by employing the same procedure
for the 1NN model, results in quite good agreement with
those found by GB [50] are obtained for the continuous fluid-
solid transition on the square lattice. To investigate the true
critical exponents of these systems (for the square lattice),
we use the coherent anomaly method (CAM) [69]. We re-
mark that this method has been applied in the study of the
criticality in a diversity of classical and quantum systems,
as well as nonequilibrium ones [70,71]. However, to the
best of our knowledge, for LGs there exists only a single
study applying CAM to soft (Lennard-Jones-type) systems
[72], where the method has failed in providing the expected
critical exponents. So, our work may serve also as a check
of the effectiveness of the CAM analysis for hard-LGs and
entropy-driven phase transitions. While exponents close to the
expected Ising ones are found for the 1NN model, our results
do not allow us to draw a firm conclusion on the universality
class in the 2NN case.

The outline of this paper is as follows. In Sec. II we define
the kNN models and devise the method for solving them on
HLs of different levels. Results for the critical parameters for
the 1NN and 2NN model are presented in Secs. III and IV,

FIG. 1. Illustration of (a) 1NN and (b) 2NN particles on a di-
agonal square lattice with L = 4. The definitions of sublattices for
studying the 1NN and 2NN models are presented in (c) and (d),
respectively.

respectively. In Sec. V the CAM analysis is applied to both
models. Section VI summarizes our final discussions and con-
clusions.

II. MODELS AND METHODS

A. Models

A given kNN model is composed by hard-core particles,
placed on (and centered at) the vertices of a given lattice,
which exclude up to their first k next nearest neighbors from
being occupied by other particles. In our grand-canonical
treatment of these systems, an activity zk = eμk , where μk =
μ̃k/kBT is the reduced chemical potential, will be associated
with each kNN particle. For the sake of simplicity, hereafter
we will refer to μk simply as “the chemical potential.” On the
square lattice, the 1NN particles correspond to hard squares
of lateral size λ = √

2a tilted by 45◦ in relation to the lattice,
where a is the lattice spacing [see Fig. 1(a)]. In the full occu-
pancy limit, when μ1 → ∞ and the density is ρ1,max = 1/2,
only one of two sublattices [A or B, as defined in Fig. 1(c)] is
occupied, so that the system presents long-range order in this
solid phase. By decreasing μ1, a melting transition is observed
for a disordered fluid phase, where both sublattices are equally
populated (i.e., ρ1A = ρ1B). Thereby, an appropriate definition
of the order parameter for this transition is [51]

Q1 = 1

ρ1,max
|ρ1A − ρ1B|, (1)

since Q1 = 0 (Q1 > 0) in the fluid (solid) phase, being Q1 = 1
in the ground state. The way to calculate the densities will be
devised in the Appendix.

The 2NN particles correspond to hard squares of lat-
eral size λ = 2a occupying four elementary plaquettes of
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FIG. 2. (a) Bethe lattice with coordination q = 4. Square Husimi lattices of (b) first level (L = 1) and (c) second level (L = 2). Lattices
with three (two) generations are shown in (a) and (b) [(c)], once we are considering the central (magenta) building blocks as the starting point.
Different colors are associated with each generation. The dashed red lines in (b) and (c) indicate the NNNs external to the plaquettes of the red
sites they are emanating, while the dash-dotted green lines connect the red sites with their internal NNNs.

the square lattice, as is shown in Fig. 1(b). In the limit of
μ2 → ∞, where ρ2 = ρ2,max = 1/4, this system presents a
long-range columnar order, rather than a solid phase, due
to a sliding instability, and four sublattices [A, . . . , D; see
Fig. 1(d)] are needed to characterize this fourfold-degenerate
ground state. By decreasing μ2, a transition is expected from
the columnar phase to a disordered fluid phase, where ρ2A =
ρ2B = ρ2C = ρ2D. The fourfold symmetry breaking in such a
transition can be captured by the order parameter [51]

Q2 = 1

ρ2,max
(|ρ2A − ρ2C | + |ρ2B − ρ2D|), (2)

once Q2 = 0 in the fluid phase and Q2 > 0 in the columnar
phase.

B. Husimi-lattice solutions

A Bethe lattice (BL) is the core of an infinite Cayley tree:
a hierarchical structure, without loops, which can be built by
successively adding q − 1 edges to each boundary site of the
previous generation (M − 1), starting with a “central” site and
adding q edges to it to form the first generation of the tree. In
this way, all sites in the interior of the tree have coordination
q, while those at the boundary have a single neighbor [see
Fig. 2(a)]. Since loops are absent in the BL, solutions of
models on it can be seen as the “zeroth-level” (“L = 0”) tree-
like mean-field approximation for a given model on a regular
lattice. This can be improved by replacing the sites and edges
of the BL by clusters, yielding the so-called Husimi lattices
(HLs) [73]. In the ordinary (first-level) HL approximation
for the square lattice, a square cactus is built by connecting
neighboring elementary squares by a single vertex, as shown
in Fig. 2(b). Similar treelike lattices can be built with triangles,
cubes, and so on. Recent examples of systems investigated on
these Husimi cacti include frustrated magnets [74], polymers
[75] and lattice gases [76]. In particular, quite recently binary
[77] and ternary [78] mixtures of kNN particles were analyzed
by us on a HL built with cubes.

To solve a given model on these treelike structures, the
symmetries of all of its phases have to be reproduced on such
lattices. However, this is not always possible when dealing

with the lowest levels. For example, the definition of the 2NN
model on the BL is somewhat arbitrary, due to the definition
of second neighbors in this lattice. In fact, by doing this con-
sidering the chemical distance, a discontinuous order-disorder
transition is obtained for this model [79]. Actually, even in
the ordinary square HL of Fig. 2(b), it seems not possible
to appropriately account for the correlations of the colum-
nar phase. In such situations, we are compelled to consider
higher-level HLs, where the elementary plaquette is replaced
by a cluster of plaquettes. Here, we will adopt the scheme
introduced by Monroe [68], using diagonal square lattices as
building blocks, which share L sites between two consecutive
generations of the tree in each of its four sides. Figure 3
shows these building blocks for levels L � 4. The HL for
L = 2 is depicted in Fig. 2(c), where some plaquettes had to
be deformed to allow the drawing of a tree with more than one
generation in the plane.

