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Inertial effects on the Brownian gyrator
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The recent interest into the Brownian gyrator has been confined chiefly to the analysis of Brownian dynamics
both in theory and experiment despite the applicability of general cases with definite mass. Considering mass
explicitly in the solution of the Fokker–Planck equation and Langevin dynamics simulations, we investigate
how inertia can change the dynamics and energetics of the Brownian gyrator. In the Langevin model, the inertia
reduces the nonequilibrium effects by diminishing the declination of the probability density function and the
mean of a specific angular momentum, jθ , as a measure of rotation. Another unique feature of the Langevin
description is that rotation is maximized at a particular anisotropy while the stability of the rotation is minimized
at a particular anisotropy or mass. Our results suggest that the Langevin dynamics description of the Brownian
gyrator is intrinsically different from that with Brownian dynamics. In addition, jθ is proven to be essential
and convenient for estimating stochastic energetics such as heat currents and entropy production even in the
underdamped regime.
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I. INTRODUCTION

On account of its simplicity and efficiency, Brownian
dynamics has been adopted in a series of recent studies to de-
scribe biological systems such as chromosomes [1], primary
cilia [2,3], membrane fluctuations [4,5], and actin-myosin net-
works [6–8]. In many cases, characteristic directed currents
in configuration space reveal the violation of detailed balance
originating from thermal nonequilibrium (see the rotational
probability currents in steady state in Refs. [3,9,10]). Studies
of such biological nonequilibrium systems through Brownian
dynamics have expanded our understanding of fluctuation-
dissipation theorem [11–13], fluctuation theorems [14–17],
and the thermodynamic uncertainty relation [18–22].

The choice of Brownian dynamics may be appropriate in
describing such systems because it reduces simulation cost
when long-time configurational dynamics are the main in-
terest and short-time movements do not change the results
significantly. However, the development of the related theory
and experiments is moving our concern to faster motions that
could result in crucial differences. Observation of short-time
dynamics have become available at greater time resolutions
so that we are able to examine a number of theoretical re-
sults based on Langevin dynamics, where the memory effect
caused by the inertia of a particle is relevant [23–26]. More-
over, systems in low-density environments (e.g., rarefied gas
[23]) or at large scales such as flocks of birds [27], schools
of fish [28], vibrobots [29], and various mesoscale organisms
[30–32] should be addressed by Langevin dynamics including
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the inertial term to more realistically catch their character-
istics. Normally, Langevin dynamics correspond to larger
masses, lower frictions, and shorter time scales compared to
Brownian dynamics.

Though Brownian dynamics is an overdamped limit of
Langevin dynamics, neglecting the inertial term is not always
successful even in longer time scales. There have been re-
ports that the overdamped approximation fails in a spatially
inhomogeneous temperature field [33,34] or in the presence
of a magnetic field [35–38]. While studies to explain the
inertial effects have shown that inertia qualitatively changes
the system dynamics of a motility-induced phase separation
[39] as well as the dynamical states and translational motion
of a self-propelled particle [40–44], the effects of inertia on
rotational motion and system energetics have been less con-
sidered; thus, how inertia affects the dynamics and energetics
of a wider range of nonequilibrium systems, including the
Brownian gyrator, still remains unclear.

In this paper, we investigate inertial effects on the dynam-
ics and energetics of the Brownian gyrator [45], which is a
two-dimensional (2D) model treating the rotational motion
of a particle in contact with two different heat baths and in
an anisotropic harmonic potential. This model is widely used
not only because it is exactly solvable but also because it
can be interpreted as a bead-spring model of an internally
driven assembly in biological systems [3,46,47]. However,
the absence of the inertial term in Brownian dynamics bears
some critical limitations. First, even though the concept of
the Brownian gyrator has been realized (as the overdamped
limit) in recent experiments with stochastic electronic and
colloidal systems [48–52], it is still possible to further de-
velop the idea to more general experiments where the particle
has considerable mass. In that case, there is lack of research
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FIG. 1. (a) Schematic diagram of a Brownian gyrator with an an-
gular current x × jx(x) (colored contour). An anisotropic harmonic
potential U (x) is shown as gray contour lines, and the black line
indicates a numerically generated trajectory of the particle. (b) Top
and bottom panels show angular current contributions of the drift
and diffusion currents, respectively. By adding these two currents,
the particle undergoes a rotational motion in a 2D plane. A positive
angular current represents clockwise rotation, and the small arrows
indicate the local directions of the averaged currents. A color-bar of
colored contours is given in the top panel. The parameters are fixed
as k = 3/2, u = 1/2, T1 = 5, T2 = 1, and γ = 1.

with which to compare the results. Regarding the rotational
motion of a particle in nonequilibrium steady state (NESS),
a curl of probability currents and a cycling frequency of the
Brownian gyrator has been studied [53–56], but most related
reports have not considered particle inertia. In this respect,
including the inertial term, i.e., adopting Langevin dynamics,
will be beneficial for clarifying the actual rotational motion of
a particle in NESS. Our results here reveal that consideration
of inertia remarkably changes the probability density of the
particle and its rotational motion. Further, we derive the rela-
tion between the energetics and the rotational motion in the
underdamped regime and show that energetic quantities can
be inferred from dynamical properties.

