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Relaxation dynamics of the three-dimensional Coulomb glass model

Preeti Bhandari ,1,2 Vikas Malik ,3,* Deepak Kumar,4,† and Moshe Schechter 2

1Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali,
Sector 81, Sahibzada Ajit Singh Nagar, Manauli P. O. 140306, India

2Department of Physics, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
3Department of Physics and Material Science, Jaypee Institute of Information Technology, Uttar Pradesh 201309, India

4School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India

(Received 6 November 2020; revised 25 January 2021; accepted 5 March 2021; published 29 March 2021)

In this paper, we analyze the dynamics of the Coulomb glass lattice model in three dimensions near a
local equilibrium state by using mean-field approximations. We specifically focus on understanding the role of
localization length (ξ ) and the temperature (T ) in the regime where the system is not far from equilibrium. We use
the eigenvalue distribution of the dynamical matrix to characterize relaxation laws as a function of localization
length at low temperatures. The variation of the minimum eigenvalue of the dynamical matrix with temperature
and localization length is discussed numerically and analytically. Our results demonstrate the dominant role
played by the localization length on the relaxation laws. For very small localization lengths, we find a crossover
from exponential relaxation at long times to a logarithmic decay at intermediate times. No logarithmic decay at
the intermediate times is observed for large localization lengths.
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I. INTRODUCTION

The term Coulomb glass (CG) refers to that category of dis-
ordered insulators that have a sufficiently high disorder, which
leads to localized electronic states coupled with the Coulomb
interactions. The presence of a glassy phase in this model
has been predicted theoretically by several authors [1–5]. In
dimensionless units, the Hamiltonian for CG lattice model is
defined [6] as

H{ni} =
N∑

i=1

εini + 1

2

∑
i �= j

e2

κ|�ri − �r j | (ni − 1/2)(nj − 1/2),

(1)
where εi’s are the on-site random field energy and the occupa-
tion number ni ∈ {0, 1}. The electrons at sites i and j interact
via unscreened Coulomb interaction e2/(κ ri j ), where κ is the
dielectric constant.

Considering this model, Efros and Shklovskii [6,7] demon-
strated analytically that at zero temperature, due to the
Coulomb interaction, single-particle density of states (DOS)
diminishes around the Fermi level such that g(E ) ∼ |E |δ ,
where δ = d − 1 and d is the dimensionality of the system.
This result was derived using the criteria of stability of the
ground state against single-electron hops. Many numerical
simulations have been done using a single-electron transition
approach to obtain the pseudoground states [8–14]. These
results predict a harder gap (i.e., δ > d − 1).

Stabilizing the ground state against simultaneous two-
electron hops was done analytically by Efros [15] and he
showed that g(E ) ∼ exp(−�/|E |)1/2, where � is the width
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of the Coulomb gap. Mobius et al. [10] carried out a simula-
tion to calculate the DOS which is stable with respect to all
simultaneous two-electron hops. A lowering of single-particle
DOS was observed but they did not find any qualitative change
in behavior as predicted by Efros [15] and Baranoskii et al.
[16]. Recently, it has been shown [17] for the electron glass in
three dimensions that the density of states crosses over from
quadratic to exponential dependence on energy. This occurs
at very small energies around the Fermi level, and thus is
difficult to detect numerically. Due to the long-range nature
of Coulomb interactions, very large system sizes cannot be
simulated. Möbius et al. [18] have used a renormalization
approach to calculate the DOS for very large systems. They
found that for two and three dimensions, at high disorders,
the density of states behaves like asymptotic theoretical form
g(E ) = g0 Ed−1 but with a smaller prefactor.

At finite temperatures, the gap starts filling up as the
temperature rises. Analytical work [19] in this direction
predicts g(E = μ, T ) ∝ T d−1, where μ is the chemical po-
tential. Early numerical simulations [20,21] agreed with this
prediction but more recent studies report a much stronger
temperature dependence [22]. The relevance of size effects
in calculation of g(E , T ) at the Fermi level has also been
highlighted in the work of Sarvestani et al. [22]. One can
also see that in comparison with Monte Carlo, filling up of
the gap with temperature is less pronounced in the mean-field
approximations [2], which we have used in the present paper.