It is important to remark here that even in HLs the defi-
nition of second- and higher-order neighbors is problematic.
Let us concentrate first on the L = 1 case of Fig. 2(b), where
each site clearly has only two next-nearest neighbors (NNNs)
internal to the plaquettes, while this number should be four in
the square lattice. If one considers also the NNNs external to

FIG. 3. Building blocks of square Husimi lattices of levels L �
4. The generalization for higher L’s is immediate. The sites com-
posing the root zigzag lines for the solution of the 1NN model are
indicated by the red dots, while for solving the 2NN model the sites
indicated by the blue squares are also included in the root lines. The
colored plaquettes are the central ones, where the particle densities
are investigated.
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the plaquettes, each site has four such neighbors, as indicated
by the dashed lines in Fig. 2(b), so that the total number
of NNNs now becomes six. As demonstrated in Ref. [80],
in thermal systems with NNN interactions associated with
a Boltzmann weight ω, one way to conciliate this with the
square lattice is by associating weights ω to each of the two
internal NNNs and

√
ω to each of the four external ones. Since

this cannot be applied to the athermal 2NN model, we have
to either underestimate or overestimate the number of NNN
sites. This problem lessens for L � 2, where most of sites
have four NNNs internal to the plaquettes. The exceptions
are the eight sites at the corners of the building blocks shown
in Fig. 3, which have only three internal NNNs, as seen in
Fig. 2(c). So, we can solve the 2NN model underestimating
(U) the neighborhood of these corner sites by considering only
their three internal NNNs. Another possibility is to consider
also the two external NNNs of the corner sites [see Fig. 2(c)],
overestimating (O) them. Results for both approaches (O and
U) will be presented in the following sections.

The solutions of the kNN models on the square HLs are
discussed in detail in the Appendix. We anticipate here that
such solutions are obtained in terms of recursion relations
(RRs) for ratios of partial partition functions (ppf’s), which
are defined according to the particles’ states and sublattice
configuration in the root zigzag line of rooted building blocks
(see Fig. 3). These RRs are given by ratios of multivariate
polynomials whose number of terms becomes prohibitively
large to deal with, even computationally, already for small L’s
(see the values in Table VIII). This has limited our analysis
to L � 6 (L � 7) in the k = 1 (k = 2) case. The real, positive,
and stable fixed points of these RRs define the thermodynamic
phases of the models on the HL. Beyond the (reduced) bulk
free energies per site [φk = φ̃k/kBT , which in our grand-
canonical formalism are related to the (reduced) pressure as
Pk = −φk/a2], we will study also the particle densities in each
sublattice S (ρkS), the total particle densities (ρk = ∑

S ρkS),
and the order-parameters [Qk , defined in Eqs. (1) and (2)].
All densities (and then also Qk) will be calculated at the four
sites of the central plaquettes of the central building blocks of
the HL (see Fig. 3). These are the sites suffering less from the
effects from the HLs’ boundary, so that results more consistent
with the square lattice are expected there [68].

III. CRITICAL PARAMETERS FOR THE 1NN MODEL

Although our main interest here is in the 2NN model, it is
natural to start our analysis with the 1NN case, for which the
critical parameters are known with high precision. In all levels
considered, 1 � L � 6, two types of fixed points are found
for the RRs for the ratios of ppf’s, Rσ,S , as defined in the Ap-
pendix. One has a fixed point associated with the disordered
fluid (F ) phase, characterized by a homogeneous solution of
the RRs, with Rσ,A = Rσ,B for σ = 1, 2, . . . , N − 1, where N
is the total number of ppf’s for a given L and sublattice (A
or B). There are two other equivalent fixed points associated
with the ordered solid (S) phase, where one sublattice is more
populated. For example, Rσ,A > Rσ,B when sublattice A is the
one more occupied and vice versa.

The stability analysis, for all levels, reveals that the F (S)
phase is stable for small (large) z1 and that the spinodals of

TABLE I. Critical chemical potentials μ1,c, particle densities
ρ1,c, and free energies φ1,c for the 1NN model on square HLs of
different levels L.

L μ1,c ρ1,c φ1,c

0a 0.523248 0.250000 −0.261714
1 0.682526 0.269594 −0.285784
2 0.929908 0.308815 −0.433966
3 1.035744 0.319238 −0.514850
4 1.096213 0.327915 −0.565728
5 1.135595 0.333132 −0.600665
6 1.163389 0.336882 −0.626140

aResults for the Bethe lattice with coordination q = 4 [81].

both phases take place at the same value of z1, which turns
out to be a critical point z1,c. Therefore, a continuous F -S
transition is found in the HLs, in agreement with the behavior
of the 1NN model on the square lattice. This is confirmed
also by the behavior (not shown) of the particle densities
(since one finds ρF

1 = ρS
1 = ρ1,c at z1 = z1,c), free energies

(since one observes that φF
1 = φS

1 = φ1,c at z1 = z1,c), and
order parameter (since Q1 → 0 as z1 → z1,c from above).
The values found for the critical parameters μ1,c = ln(z1,c),
ρ1,c, and φ1,c for different L’s are summarized in Table I.
For comparison, results for the BL with coordination q = 4
[81] are also displayed in this table, which can be seen as
the “L = 0” case. Since these last values do not follow the
systematic convergence observed in the data for L � 1, they
will not be used in the extrapolations. Actually, even the re-
sults for L = 1 will be disregarded in the extrapolations below,
because they are always quite different from the rest, probably
because this is still a very crude approximation for the square
lattice.