This paper is organized as follows. Section II introduces
the Brownian gyrator and its nonequilibrium features through
Brownian dynamics, which we call the overdamped model.
Section III describes how the inertial term in Langevin dy-
namics changes the system dynamics mainly concerning the

rotational motion, which we call the inertial model. Section IV
clarifies how the stochastic energetics relates to rotational
motion in the underdamped regime.

II. OVERDAMPED MODEL

Tilted PDF and rotational motion

In the overdamped model, we consider a particle moving
in a 2D plane with the position x ≡ (x1, x2)T and neglect the
inertial term. The particle undergoes an anisotropic harmonic

potential, U (x) = 1
2 xT · U · x, where U = (

k u
u k

) with u < k,

and it contacts with two different heat baths at temperature T1

and T2 (< T1); see Fig. 1(a). Then, the Langevin equation for
this model can be written as

γ ẋ(t ) = −∇xU [x(t )] + ξ(t ), (1)

where γ is the Stokes friction coefficient and ξ ≡ (ξ1, ξ2)T is a
Gaussian white noise satisfying 〈ξi(t )〉 = 0 and 〈ξi(t )ξ j (t ′)〉 =
2γ Tiδi jδ(t − t ′). The angle bracket 〈·〉 stands for the ensemble
average. We set Boltzmann’s constant kB = 1 and all param-
eters are dimensionless. The anisotropic potential and the
different heat baths may be equivalently thought of as a simple
shear flow [57] and an additional Gaussian white noise in one
direction [50].

To obtain the probability density function (PDF) and the
probability current, we consider the associated Fokker–Planck
equation given by

∂ p(x, t )

∂t
= −∇x · jx(x, t ), (2)

where the probability current jx(x, t ) is defined by

jx(x, t ) = −
[

1

γ
∇xU (x) + D · ∇x

]
p(x, t ). (3)

Here, the diffusion matrix is given as D ≡ 1
γ

(T1 0
0 T2

). The first
term on the right-hand side of Eq. (3) is the drift current
determined by potential U (x), and the second term is the
diffusion current of the system [58].

We calculate the steady-state PDF p(x) using the method
in Appendix A. The covariance matrix in the steady-state Cxx

for x defined as 〈xxT 〉 is given by

Cxx = 1

2k(k2 − u2)

(
2T1k2 + (T2 − T1)u2 −(T1 + T2)ku

−(T1 + T2)ku 2T2k2 + (T1 − T2)u2

)
, (4)

and p(x) is

p(x) = 1

2π
√

det Cxx
exp

(
−1

2
xT · C−1

xx · x
)

. (5)

Inserting p(x) into Eq. (3), we can easily obtain the proba-
bility current jx(x). When T1 �= T2 and u �= 0, jx(x) has a
nonzero value, which implies that the system is in NESS.
The rotational property of jx(x) is represented as an angular
current, denoted as x × jx(x) in Fig. 1(a), where x × jx(x) ≡

x1 jx,2(x) − x2 jx,1(x). This current can be divided into drift and
diffusion parts as seen in Fig. 1(b); hence, we demonstrate
that the resulting rotational motion arises from the combined
effects of these two angular currents.

One of the features of NESS is a tilted PDF compared to the
equilibrium state whose shape is determined by a potential.
For example, when our system is in equilibrium (T1 = T2 =
T ), the inverse of the covariance matrix is given by C−1

xx =
1
T U. In this case, the principal axes of the PDF and the aspect
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FIG. 2. (a) Positional PDFs p(x) with mass m = 0, 5, and 50 from left to right. A harmonic potential U (x) is shown as gray contour lines
and the PDFs are plotted as colored contours. Here, the principal axes of the PDFs and potential U (x) are indicated by black arrows and white
dotted lines, respectively. (b) Analytical results of the slope of the minor principal axis (tan φ) and the aspect ratio of the variances along
the principal axes (σ1/σ2) of the PDF as a function of mass m. Dotted lines indicate the asymptotic lines in the limit of m → ∞. The other
parameters are fixed as k = 3/2, u = 1/2, T1 = 5, T2 = 1, and γ = 1.

ratio of the variances along the principal axes (σ1/σ2) coincide
with the values of potential U. However, in NESS, the PDF
is tilted to a higher temperature axis (i.e., x1 axis) compared
to the equilibrium state, as shown in Fig. 2(a), and thus the
PDF cannot fully cover the potential. In other words, the prin-
cipal axes of C−1

xx do not coincide with the principal axes of
U in NESS.