Recently, Müller and Ioffe established a connection be-
tween the presence of a glassy phase and the appearance of
a soft gap in a three-dimensional CG model using locator
approximation [23]. The formation of a gap in the DOS affects
the conductivity (σ ) quite significantly. One can see that the
conductivity changes from the Mott’s law [24,25] of ln σ ∼
(TM/T )1/4 to the Efros-Shklovskii’s law ln σ ∼ (TES/T )1/2

law [6] at low temperatures.
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The existence of glass transition in three-dimensional CG
has been controversial and is a matter of active research
[26–29], although some mean-field analyses, supported by
recent numerical analysis [29], do suggest the presence of
a stable glassy phase [23,30–33]. Nonequilibrium dynamics
of structural and spin glasses has been studied using scaling
properties of nonstationary correlation and response functions
[34–39]. Various numerical simulations claim that the CG
model exhibits glassy behavior, i.e., slow relaxation [40–46],
aging [43,47], and memory effects [48–50]. Many experimen-
tal techniques are used to study relaxation in the CG model
[47–49,51–60]. The basic idea is to introduce a perturbation in
the material to push the system out of equilibrium. This leads
to an increase in the conductance, whose decay with time
is then measured. It has been observed that many materials,
amorphous as well as crystalline, show a logarithmic temporal
decay in conductance.

The study of slow relaxation can be categorized broadly
into two types of models: (1) First is a quasiparticle model,
which was proposed by Pollak and Ovadyahu [12,61]. They
considered multiparticle transitions and showed that the de-
crease in energy with time is related to γm, which is the
minimal value of the transition rates γ = τ−1

0 exp[− r
ξ

− E
kT ],

where r and E are the collective hopping distance and energy
respectively and ξ is the localization length. Assuming that the
change in conductance [�G(t )] and energy are related to each
other linearly, one gets a logarithmic decay in conductance

�G(t ) ∝ −ln(γm t ). (2)

(2) Second is the local mean-field model, suggested by Amir
et al. [43,44,62]. The dynamics of quite a few systems near
local stable minima can be described by the matrix equation

dδn

dt
= A δn, (3)

where δni = ni − fi is the fluctuation of the occupation num-
ber (ni) from its value fi at the local minima. Amir et al. have
shown [62] that under mean-field approximations and single-
particle transitions dynamics, the CG model obeys Eq. (3).
The regime of low temperatures and small localization lengths
is considered, and the distribution P(λ) ∼ 1

λ
is found for the

small relaxation rates. This leads to a logarithmic decay of
fluctuations in occupation numbers δn(t ). Assuming that the
relaxation of excess conductance �G(t ) is linear in δn(t ), one
recovers the logarithmic decay for conductance as given in
Eq. (2). In this approach, the system always remains near
the local minima, and thus the transition between different
metastable states (multiparticle transitions) is completely ne-
glected.

Our goal here is to study the relaxation effects in the
Coulomb glass lattice model near a local equilibrium state by
using mean-field approximations. We follow the approach of
Amir et al. [62], albeit for a lattice CG model. Within the
approach of Amir et al., there is a disorder in site energies
as well as in the position of the sites. In their approach [62],
and small localization lengths studied, the slow dynamics are
mainly due to isolated localized states that have a long life-
time. However, in the lattice model discussed here, disorder
comes only via site energies and so the question of isolated
states does not come into the picture. Instead, we find that for

small localization lengths, ξ � 1, the states near the Fermi
level are very stable and any fluctuations in them relax very
slowly. The main reason for this slow decay is that the states
near the Fermi level are isolated energetically due to the hard
gap in the DOS inflicted on their nearest neighbor sites. For
all localization lengths and temperatures, the system always
obeys the exponential relaxation [δn(t ) ∼ exp − (t/τmax)], at
times longer than τmax. The maximum relaxation time (τmax)
is inversely proportional to the smallest eigenvalue (λmin) of
the dynamical matrix A. Our study shows that λmin depends
upon the localization length as well as temperature.