With the data for the critical chemical potential at hand, we
can use different methods for estimating μ1,c(L → ∞), which
shall provide an estimate of μ1,c for the model on the infinite
square lattice (i.e., in its thermodynamic limit). We start by
assuming the usual finite-size scaling form,

X (L) = X (∞) + a1L−	1 + a2L−	2 + · · · , (3)

with X = μ1,c, where one expects 0 < 	1 < 	2 < · · · . As
a first approximation, we can consider that ai = 0 for i � 2,
letting us with three unknowns [μ1,c(∞), a1, and 	1], which
can be obtained from three-point (3-pt) extrapolations for sets
of levels (L − 1, L, L + 1). The values of μ1,c(∞) and 	1

estimated in this way are depicted in Table II. The apprecia-
ble variation of these quantities with L indicates that further

TABLE II. Results from 3-pt extrapolations of the critical pa-
rameters μ1,c, ρ1,c, and φ1,c in Table I, considering Eq. (3) for sets
of levels (L − 1, L, L + 1). The obtained exponents 	1 from the
extrapolations of μ1,c are also shown.

Set of L’s μ1,c(∞) 	1 ρ1,c(∞) φ1,c(∞)

(2,3,4) 1.40530 0.62111 −1.05149
(3,4,5) 1.37521 0.68192 0.35418 −0.91254
(4,5,6) 1.36141 0.72041 0.36766 −0.86300
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corrections cannot be neglected. For instance, if we perform
an additional 3-pt extrapolation of the extrapolated values
μ1,c(∞) in Table II, we obtain μ1,c ≈ 1.3374, which differs
approximately 0.2% from the very accurate value estimated
by Guo and Blöte (GB) [50]: μ1,c ≈ 1.334 015 100 2.

We can improve this by considering also the third term
on the right-hand side of Eq. (3), assuming ai = 0 only
for i � 3. From the exponents in Table II, it is hard to
infer the asymptotic value of 	1. Thereby, we have to
perform a 5-pt extrapolation, with μ1,c(∞), a1, a2, 	1,
and 	2 as unknowns. This gives μ1,c(∞) ≈ 1.334 86
for the largest L’s, which is close to the GB value, but
with 	2 ≈ 	1 ≈ 1, suggesting the presence of an additive
logarithmic term L−	1 ln L in Eq. (3). If one assumes that
μ1,c(L) = μ1,c(∞) + b1L−	1 ln(v1L), a 4-pt extrapolation
for the largest levels yields μ1,c(∞) ≈ 1.3337, and,
once again, 	1 ≈ 1. Furthermore, 5-pt extrapolations
considering the existence of the logarithmic term,
such as μ1,c(L) = μ1,c(∞) + c1L−	1 + c2L−	2 ln L or
μ1,c(L) = μ1,c(∞) + c1L−1 + c2L−	2 (ln L)−ξ2 , return
1.3335 � μ1,c(∞) � 1.3345. Hence, it is reasonable
to conclude that the true critical point is located at
μ∗

1,c = 1.3340(5), which agrees with and differs from
the GB value by 0.001%.

To obtain the asymptotic value of the critical density, we
can start by assuming the finite-size behavior of Eq. (3) and
then employing a 3-pt extrapolation to estimate ρ1,c(∞), a1,
and 	1. The extrapolated values, ρ1,c(∞), are summarized in
Table II. Curiously, for the set of levels (2,3,4) no physical
solution is found from this extrapolation, indicating that the
densities for the smaller L’s are not in the convergence regime.
In fact, by using them to perform 4- or 5-pt extrapolations,
considering pure power-law or logarithmic corrections, a di-
versity of values is obtained, with ρ1,c(∞) ∈ [0.35, 0.39]. On
the other hand, the result from a simple 3-pt extrapolation for
the largest levels available [(4,5,6) in Table II] is quite close
to the one by GB (ρ1,c ≈ 0.367 742 999 [50]), differing by
0.02% from it.

Similarly to the other quantities, initially we consider
the finite-size scaling of Eq. (3) also for the free energy
φ1,c. The outcomes from 3-pt extrapolations are shown in
Table II. The large variation in these extrapolated values
demonstrates that we cannot neglect further corrections in
φ1,c. Similarly to μ1,c, a 5-pt extrapolation following Eq. (3)
returns exponents 	2 ≈ 	1 ≈ 1, suggesting the existence of
logarithmic corrections. A 4-pt extrapolation assuming that
φ1,c(L) = φ1,c(∞) + b1L−	1 ln(v1L) for the largest L’s yields
φ1,c(∞) ≈ −0.794 47 with 	1 ≈ 1, while a 5-pt extrap-
olation with φ1,c(L) = φ1,c(∞) + c1L−1 + c2L−	2 (ln L)−ξ2

gives φ1,c(∞) ≈ −0.791 69. Once again, these values are in
quite good agreement with the one found by GB [|φ1,c| =
0.791 602 643 166 112(1) [50]], with a difference of 0.01% in
the latter case.

Therefore, despite the limitation to low levels, accurate
estimates for the critical parameters (for the square lattice)
can be obtained with this method. This is in agreement with
the results by Monroe [68] for the ferromagnetic Ising model,
where a critical temperature differing by 0.003% from the
Onsager value was obtained from extrapolations of data for
square HLs for L � 5.

0 0.1 0.2 0.3 0.4 0.5 0.6

L�����
2

3

4

5

6

7

� 2
,c
(L

)

approx. U
approx. O

FIG. 4. Comparison of μ2,c(L) vs L−0.75 for approximations U
(black squares) and O (red circles). The dashed line is a linear fit.

IV. CRITICAL PARAMETERS FOR THE 2NN MODEL

Now, we investigate the 2NN model on square HLs of
levels up to L = 7 and 8, respectively, in the approximations
which overestimate (O) and underestimate (U) the number
of NNNs for some sites. Similarly to the 1NN model, here,
in both approximations, the RRs assume a homogeneous
solution, related to the fluid (F ) phase, characterized by
Rσ,A = Rσ,B = Rσ,C = Rσ,D for σ = 1, . . . , N − 1, which is
stable for small z2. For large z2, in both O and U cases, there
are four equivalent fixed points associated with the columnar
nature of the ordered phase of the 2NN model. Although
these fixed points are not so simple as in the fluid phase or
in the solid phase of the 1NN model, by inspection of the
values of Rσ,S and of the densities, it is easy to verify, for
example, that there are two possible ways for the sublattice A
be more occupied: one in which the sublattice B is also more
occupied, and the other with the sublattice D, instead of B,
being more populated. Each of these fixed points is associated
with columns being formed in one of the two directions of the
square building blocks.