The NESS is characterized by a nonzero probability cur-
rent that rotates around the center. To quantify this rotational
motion, we set the specific angular momentum as jθ (x, t ) ≡
x(t ) × ν(x, t ), where the mean local velocity conditioned
on x is ν(x, t ) ≡ 〈ẋ|x, t〉 = jx(x, t )/p(x, t ) [17]. This term,
jθ (x, t ), is related to the stochastic area tensor [49,52] as well
as the probability angular momentum [59], which have been
proposed as measures of the violation of detailed balance. The
mean of specific angular momentum 〈 jθ 〉ss can be evaluated as

〈 jθ 〉ss = 〈x × ν(x, t )〉ss = u

kγ
(T2 − T1), (6)

where 〈·〉ss denotes the ensemble average in the steady state. In
Eq. (6), 〈 jθ 〉ss is proportional to u(T2 − T1), which means that
the rotational motion is caused by two effects: temperature
difference and anisotropy of the potential. Since the rotational
motion of a particle reflects that the system is in NESS, we
can confirm that two different temperatures and an anisotropy
of potential are the sources of the nonequilibrium state.

III. INERTIAL MODEL

A. Steady-state PDF: Approaching equilibrium

To investigate the effects of inertia on a particle in NESS,
we consider the Brownian gyrator in an underdamped regime,
called the inertial model. The Langevin equation of a particle
of mass m is given by

ẋ(t ) = v(t ),

mv̇(t ) = −∇xU [x(t )] − γ v(t ) + ξ(t ),
(7)

where the velocity v ≡ (v1, v2)T . The PDF p(x, v, t ) in the
inertial model satisfies the Fokker–Planck equation associated

with Eq. (7) written as

∂ p(x, v, t )

∂t
= −∇x · jx(x, v, t ) − ∇v · jv (x, v, t ), (8)

where the probability currents are given as

jx(x, v, t ) = vp(x, v, t ),

jv (x, v, t ) = −
(

1

m
U · x + 1

m
Γ · v + D · ∇v

)
p(x, v, t ).

(9)

Here, Γ ≡ (γ 0
0 γ ) and D ≡ γ

m2 (T1 0
0 T2

) are 2 × 2 matrices
related to the dissipation due to friction and the diffusion,
respectively. The steady-state PDF p(z) is obtained as

p(z) = 1

2π
√

det C
exp

(
−1

2
zT · C−1 · z

)
, (10)

where the state vector z ≡ (x1, x2, v1, v2)T and the covariance
matrix C ≡ 〈zzT 〉ss. The complete expression of C is given in
Appendix A.

Integrating the PDF of Eq. (10) over v, the change of
positional PDF with m is illustrated in Fig. 2(a). Compared
with the overdamped model (leftmost), the PDF with inertia
is less tilted, and its elliptical shape becomes more circular as
m increases. To quantify this asymptotic behavior of the PDF,
we take two measures: the slope of the minor principal axis of
the PDF (tan φ) and the aspect ratio of the variances along the
principal axes (σ1/σ2). In evaluating tan φ, φ is the tilt angle
between the minor principal axis and the x1 axis, as shown
in Fig. 2(b). The variances along the principal axes denoted
as σ1 and σ2 (> σ1) are obtained by the eigenvalues of the
covariance matrix of x.

Figure 2(b) plots the analytical results of the tan φ and
σ1/σ2 measures as a function of m. They converge to 1 and
(k − u)/(k + u) in the limit of m → ∞, respectively, where
the convergent values are equal to the values of potential U.
From the fact that the tilted PDF is one piece of evidence
for the NESS, these reflect that the system approaches equi-
librium from the NESS as the inertia becomes significant.
This result is not surprising because the diffusion matrix D
is inversely proportional to m2, and hence the diffusion ef-
fects caused by the temperature difference are also diminished
with m.
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B. Specific angular momentum and its fluctuation:
Nonmonotonic behaviors

In the inertial model, the specific angular momentum is
defined as jθ (x, v, t ) ≡ x(t ) × v(t ). The mean, 〈 jθ 〉ss, can be
obtained using the covariance between x and v in C, but it
is also possible using the relation with a systematic torque M
which the particle exerts on the potential as