We further find that logarithmic time dependence of the
relaxation of δn(t ) at intermediate times is present only for
small localization lengths, ξ � 1, where relaxation is mainly
due to jumps to nearest neighbor sites.

The paper is organized as follows. In Sec. II, we provide
an overview of our derivation of the linear dynamical matrix.
In Sec. III, we present a detailed discussion of our mean-
field results obtained numerically and analytically. Finally, in
Sec. IV, we provide the conclusions of our work.

II. DYNAMICS

The most general nonconserved dynamics for the total
probability distribution of the spins was developed by Glauber
[63]. This was extended to conserved dynamics by Kawasaki,
who incorporated the constraint of fixed magnetization. The
Kawasaki formulation [64,65] applies to CG as the electron
number is conserved, which is equivalent to fixed magne-
tization. Here, we deal with the probability distribution of
P(n1 . . . nN ; t ), which involves the occupation of all sites in
the system. The Kawasaki dynamics holds for the interacting
system as well as for multiparticle dynamics. Since this ap-
proach is general, it can be taken beyond mean-field theory. In
this paper, we only use conserved dynamics in closed systems
and hence use Kawasaki dynamics.

The time evolution of a system can be described using a
generalized master equation [66],

d

dt
P({nμ}, t ) = −

∑
μ �=ν

Wμ→ν P({nμ}, t )

+
∑
ν �=μ

Wν→μ P({nν}, t ), (4)

where Wμ→ν denotes the transition rates from state μ to ν and
P({nμ}, t ) is the probability of finding the system in state μ

at time t . The transition rates can be single- or multielectron
transfer. Since we are interested in Kawasaki dynamics, only
transitions that conserve the particle (electron) number will
be considered. Using single-particle transitions, the Kawasaki
dynamics equation can be rewritten as

d

dt
P(n1 . . . nN ; t ) = −

∑
i �= j

ωi→ j ni(1 − n j )

× P(. . . , ni . . . n j, . . . ; t )

+
∑
i �= j

ω j→i n̄ j (1 − n̄i )

× P(..., n̄i..., n̄ j, ...; t ), (5)

032150-2



RELAXATION DYNAMICS OF THE THREE-DIMENSIONAL … PHYSICAL REVIEW E 103, 032150 (2021)

where ωi→ j is the transition probability from site i to j and
n̄i = 1 − ni. Now we impose the condition of “detailed bal-
ance,” so that the evolution is toward thermal equilibrium. In
thermal equilibrium,

ωi→ j ni(1 − n j ) Peq(. . . , ni . . . n j, . . .)

= ω j→i n̄ j (1 − n̄i ) Peq(. . . , n̄i . . . , n̄ j, . . .), (6)

ωi→ j

ω j→i
= exp[−βE (. . . , n̄i . . . , n̄ j, . . .)]

exp[−βE (. . . , ni . . . , n j, . . .)]
. (7)

The energy required to transfer an electron from i to j is

�Eji = E (. . . , n̄i . . . , n̄ j, . . .) − E (. . . , ni . . . , n j, . . .),

= ε j − εi +
∑
m �=i

Kjmnm −
∑
m �= j

Kimnm,

= Ẽ i
j − Ẽ j

i , (8)

where

Ẽ i
j = ε j +

∑
m �=i

Kjmnm

= Ej − Kjini, (9)

Ej is the Hartree energy Ej = ε j + ∑
m Kjmnm, and Kjm =

1
r jm

is the Coulomb interaction term. We can then rewrite
Eq. (8) as

�Eji = Ej − Ei − Ki j (ni − n j )

= Ej − Ei − Ki j ; (10)

hence we get ωi→ j

ω j→i
= e−β�Eji . So, we choose our transition

probability as

ωi→ j = γi j

2τ

1

eβ�Eji + 1
, (11)

where τ is a hopping timescale. With this choice, the master
equation takes the form

d

dt
P({nl}; t ) = −

∑
i �= j

γ (ri j )

2τ
ni(1 − n j )

× [ f (�Eji )P(. . . , ni, . . . , n j, . . . ; t )

− f (�Ei j )P(. . . , n̄i, . . . , n̄ j, ...; t )]. (12)

Here, f (E ) = 1
exp(βE )+1 is the Fermi-Dirac distribution, and

γi j = γ (ri j ) is a factor independent of temperature but de-
pendent on the distance between sites i and j. For hopping
electrons, γi j = γ0e−ri j/ξ , where γ0 is a constant.