In all levels, the stability analysis of the fixed points, as
well the behavior of particle densities, order parameters, and
free energies, demonstrate that there exists a critical point,
μ2,c(L), separating the fluid and the columnar phases. This
confirms that the fluid-columnar transition is continuous in
the square lattice case, in agreement with most of the works
on this hard-square model, as discussed in the Introduction. In
Fig. 4, we compare the values of μ2,c(L) for approximations O
and U. In the former case, one observes a monotonic conver-
gence as L increases, whereas the results for approximation
U display a nonmonotonic convergence, as well as a parity
dependence on L. In fact, although this is not so clear in Fig. 4,
one finds that μU

2,c(L = 8) > μU
2,c(L = 7), indicating that for

larger (and unfeasible) L’s, this chemical potential will pass
to converge from below, similarly to case O. This is indeed
expected, since for L → ∞ both approximations shall give
the same result. For small L’s, notwithstanding, the effect
of underestimating the neighborhood of eight sites is very
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TABLE III. Critical chemical potentials μ2,c, particle densities
ρ2,c, and free energies φ2,c for the 2NN model on square HLs of
different levels L, in approximation O.

L μ2,c ρ2,c φ2,c

2 2.486741 0.200419 0.519643
3 3.048128 0.207922 0.457326
4 3.354577 0.213566 0.393478
5 3.550567 0.216899 0.340409
6 3.688488 0.218782 0.300490
7 3.791358 0.267941

strong, hindering the particles’ ordering, which explains why
μU

2,c > μO
2,c, for a given L. For this reason, hereafter we will

discuss only the results for approximation O, whose critical
parameters μ2,c, ρ2,c, and φ2,c are shown in Table III.

It is noteworthy in Fig. 4 that μ2,c(L), for the case O, is
well-linearized when plotted against L−0.75, with a simple lin-
ear fit returning the extrapolated value μ2,c(∞) ≈ 4.628. This
strongly indicates that μ2,c(L) follows the finite-size scaling
of Eq. (3) with 	1 = 3/4. In fact, by assuming that ai = 0
for i � 2 in this equation and performing 3-pt extrapolations
of the values of μ2,c in Table III, we obtain exponents quite
close to 	1 = 3/4, as shown in Table IV. The extrapolated
values of the critical chemical potential are also displayed in
Table IV, and, in contrast to the 1NN case, they do not have
a clear tendency to increase or decrease. This suggests that
further finite-size corrections are very small in this quantity,
as already suggested by the good linear behavior in Fig. 4.
This is indeed confirmed by 4-pt extrapolations [considering
	1 = 3/4, with μ2,c(∞), a1, a2, and 	2 as unknowns in
Eq. (3)], which yield 	2 � 6 for the largest L’s. Such extrapo-
lations provide values in the range 4.626 � μ2,c(∞) � 4.631,
once again, without any clear tendency to increase or decrease
with L. Hence, we may regard μ∗

2,c = 4.629(3) as our best
estimate for the critical point of the 2NN model on the square
lattice. Given the difficulties inherent in this model, it is re-
markable that this value differs by �1% from several results
from MC simulations (giving μ2,c ≈ 4.58 [51,63,64,66]),
as well as from a recent interfacial tension calculation
(μ2,c ≈ 4.66 [55]).

For calculating the critical density, one has to deal with
generalized (and considerably enlarged) RRs, as explained in
the Appendix, so that we were able to estimate this quantity
only for L � 6. The outcomes from 3-pt extrapolations, as-
suming again the finite-size scaling of Eq. (3), are displayed

TABLE IV. Results from 3-pt extrapolations of the critical pa-
rameters μ2,c, ρ2,c, and φ2,c in Table III, considering Eq. (3), for
sets of levels (L − 1, L, L + 1). The obtained exponents 	1 from the
extrapolations of μ2,c are also shown.

Set of L’s μ2,c(∞) 	1 ρ2,c(∞) φ2,c(∞)

(2,3,4) 4.62538 0.750954 0.63410
(3,4,5) 4.62265 0.752407 0.22935 1.24463
(4,5,6) 4.65061 0.734765 0.22360 −0.2172
(5,6,7) 4.63792 0.743947 −0.6959

in Table IV. Similarly to the 1NN case, this extrapolation
fails for the smallest set of sizes (2,3,4), confirming that the
densities for low-level HLs are indeed far from the asymp-
totic behavior. Anyhow, using such densities to perform 5-pt
extrapolations (considering simple power-law corrections, as
well as logarithmic ones) one always gets ρ2,c ≈ 0.223, in
agreement with the extrapolated value in Table IV for the
three largest L’s. This value is slightly smaller, but close to
those reported in previous works ρ2,c ≈ 0.233 [51,63], with
a difference of ≈4%. Although the value of ρ2,c(∞) for the
set (4,5,6) is slightly smaller than the one for (3,4,5) (see
Table IV), given the fluctuations found in μ2,c(∞), this cannot
be seen as an indication that ρ2,c will converge to a value
smaller than 0.233.

Interestingly, the critical free energies found here for the
2NN model are positive (see Table III), meaning that the
critical pressures are negative in these systems. However, φ2,c

decreases fast with L and our results strongly suggest that
it converges to a negative value. This is indeed confirmed
in Table IV, which shows results from 3-pt extrapolations
[following Eq. (3)]. The strong variation in φ2,c(∞) does
not allow us to propose a value, not even approximated, for
φ2,c in the square lattice case. Moreover, unfortunately, 5-pt
extrapolations fail to return physical values in this case. This
poor convergence certainly explains why results for φ2,c are
absent in the literature, to the best of our knowledge.

V. COHERENT-ANOMALY METHOD

Next, we investigate the universality classes of both kNN
models on the square lattice through the coherent-anomaly
method (CAM). We remark that, independently of its level L,
the dimension of the square HLs is infinity. Hence, in all lev-
els, the critical exponents assume their classical values in the
continuous fluid-solid or fluid-columnar transitions discussed
above. Of particular interest here will be the order parameters
Q1 and Q2, defined in Eqs. 1 and 2, respectively. Close to the
critical point, they behave as

Qk (L) = Q̄k (L)	μk (L)βcl , (4)

where Q̄k (L) are nonuniversal amplitudes (the coherent
anomalies), βcl = 1/2 is the classical critical exponent, and
	μk (L) ≡ [μk − μk,c(L)]/μk,c(L). Thereby, the amplitudes
Q̄k (L) can be estimated by extrapolating Qk/(	μk )

1
2 for

	μk → 0, as is done in Fig. 5 for the 2NN model. A very
similar behavior is found also in the 1NN case. These ampli-
tudes are presented in Table V.

According to the CAM theory [69], the nonuniversal am-
plitudes of a sequence of systematically improved mean-field
approximations, as is the case of our HL solutions [68], en-
code information on the true critical exponents. For the order
parameters, one has [69]

Q̄k (L) = a	μ∗
k (L)β−1/2, (5)

where a is a constant and

	μ∗
k (L) ≡ μ∗

k,c − μk,c(L)

μ∗
k,c

, (6)

with μ∗
k,c being the true critical point, for L → ∞.
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FIG. 5. Rescaled order parameter Q2/(	μ2)
1
2 vs 	μ2 for the

2NN model and several L’s, as indicated in the legend. The lines
are linear fits used to extrapolate these data to 	μ2 → 0.

Therefore, at first, both β and μ∗
k,c can be estimated from

Eq. (5) by means of 3-pt extrapolations. This procedure has
indeed been used with some success in several works (see,
e.g., [68,82–84]). Particularly in the HL-based study of the
ferromagnetic Ising model by Monroe [68], critical tempera-
tures differing by ∼0.1% from the Onsager value were found
in extrapolations for different sets of levels, although with
β exponents ≈10% larger than the exact one. On the other
hand, inaccurate results are found here even for μ∗

k,c from such
extrapolations. For instance, for the 1NN model one obtains
1.32 � μ∗

1,c � 1.36 and 0.07 � β � 0.13, while in the 2NN
case one gets 4.47 � μ∗

2,c � 5.05 and 0.0 � β � 0.18.
In view of this, we adopt a different strategy by letting μ∗

k,c
be fixed at the values estimated in the previous sections and
calculating only the effective β exponents through 2-pt extrap-
olations using Eq. (5). In the 1NN case, regardless of whether
one uses our value μ∗

1,c = 1.3340 or the more accurate one
from Ref. [50], approximately the same exponents are found,
being β = 0.112, 0.120, and 0.121 for the pairs of levels (3,4),
(4,5), and (5,6), respectively. These estimates are increasing
toward the expected value, β = 1/8, with a deviation of 3%
observed in the result for the largest L’s.

In the 2NN case, one does not have a well-established value
for μ∗

2,c. For this reason, we employ the 2-pt extrapolations
considering the value recurrently found in MC simula-
tions μ

∗(1)
2,c = 4.58 [51,63,64,66], our estimate μ

∗(2)
2,c = 4.629,

TABLE V. Scaling amplitudes Q̄k of the order parameters
[Eq. (4)], for several L’s, estimated from the extrapolations in Fig. 5
for k = 2, and analogous ones (not shown) for k = 1.

L Q̄1 Q̄2

1 1.190403
2 2.976795 2.742649
3 3.345415 3.076205
4 3.652503 3.327170
5 3.912666 3.541579
6 4.142837 3.719521

TABLE VI. Effective critical exponents β for the 2NN model,
from 2-pt extrapolations considering Eq. (5) with μ

∗(1)
2,c = 4.58,

μ
∗(2)
2,c = 4.629, and μ

∗(3)
2,c = 4.66.

Set of L’s β (1) β (2) β (3)

(2,3) 0.133 0.122 0.116
(3,4) 0.149 0.136 0.128
(4,5) 0.142 0.126 0.116
(5,6) 0.160 0.142 0.131

and the recent result from the interfacial tension approach,
μ

∗(3)
2,c = 4.66 [55]. The obtained exponents are shown in Ta-

ble VI. In all cases, no tendency to increase or decrease
with L is seen in the values of β, so one may average them
to obtain β (1) = 0.146(14), β (2) = 0.132(10), and β (3) =
0.123(8). Thereby, by increasing μ∗

2,c by ≈1%, the exponent
decreases by ∼10%. It is noteworthy that β (1), estimated with
the critical point from MC simulations, is considerably larger
than the Ising exponent (βIsing = 0.125) and much larger than
the Ashkin-Teller one (βAT ≈ 0.115) found in [66]. The expo-
nent β (2), obtained with our value for μ∗

2,c, agrees with βIsing

within the error bars and is ≈12% larger than βAT. Finally, the
exponent β (3) is quite close to βIsing and only 6% larger than
βAT. Unfortunately, with this diversity of values, we are not in
a position to draw any conclusion about the universality class
of the 2NN model, especially regarding a dispute between
Ising and Ashkin-Teller criticality.

Usually, works on CAM bring an analysis of the true cor-
relation length exponent ν, through the distance between the
pseudocritical point and the true one (for L → ∞), which in
our variables can be written as

	μ∗(L) ∼ L−1/ν . (7)

This relation follows from finite-size scaling (FSS) [85,86],
where L is the effective lateral size of the system. In our case,
the HLs are always infinity, but even then improved values for
the critical points are obtained as the effective lateral size of
the building blocks (∼L) increases, which somewhat justifies
the use of L in Eq. (7). In fact, due to their treelike structure,
correlations are weakened along the HLs (when compared
with the square lattice), and by increasing L one might expect
a proportional increase in the effective correlation length on
these cacti.

To verify whether the FSS of Eq. (7) is indeed valid
in our approach, we start by applying this analysis to the
critical temperatures of the ferromagnetic Ising model on
square HLs, reported in Table I of Ref. [68]. In this case,
one expects that 	T ∗(L) ≡ T (L) − T ∗ ∼ L−1/ν , with T ∗ =
2/ ln(1 + √

2). Therefore, effective ν exponents can be esti-
mated from 2-pt extrapolations, whose values are depicted in
Table VII. Their large variation indicates that further correc-
tions, beyond 1/L, are very important in (	T ∗)ν . By assuming
that such corrections have the form a1/x + a2/x2 + · · · , one
obtains ν ≈ 1.09. Approximately the same result is found
from 3-pt extrapolations of the ν’s in Table VII for the largest
L’s. This estimate, which is 9% larger than the Ising value
(νIsing = 1), strongly indicates that FSS holds in our system
with the true ν exponent, once the mean-field one is νcl = 1/2.
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TABLE VII. Effective critical exponents ν from 2-pt extrapola-
tions considering Eq. (7) (and its analog for the temperature in the
Ising case), for the Ising [68], 1NN, and 2NN models on square HLs
of different levels.