From this, one can derive an equation for time-dependent
averages or moments. To connect to the one-particle master
equation, we consider

Ni(t ) =
∑
{nl }

ni P(n1 . . . nN ; t ) (13)

whose time derivative gives

d

dt
Ni(t ) = − 1

2τ

∑
j �=k

γ (r jk )
∑
{nl }

nin j (1 − nk )

× [ f (�Ek j ) P(n1 . . . nv; t )

− f (�Ejk ) P(n1 . . . n̄ j . . . n̄k, . . . ; t )]. (14)

Again, if i �= j or i �= k, a change of summation variables j �
k makes the two terms cancel. The only surviving term comes
from i = j, and Eq. (14) can now be written as

d

dt
Ni(t ) = − 1

2τ

∑
k �=i

γ (rik )
∑
{nl }

ni(1 − nk )

× [ f (�Eki ) P(. . . , ni . . . nk, . . . ; t )

− f (�Eik ) P(. . . , n̄i . . . n̄k, . . . ; t )]

= − 1

2τ

∑
k �=i

γ (rik ) [〈ni(1 − nk ) f (�Eki )〉t

−〈(1 − ni )nk f (�Eik )〉t ], (15)

where 〈...〉t denotes average at time t . Equation (15) is an
exact equation. To get a closed set of equations, one needs
to apply mean-field approximation to Eq. (15).

Mean-field approximation

The mean-field approximation consists of making the as-
sumption

〈 f (n1...nN ; t )〉 = f (N1(t )...NN (t )). (16)

With this assumption, we get

d

dt
Ni(t ) = − 1

2τ

∑
k �=i

γ (rik ) [Ni(1 − Nk ) fFD(Ek − Ei )

− Nk (1 − Ni ) fFD(Ei − Ek )], (17)

where Ei and Ek are the Hartree energies at sites i and k
respectively. fFD(E ) = 1/(exp[βE ] + 1) is the Fermi Dirac
distribution. Now let us linearize this equation about an equi-
librium solution:

Ni(t ) = fi + δNi, (18)

Ee
i = εi +

∑
l

Kil fl , (19)

where fi = 1
exp(βEe

i )+1 . Putting Eqs. (16) and (17) into Eq. (15),
one gets

d

dt
δNi = − 1

2τ

∑
k �=i

γik

[
( fi + δNi )(1 − fk − δNk )

× fFD

(
Ee

k − Ee
i +

∑
l

(Kkl − Kil )δNl

)
− ( fk + δNk )(1 − fi − δNi )

× fFD

(
Ee

i − Ee
k +

∑
l

(Kil − Kkl )δNl

)]
, (20)

and the final linear equation using the detailed balance is

d

dt
δNi =

∑
k �=i

[
δNi

fi(1 − fi )
�ik − δNk

fk (1 − fk )
�ki

+ 1

T

∑
k �=l,i

�ik (Kkl − Kil )δNl

]
=

∑
l

AilδNl , (21)
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where we define

�ik = 1

2τ
γ (rik ) fi(1 − fk ) fFD

(
Ee

k − Ee
i

)
, (22a)

�ki = 1

2τ
γ (rki ) fk (1 − fi ) fFD

(
Ee

i − Ee
k

)
, (22b)

Aii = −
∑
k �=i

�ik

fi(1 − fi )
, (22c)

Ail = �li

fl (1 − fl )
+ 1

T

∑
k( �=l �=i)

�ik (Kkl − Kil ). (22d)

It is easy to verify that �ik = �ki. Thus, the final linear
equation has the same form as the one used by Amir et
al . [62]. Here, A is the linear dynamical matrix governing
the dynamics of the system near equilibrium and �ik are the
equilibrium transition rates. The transition rates as defined in
Eqs. (22a) and ((22b) can be written as

�ik = γ0 exp

(−ri j

ξ

)
exp

(−1

2T
[|Ei| + |Ej | + |Ei − Ej |]

)
,

(23)
when the energies |Ei|, |Ej |, and |Ei − Ej | are greater than T .

III. RESULTS AND DISCUSSION

In this paper, we study a three-dimensional cubic lattice
of localized states which have random energies and interact
through Coulomb interactions. We model this system by a
Hamiltonian as defined in Eq. (1). We take the number of
electrons to be half of the total number of sites in the lattice.
All energies are noted in units of e2/κa, where a is the lattice
constant.

A. Coulomb gap

The method

To calculate the Hartree energy (Ei) given in Eq. (19), we
have first calculated the magnetization, which, approximated
within the mean-field theory, is defined as

mi = tanh β

(
Ei +

∑
k

mk

rik

)
. (24)

The above equation was solved self-consistently for N =
4096 sites (where N = L3) and the final mi’s were then used
to calculate Ei’s using fi = (mi + 1)/2. We have annealed our
data from T = 1 to T = 0.1, and the on-site energy εi was
chosen randomly from a box distribution of width ±W/2,
where W = 1 and β = 1/T . All our calculations were per-
formed using periodic boundary conditions, and results were
obtained after averaging over 100 realizations.

It is well established now that in the CG model, a soft
gap, also called the Coulomb gap, is observed in single-
particle DOS at low temperatures. The gap gets filled as the
temperature increases. In this paper, the temperatures where
the soft gap is well established are referred to as low tem-
peratures (i.e., T = 0.1–0.2). Efros and Shklovskii [6] have
further argued that at zero temperature, the DOS follows the
relation g(E ) ≈ Ed−1 in the d-dimensional CG model. In
Fig. 1(a), one can see the formation of a soft gap in the DOS
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g(
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FIG. 1. (a) Histogram of the Hartree energies E [obtained using
Eq. (19) where εi were chosen from a box distribution of width
±W

2 with W = 1] at different temperatures, for L = 16 and μ = 0.
(b) Enlargement of low energies of the Hartree energies for T = 0.1.
The data are well approximated by g(E ) = α E 2.0, where α = 1.49 ±
0.02. Error bars are smaller than point size.

at temperature lower than 0.33. At T = 0.1 [see Fig. 1(b),
where we approximated the data by E2.0 functional form],
we found that the deviation from g(E ) ∝ E2 law is small. At
low energies 0 � E � 0.40 and allowing the power δ to be
a free parameter, we find g(E ) ∝ E δ with δ = 2.43 ± 0.05.
At finite temperatures, compared to mean-field calculations,
the more accurate Monte Carlo simulation done by Sarvestani
et al. [22] shows a slightly filled gap at the temperature T =
0.1.

B. Linear dynamical matrix

In Fig. 2, we show the distribution of the eigenvalues of a
linear dynamical matrix (A matrix) at different temperatures
and localization lengths. The eigenvalues (λ) here determine
the rate of decay in the system. With the decrease in tempera-
ture, the shifting of λ toward zero indicates a slowing down of
relaxation. We have used system size L = 16 throughout the
paper. Differences between results for the A matrix for L = 8
and L = 16 were checked and found negligible. This is ex-
pected since A-matrix properties are local for the localization
length (ξ � 1.0) considered in the present paper.
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FIG. 2. Distribution of the eigenvalues of the dynamical matrix
A obtained by solving Eq. (22) at different temperatures (T = 0.33
in blue, T = 0.20 in red, and T = 0.10 in black) for ξ = 0.2 (a) and
for ξ = 1.0 (b).