Set of L’s ν (Ising) ν (1NN) ν (2NN)

(1,2) 1.329 1.451
(2,3) 1.221 1.335 1.334
(3,4) 1.181 1.270 1.335
(4,5) 1.160 1.232 1.335
(5,6) 1.208 1.332
(6,7) 1.331

A similar conclusion is obtained for the 1NN model. In
fact, the careful analysis from Sec. III provided strong ev-
idence of a correction exponent 	1 = 1 in Eq. (3) for the
critical chemical potential. So, by considering that 	1 =
1/ν in this case, we are led to conclude that ν ≈ 1 for the
1NN model. Additional confirmation of this is obtained here,
through the effective ν exponents calculated from 2-pt ex-
trapolations [using Eq. (7) with μ∗

1,c = 1.334 015 100 2 [50]],
which are displayed in Table VII. In fact, a 3-pt extrapolation
of 1/ν to L → ∞, for the largest L’s, yields ν ≈ 1.06.

The exponents obtained for the 2NN model, with μ∗
2,c =

4.629, are also shown in Table VII. In this case, they are
always quite close to ν ≈ 1.33, which is consistent with the
correction exponent 	1 = 1/ν ≈ 0.75 found in Sec. IV. We
remark that for μ∗

2,c = 4.58 (μ∗
2,c = 4.66) one finds exponents

with a tendency to decrease (increase), which extrapolate to
ν ≈ 1.22 (ν ≈ 1.37), being ≈8% smaller (≈3% larger) than
1.33. Hence, for all values of μ2,c the exponents are consider-
ably larger than νIsing and the Ashkin-Teller exponent found in
MC simulations: νAT ≈ 0.92 [66]. We recall also that β/ν =
1/8 in both Ising and Ashkin-Teller criticality, while our
exponents give β/ν ≈ 0.12, β/ν ≈ 0.10, and β/ν ≈ 0.09,
respectively, for μ∗

2,c = 4.58, μ∗
2,c = 4.629, and μ∗

2,c = 4.66.
Therefore, if one assumes that the correct critical exponents
for the 2NN model are the Ashkin-Teller ones from [66], the
critical chemical potential from MC simulations returns the
most accurate exponent ratio β/ν, while it gives the worse
estimate for β. Conversely, with μ∗

2,c = 4.66 [55] one obtains
the best result for β, but the largest deviation in ν and β/ν.

VI. FINAL DISCUSSIONS AND CONCLUSION

We have presented semianalytical solutions of athermal
kNN models, for k = 1 and 2, defined on Husimi lattices
built with diagonal square lattices, with 2L(L + 1) sites. For
all L’s considered, the kNN models exhibit thermodynamic
behaviors analogous to those observed in the square lattice,
with a continuous fluid-solid transition in the 1NN case and a
continuous fluid-columnar transition in the 2 × 2 hard-square
(2NN) model. By increasing L, a systematic sequence of even
better values for the critical parameters was obtained in the
1NN case, as well as for the 2NN model in an approxima-
tion that overestimates the neighborhood of a few sites. (A
second approximation for the 2NN model, underestimating
this neighborhood, proved to be nonsystematic for the L’s
analyzed here.) With this method, on the one hand, it is quite

hard to study large L’s, once the computational resources
(both HD space and RAM memory) needed to handle the
very large number of terms in the recursion relations increase
exponentially with L. On the other hand, extrapolations of
the critical parameters obtained for low levels (to L → ∞)
yield results in quite good agreement with the best available
estimates for them in the square lattice. For instance, for the
1NN model this gives a critical chemical potential differing by
0.001% from the highly accurate result from a transfer-matrix
reported in [50]. For the 2NN model, our value is ≈1% larger
than those typically found in MC studies [51,63,64,66]. Given
the previous results for this last model, with very diverse
values for μ2,c obtained with different approaches, it is quite
impressive that our method (with L � 7) furnishes a result so
close to the one from large-scale simulations. This certainly
happens because, at each level, we calculate (with high preci-
sion) the true critical parameters for infinite HLs, while other
approaches provide pseudocritical estimates for finite (and
usually small) regular lattices. This indicates that solutions
on generalized HLs are indeed a very effective way to access
the quantitatively correct phase behavior of lattice models in
general, although it may be difficult to investigate systems
with long-range interactions with this method, because of
the issue with the definition of high-order neighbors in these
trees.

Using the coherent-anomaly method (CAM) for the order
parameters and for the shifts μ∗

k,c − μk,c(L), we have esti-
mated the critical exponents β and ν (for the square lattice).
Our results for the 1NN model (β ≈ 0.121 and ν ≈ 1.06)
are close to the expected Ising exponents. In the 2NN case,
however, small changes in the value of the asymptotic critical
potential μ∗

2,c used to calculate β and ν lead to considerable
variations in these exponents. It is very interesting that with
μ∗

2,c = 4.629 (as estimated here) one obtains β = 0.132(10)
and ν ≈ 1.33, which agree quite well with the exponents for
ordinary percolation in two dimensions (β = 5/36 and ν =
4/3). It turns out, however, that the fourfold symmetry break-
ing in the fluid-columnar transition of the 2NN model has no
clear relation with percolation, and thus this agreement seems
to be a simple coincidence. In fact, the Ashkin-Teller criti-
cality with ν ≈ 0.92 and β/ν = 1/8, suggested in previous
numerical works [64,66], is a much more plausible scenario.
Our estimates for β are indeed not so incompatible with this.
The high positive deviation in ν (of ≈45%) may be caused by
the overestimation in the number of second neighbors of some
sites of the HLs. However, similar deviations in ν have been
observed in a previous CAM study [72] for the Ising model
and soft lattice gas systems, using MC cluster approximations,
where the problem with the definition of second neighbors is
absent. This suggests that the large ν found here is more likely
a failure of the CAM analysis for low levels than an indication
of another universality class for the 2NN model.
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APPENDIX: SOLUTION OF THE kNN MODELS
ON THE SQUARE HUSIMI LATTICES