For t � λ−1
min, δn(t ) behaves as e−λmint . We now want to

look at the behavior of λmin as a function of temperature and
localization length. Note that the interaction part in the A
matrix [second term in Eq. (22d)] does not contribute much
to the eigenvalue distribution at low temperatures as shown
in Fig. 3 for all localization lengths considered. In fact, for
ξ = 1 and ξ = 0.5, the eigenvalue distributions (at low T ) are
mostly determined by the diagonal part of the A matrix. Con-
sequently, the lowest eigenvalue of the dynamical matrix A
(λmin) approximately equals the smallest value of Aii (defined
Amin

ii ). In Fig. 4, we find that Amin
ii ∝ T 3 for large ξ values. We

now propose an argument for this behavior.
Using Eq. (22c), we calculate the Aii’s and find that they

are smallest for sites around the Fermi level (Ei  μ and so
fi ≈ 0.5), which allows us to consider Eq. (22) in the form

Amin
ii = −4

∑
k �=i

�ik

= − 4
∑

r

∑
Eelectron

e−r/ξ e−β|E | F (r, E ) . (25)

Here, F (r, E ) is the probability of finding an electron or hole
having the Hartree energy E at a distance r from a site i. Since
ξ is large, the electrons will hop to a site so as to minimize
the factor (r/ξ + β|E |). This means that hops to r � 1 are
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120
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� = 1.0; T = 0.1

FIG. 3. Comparison of the eigenvalue distribution of the full A
matrix (in black) with the ones obtained after neglecting the second
term in Eq. (22b) (in red) for ξ = 0.2, 0.5, 1.0, and T = 0.1.
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FIG. 4. Lowest values of the diagonal part of A matrix for ξ =
0.5, 1.0 calculated using Eq. (22), which is averaged over 100 con-
figurations, are plotted against temperature. The solid line shows
that the data are well approximated by |Amin

ii | = aT 3, where a =
13.65 ± 0.43 at ξ = 0.5 and a = 170.88 ± 1.65 at ξ = 1.0. Error
bars are smaller than point size.
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FIG. 5. [(a)–(d)] Distribution of the Hartree energy on site k,
Ek (where k are the six nearest neighbor sites of i) at different
temperatures, when the Hartree energy on site i, Ei are chosen from
the interval [−0.1, 0.0].

possible. Equation (25) can now be estimated by

Amin
ii ∝ −4 ×

∑
r

e−r/ξ
∫ Emax

0
g(E ) e−β|E | dE , (26)

where g(E ) is the density of states (DOS) of single-particle
Hartree energies (E ). As discussed earlier, our results [see
Fig. 1(b)] shows that g(E ) ∝ E2.0. Substituting that into
Eq. (26), we get

Amin
ii ∝ T 3 . (27)

We now look at the behavior of low temperature λmin val-
ues at small localization lengths (ξ = 0.2, 0.1, 0.05). In this
case, first the Aii distribution is different from the eigenvalue
distribution, but the minimum value remains almost the same.
More importantly, one should note that the above arguments
for Amin

ii for the temperature range considered (T = 0.1–0.2)
does not work well when the localization length is very small.
Specifically, for small localization lengths, the major contri-
bution to Amin

ii comes from the nearest neighbor sites only
(i.e., r = 1). So, one has to find F (r = 1, E ), which is the
two-particle nearest neighbor DOS and insert it into Eq. (25).
In Fig. 5, we show F (r = 1, E ) at different temperatures for
0 < Ei � −0.1. Unlike the full DOS plotted in Fig. 1(a), there
is a hard gap in F (r = 1, E ) for small energy electrons at low
temperatures. This is not surprising, since if one was working
with true ground state, then there is a hard gap extending
to E ≈ 1 in F (r = 1, E ). The reason behind it is that the
ground state is stable against any single electron-hole tran-
sition, which implies Eh − Ee − 1/reh > 0. This means that
|Eh| + |Ee| > 1 for any nearest neighbor electron-hole pair.
This implies that for ξ � 1 Eq. (25) reduces to

Amin
ii ≈ −e−1/ξ

∑
j

e−�Ei j/T , (28)

where �Ei j is the energy difference between site i and its
nearest neighbors j. In Fig. 6, we have shown that Amin

ii (T )
indeed follows the above relation at small localization lengths.
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ii)
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FIG. 6. Lowest values of the diagonal part of A matrix for ξ =
0.05, 0.1, 0.2 calculated using Eq. (22), which is averaged over 100
configurations, are plotted against temperature. The solid line shows
that the data are well approximated by ln(|Amin

ii )| = a + b
T for small

ξ values, where a = −19.90 ± 0.40 and b = −0.77 ± 0.05 for ξ =
0.05, a = −9.61 ± 0.15 and b = −0.60 ± 0.02 for ξ = 0.1, and a =
−3.92 ± 0.21 and b = −0.55 ± 0.02 for ξ = 0.2.

Thus, our analysis of the matrix Aii shows that at low temper-
atures λmin obeys different scaling laws for small and large
localization lengths.

We now look at the behavior of the system for T = 0.1
at time t < 1

λmin
(λ > λmin) for different localization lengths.

When the localization length is large (ξ = 0.5, 1.0), we find
that P(λ) is almost flat. This is shown in Fig. 7. This implies
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FIG. 7. Distribution of the eigenvalues of the dynamical matrix
A obtained by solving Eq. (22), for large localization lengths at
T = 0.1.

an exponential decay for δn(t ). δn(t ) ∼ exp(−λ1t ), where λ1

is the smallest eigenvalue at which the flat region starts. For
small localization lengths (ξ = 0.05, 0.06), the variations of
P(λ) versus λ are shown in Figs. 8(a) and 8(b). For ξ = 0.05,
one sees sharp peaks at ln(λ) = −20 and −19.3. Since ξ is
small, the relaxation is dominated by the nearest neighbor
hopping. For all sites for which k �= 0 nearest neighbor hops
with a decrease in energy are available, Aii is given by

Aii = k exp

(
− 1

ξ

)
, (29)

For ξ = 0.05 we find Aii = exp(−20) for k = 1 and Aii =
exp(−19.3) for k = 2, which correspond to the peaks at
ln(λ) = −20 and −19.3 respectively in Fig. 8(a). Similar
behavior was seen at ξ = 0.06 as shown in Fig. 8(b). So at
short times, δn(t ) will decay according to

∑
p e−λpt , where λp

correspond to eigenvalues at which P(λ) has peaks.
When nearest neighbor hops, which lead to a decrease in

energy (�E � 0) are not possible, one would get a transition
to nearest neighbor site with �E > 0. In this case, Aii can be
written as

Aii =
∑

j

e−ri j/ξ e−�E/T . (30)

FIG. 8. [(a), (b)] Log-log plot of the distribution of the eigen-
values of the dynamical matrix A obtained by solving Eq. (22), for
small localization lengths at T = 0.1. [(c), (d)] For a certain range
of λ (see text), ln(P(λ)) vs ln(λ) can be approximated by f (x) =
ax + b. For ξ = 0.05, a = −0.93 ± 0.01 and b = −1.51 ± 0.26, and
a = −0.92 ± 0.01 and b = −1.47 ± 0.28 for ξ = 0.06.

For the λ range considered in Figs. 8(c) and 8(d), we find that
Aii ∼ λ. So, using Eq. (30),

P(λ) =
∫ �Emax

�Emin

δ(λ − ce−�E/T ) P(�E ) d (�E ), (31)

where c = e−1/ξ , �Emin ≈ 2T , and �Emax ≈ 5T . Approx-
imating P(�E ) (for �Emin < �E < �Emax) by a uniform
distribution, one gets

P(λ) ∼ 1

λ
. (32)

In Figs. 8(c) and 8(d), we plot P(λ) versus λ for the regime
where nearest neighbor activated hopping takes place. In this
regime, we find P(λ) ∼ 1/λ. This leads to logarithmic tem-
poral dependence of the relaxation for intermediate times.
Recently, a crossover from logarithmic time dependence to an
exponential dependence was shown in a nonequilibrium study
[57] of excess conduction �G(t ) in disordered indium oxide.
In this, it was shown that as one approaches metal-insulator
transition from the insulating side, the crossover time becomes
smaller. This implies that as the disorder in the system de-
creases and localization length increases, the crossover time
to exponential decay decreases. Since Amin

ii is equal to λmin,
Eq. (28) shows that the λmin increases as localization length
increases. This implies that τmax = 1/λmin will decrease as the
localization length increases and crossover from the logarith-
mic behavior to exponential decay happens faster.