To solve the kNN models on an L-level square Husimi
lattice, we define partial partition functions (ppf’s) associated
with the possible states of a root zigzag line (see Fig. 3) of
a rooted building block (RBB). For the 1NN model, these
root lines can be defined with 2L − 1 sites, whereas to in-
clude exclusion among external next-nearest neighbors in the
2NN case they must have 2L + 1 sites (see the definitions in
Fig. 3). Let us focus on the former case, since the extension
to the latter one is immediate. In the 1NN model with L = 2,
for example, there are N = 5 configurations of particles for
the root line, as shown in Fig. 6, corresponding to all sites
empty (σ = 0), one site occupied (there are three possibilities
here, σ = 1, 2, 3), and two sites occupied (σ = 4). Since these
sites can be in two different sublattice configurations (the
sequences ABA or BAB), there is a total of 10 possible states
for the root line of the 1NN model with L = 2. For the sake of
simplicity, we will use only the sublattice of the leftmost site
of the root line to identify the sublattice configuration; namely,
we will use A to denote ABA and B to denote BAB. Thereby, in
this case one has 10 ppf’s: Gσ,S , with σ = 0, . . . , 4 and S =
A, B. For comparison, for the 2NN model with L = 2 one has
N = 9 and four sublattice configurations, totaling 36 states
and ppf’s: Gσ,S , with σ = 0, . . . , 8 and S = A, . . . , D. In our
solutions, we will always define the configuration σ = 0 as
the one with the root line empty. In Table VIII the total number
of ppf’s is presented for different levels, for both models.

A recursion relation (RR) for the ppf Gσ,S can be obtained
by keeping a RBB with the root line in the state (σ, S) and
considering the operation of attaching three subtrees (three
branches) to it, one at each of its sides, with the exception
of the root line. If each of these subtrees has M generations,
this process yields a new subtree with M + 1 generations. By
summing over all possible ways of attaching the three subtrees
to the RBB—i.e., by considering all the possible configura-
tions for their root lines, respecting the particle exclusions
and sublattice order—one obtains the ppf G′

σ,S in generation
M + 1 as a polynomial function of the ppf’s Gi,J in generation
M. For example, for the 1NN model on the ordinary square
HL (i.e., the L = 1 case), the possible configurations for the
RBB, when the root site is in sublattice A, are depicted in

FIG. 6. Possible states for the zigzag root lines of HLs of level
L = 2 for the 1NN model. The red dots indicate the 1NN particles.
Another set of identical configurations exists for the root line where
the sublattices A and B are exchanged, which defines the ppf’s Gσ,B

for σ = 0, . . . , 4.

TABLE VIII. Total number of ppf’s (2N and 4N , respectively)
and total number of terms KT in the RRs for the ppf’s of the 1NN
(top) and 2NN (bottom) models on L-level square HLs.

L 2N (1NN) KT (1NN)

2 10 1704
3 26 1146118
4 68 3985772648
5 178 70897617428720
6 466 6438412592897497526

L 4N (2NN) KT (2NN)

2 36 8312
3 76 950636
4 164 357340560
5 352 435265986532
6 756 258990287426480
7 1624 3729631034070503744

Fig. 7. They yield the RRs:

G′
0,A = G0,AG2

0,B + z
1
2
1 G1,AG2

0,B

+ 2z
1
2
1 G0,AG0,BG1,B + z1G0,AG2

1,B (A1a)

and

G′
1,A = z

1
2
1

[
G0,AG2

0,B + z
1
2
1 G1,AG2

0,B

]
. (A1b)

The RRs for G0,B and G1,B are given by the same expressions
with A and B exchanged.

Similarly to Fig. 7, if the root line is in sublattice config-
uration A for the 1NN model when L > 1, then one has to
connect a subtree in configuration A at the top of the RBB and
subtrees in configuration B at its lateral sides [see Fig. 1(c)].
This means that the RRs for the ppf’s G′

σ,A will always be
given by a sum of terms of the form Gα,BGβ,AGγ ,B, with
α, β, γ = 0, . . . , N − 1. We notice that there exist several
combinations of Gα,BGβ,AGγ ,B that are forbidden, due to the
particle exclusions, so that the number of allowed terms in the
RRs is smaller than N3, as is clear in Eqs. (A1) (for which N =
2). Anyhow, we can sum over all N3 configurations—i.e., over
all possible sets {α, β, γ }—and introduce a variable δσ ;α,β,γ ,
such that δσ ;α,β,γ = 0 for the forbidden configurations and

FIG. 7. Possible configurations for the rooted square of HLs of
level L = 1, for the 1NN model, when the root site is in sublattice A
and in the states (a) σ = 0 and (b) σ = 1. The red dots indicate the
1NN particles.
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δσ ;α,β,γ = 1 otherwise. In this way, the RRs for Gσ,A for the
1NN model and general L can be written as

G′
σ,A =

∑
{α,β,γ }

δσ ;α,β,γ z
1
2 nσ ;α,β,γ

1 fσ ;α,β,γ (z1)Gα,BGβ,AGγ ,B,

(A2)
where nσ ;α,β,γ is the number of particles at the 4L more
external sites of the building blocks, which are shared by two
consecutive generations of the tree. Because of this, nσ ;α,β,γ

appears multiplied by half. The contribution of the particles
belonging exclusively to the RBB is accounted for in the
polynomial

fσ ;α,β,γ (z1) =
Kσ ;α,β,γ∑

i=kσ

mi;σ ;α,β,γ zi
1, (A3)

where kσ (Kσ ;α,β,γ ) is the minimal (maximal) number of parti-
cles that can be placed in the bulk sites of the RBB. Note that
the state σ of the root line fixes the configuration of some bulk
sites of the RBB, such that it is not necessarily the case that
kσ = 0 in fσ ;α,β,γ . In this function, mi;σ ;α,β,γ gives the number
of ways of placing i particles in the bulk sites, with kσ of them
fixed. In the L = 1 case, where there are no bulk sites in the
RBB, one has fσ ;α,β,γ = 1. The RRs for the ppf’s G′

σ,B are
given by Eq. (A2) with A and B exchanged.

For the 2NN model, beyond replacing z1 by z2 in Eqs. (A2)
and (A3), the former equation has to be generalized to four
sublattices. For example, for even L, when the root line is in
sublattice configuration A, as is the case in Fig. 1(d), subtrees
in configurations B and D will be attached at the lateral sides
of the RBB, while at the top side the incoming subtree shall
be in configuration A. Hence, we must have Gα,BGβ,AGγ ,D in
place of Gα,BGβ,AGγ ,B in Eq. (A2). When L is odd, we will
have Gα,BGβ,CGγ ,D in Eq. (A2), since in this case the subtree
attaching at the top of the RBB shall be in configuration C.
Once the RRs for ppf’s G′

σ,A are determined, the ones for the
other sublattices can be obtained by cyclic permutations of
their indexes: A → B, B → C, C → D, and D → A.

To determine the set of integers δσ ;α,β,γ , nσ ;α,β,γ , mi;σ ;α,β,γ ,
kσ , and Kσ ;α,β,γ in Eqs. (A2) and (A3), we use an exact
enumeration process. For small L’s this procedure can be
easily done, but it becomes very computationally demanding
as L increases. To illustrate the complexity of this method, the
sum of the number of allowed terms in all ppf’s for a given
L [KT = ∑

{σ,α,β,γ } δσ ;α,β,γ (Kσ ;α,β,γ + 1 − kσ )] is shown in
Table VIII for both models. This number becomes ∼1018

already for L = 6 (L = 7) for the 1NN (2NN) model. In the
2NN case, these values are for the approximation O, where the
neighborhood of some sites is overestimated. To efficiently
enumerate these large amounts of configurations, we use a
recursive method, where the information for L − 1 is used to
determine the quantities for the ppf’s of the Lth level. A caveat
of the method is that, to save time, all information of all RRs
for the case L − 1 has to be stored in the RAM memory to
allow rapid access. For instance, the information for L = 8 in
the 2NN case would require at least 256 GB of RAM memory,
while in HD they would occupy ≈5 terabytes when the data
are compressed.

After obtaining the ppf’s for a given model and level, we
start the study of its thermodynamic properties. In the thermo-

dynamic limit, which corresponds to infinite HLs (M → ∞),
the RRs for the ppf’s diverge. So, we work with their ratios,
which are defined here as Rσ,S = Gσ,S

G0,S
, with σ = 1, . . . , N − 1

and S = A, B (S = A, . . . , D) in the 1NN (2NN) case. Re-
cursion relations for these ratios can be easily obtained from
Eqs. (A2) and (A3). For instance, for the 1NN model with
L = 1, they read

R′
1,A = z

1
2
1 + z1R1,A

1 + z
1
2
1 R1,A + 2z

1
2
1 R1,B + z1R2

1,B

(A4a)

and

R′
1,B = z

1
2
1 + z1R1,B

1 + z
1
2
1 R1,B + 2z

1
2
1 R1,A + z1R2

1,A

. (A4b)

The real and positive fixed points of these RRs corre-
spond to the phases of the model on the HL. As discussed in
Sec. III (IV), for the 1NN (2NN) model one has three (five)
such fixed points, where one is associated with the fluid phase
and the others are associated with the equivalent configura-
tions of the ordered solid (columnar) phase. The region where
a given phase is stable is determined by the condition � � 1,
where � is the maximum eigenvalue of the Jacobian matrix
for the RRs of the ratios applied in the corresponding fixed
point. The stability limit (i.e., the spinodal) of the phase is
given by � = 1. In all levels and for both models, the dis-
ordered and ordered phases are stable for small and large zk ,
respectively, and their spinodals coincide at critical activities
zk,c(L). Therefore, in each level, the 1NN (2NN) model un-
dergoes a continuous fluid-solid (fluid-columnar) transition.

Similarly to the ppf’s, the partition function, Yk , of a given
kNN model on an L-level HL can be obtained by summing
over all possible ways of attaching four subtrees with M → ∞
generations to a central building block. In general, it can be
written as

Yk =
N−1∑
i=0

N−1∑
j=0

δ′
i j z

1
2 n j

k G j,AG′
i,A, (A5)

where δ′
i j = 1 if the particle configuration of Gj,A matches that

of G′
i,A at the L shared sites of the root line and respects the

particle exclusions, and δ′
i j = 0 otherwise. The number of par-

ticles in such shared sites is given by nj . In the 1NN case one
may write Y1 = G2

0,AG2
0,By1, while for the 2NN model one has

Y2 = G2
0,AG0,BG0,Dy2 or Y2 = G0,AG0,BG0,CG0,Dy2 depending

on whether L is even or odd. In all cases, the functions yk

depend only on the ratios and activities.
Following the ansatz proposed by Gujrati [87], the (re-

duced) free energy per site at the central building block of
the HL reads

φk = − 1

2Veff
ln

(∏
i �0,i

y2
k

)
, (A6)

where Veff = 2L2, and �0,i is given by

�0,i = G′
0,i∏

j G0, j
, (A7)

with i, j = A, B for the 1NN model and i, j = A, B,C, D in
the 2NN case.
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To calculate the particle densities in each sublattice at the
four sites of the central plaquette of the central building block
(see Fig. 3), we use a trick where generalized ppf’s and RRs
are defined by associating activities zkS to the particles in
sublattice S in these four sites, and zk to the rest. In this way,
the polynomial in Eq. (A3) becomes fσ ;α,β,γ (z1, z1A, z1B) in

the 1NN model and fσ ;α,β,γ (z2, z2A, z2B, z2C, z2D) in the 2NN
case. Since the partition functions will also be functions of zkS ,
the densities ρkS can be determined as

ρkS = zkS

4Yk

∂Yk

∂zkS

∣∣∣∣
zkS=zk

. (A8)
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