At intermediate localization lengths (ξ = 0.1, 0.2), one
sees that for large λ’s there are peaks corresponding to next
nearest neighbor hops with decrease in energy. For λ = −15 to
−13 at ξ = 0.1 and λ = −9 to −7 at ξ = 0.2, ln(P(λ)) versus
ln(λ) is well approximated by a linear function but the slope is
not equal to −1. The reason is that for intermediate ξ ’s there
is contribution to λ from next nearest neighbor hops as well as
nearest neighbor hops. In Figs. 9(b) and 9(e), we have plotted
P(λ) versus λ for these regions. We get P(λ) = a + b/λ with
value of a � b for both ξ = 0.1 and ξ = 0.2. This form of
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FIG. 9. [(a), (d)] Log-log plot of the distribution of the eigenvalues of the dynamical matrix A obtained by solving Eq. (22) for intermediate
localization lengths at T = 0.1. [(b), (e)]P(λ) at intermediate times is well approximated by a + b

λ
, where a = 19946.20 ± 0.22 and b =

0.01 ± 0.0 for ξ = 0.1 and a = 38.90 ± 0.43 and b = 0.01 ± 0.0 for ξ = 0.2. [(c), (f)] Log-log plot of P(λ) after subtraction of background
constant contribution. b = −4.03 ± 0.02 and −4.43 ± 0.01 for ξ = 0.1 and ξ = 0.2 respectively.

P(λ) implies relaxation behavior of the form a e−λ1t + b ln(t ),
where λ1 is the minimum value of λ for the range under con-
sideration. Since a � b, it is quite possible that exponential
decay will overshadow the logarithmic decay in relaxation of
δn(t ).

IV. SUMMARY

We consider here the relaxation properties of the three-
dimensional Coulomb glass lattice model in which all the
electron states are localized and the dynamics occur through
phonon-assisted hopping among these states. The master
equation governing the dynamics of the system is approxi-
mated via mean-field theory.

The relaxation law for a range of localization lengths is
studied here. The dependence of the relaxation on the local-
ization length can be summarized as follows:

(i) For small localization length ξ � 1, near-neighbor
hopping is strongly dominant. This results in P(λ) ∼ 1/λ dis-
tribution for small λ’s, which leads to a logarithmic temporal
dependence of the relaxation at intermediate times.

(ii) For intermediate ξ values (0.1,0.2), next nearest neigh-
bor contribution also becomes important in relaxation. We
find that the relaxation is not purely logarithmic at interme-
diate times [P(λ) ∝ a + b/λ, a � b].

(iii) For larger values (ξ = 0.5 and larger), the system
relaxes by performing hops to all distances, and no 1/λ

distribution is seen, consequently no logarithmic temporal
dependence.

Finally, we looked at relaxation for times t � λ−1
min. We

have found that although the full eigenvalue distribution is
not much affected by the Coulomb interaction term in the
linear dynamical matrix, one can gain a better understanding
of the behavior of low-temperature dynamics by looking at
the role of the gap in the density of states in the decay process

and the range of hopping. The gap in the density of states
exists due to the long-range nature of Coulomb interactions
and so the interactions play an important role in the relaxation
process. For small localization lengths, one finds that the
λmin ∝ e−c/T , where c is a constant. This implies that time at
which exponential decay starts increases exponentially with a
decrease in temperature. This may explain why the transition
from logarithmic decay to exponential decay is not seen in
most experiments.

Recently, a nonequilibrium study [57] of excess conduction
�G(t ) in disordered indium oxide showed a crossover from
logarithmic time dependence to an exponential dependence.
The crossover time became smaller as the metal-insulator
transition was approached from the insulating side. This im-
plies that as the disorder in the system decreases and localiza-
tion length increases the crossover time to exponential decay
decreases. In our formalism, the crossover time is 1/λmin,
which also decreases with an increase in localization length.

Further work is required to establish results in the case
where the distance between sites is a continuous variable and
not a discrete value (as was the case in the present work).
Extension of this work to variable range hopping problem will
be considered elsewhere.
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