〈 jθ 〉ss = − 1

γ
M, (11)

where M ≡ 〈x × ∇xU (x)〉ss [45]. This relation has been
shown in the overdamped system in Ref. [46], but a proof with
inertia has been absent. We derive this relation in the inertial
model in Appendix B. Using Eq. (11), 〈 jθ 〉ss in the inertial
model is obtained as

〈 jθ 〉ss = − 1

γ
M = u

γ

〈
x2

2 − x2
1

〉
ss = γ u(T2 − T1)

kγ 2 + u2m
. (12)

Here, 〈 jθ 〉ss is determined by the difference between the two
variances, i.e., how much the positional PDF is tilted. Thus,
the tilted PDF and the rotational motion of the particle are
not separate but highly related phenomena. This relation gives
us not only a simpler calculation but an important feature
for measuring 〈 jθ 〉ss. In the underdamped regime, measur-
ing the velocity field is necessary for a full description of
the Langevin dynamics. Nevertheless, 〈 jθ 〉ss can be estimated
by experimentally given quantities and measurements of the
variances of displacements from a positional trajectory of a
particle without knowledge of the velocity field.

We take into account two parameters, m and u, to describe
how and to what extent the system dynamics are changed
with the inertial term since u is a controllable parameter in
experiments and has a crucial role in keeping the NESS in our
system. Figure 3(a) represents 〈 jθ 〉ss and M as functions of m
and shows that they vanish as m increases, similarly with the
tilted PDF. The vanishing behavior of 〈 jθ 〉ss has been revealed
in the form of a decreasing cycling frequency with increasing
m in Ref. [55]. This result can be intuitively understood by
considering the ensemble-averaged moment of inertia of the
particle, Iθ , which is derived as

Iθ ≡ m
〈
x2

1 + x2
2

〉
ss = m

k(T1 + T2)

k2 − u2
. (13)

Iθ is directly proportional to m as expected; accordingly, find-
ing the rotational motion is more difficult for large m. The
interesting point is that, in this case, the dependence of 〈 jθ 〉ss

on u is qualitatively changed from the overdamped model as
follows: |〈 jθ 〉ss| in the overdamped model has a monotonic
dependence on u, whereas |〈 jθ 〉ss| with finite inertia is max-
imized at a specific value of u and becomes smaller as u
approaches k, as shown in Fig. 3(b). For m = 0, how strongly
the two different heat baths are coupled only determines the
magnitude of the rotational motion, and thus the monotonic
dependence on u is natural. However, when we consider the
inertial term, Iθ is more significant at high u because of the
large radial variance 〈x2

1 + x2
2〉ss, and this makes the rotational

motion difficult to perform. As the combined effects of the two
coupled heat baths and Iθ , 〈 jθ 〉ss of the inertial model shows a
nonmonotonic behavior with u in contrast to the overdamped
model.

(a)

(b)

FIG. 3. (a) Systematic torque M (upper) and the mean of specific
angular momentum 〈 jθ 〉ss (lower) as a function of mass m with u =
1/2. Both vanish in the limit m → ∞. (b) |〈 jθ 〉ss| as a function of
u. In both figures, solid (dotted) lines represent the analytical results
of the inertial model with m = 5 (the overdamped model). Squares
represent Langevin simulation results. The parameters are fixed as
k = 3/2, T1 = 5, T2 = 1, and γ = 1.

As the next step to grasp how inertia affects the stochastic
dynamics of rotational motion, we consider the fluctuation of
jθ (t ), which is defined as

Dθ ≡ lim
t→∞

t

2
(〈 jθ (t )2〉 − 〈 jθ (t )〉2). (14)

The fluctuation with finite inertia, denoted by Dθ , can be
explicitly derived as

Dθ = Dth
θ + Dneq

θ , (15)

where

Dth
θ = 2γ T1T2

kγ 2 + u2m
,

Dneq
θ = γ u2(γ 4 + u2m2 + 5kγ 2m)

2(kγ 2 + u2m)3
(T1 − T2)2.

(16)

To simplify the expressions, Dθ,0 denotes the fluctuation in the
overdamped model, which is given by

Dθ,0 = 2T1T2

kγ
+ u2(T1 − T2)2

2k3γ
. (17)

The detailed method is written in Appendix C. We divided Dθ

into two terms, Dth
θ and Dneq

θ . Here, Dth
θ is strictly positive in

any condition, but Dneq
θ appears only in a nonequilibrium state

(T1 �= T2 and u �= 0).
As can be seen in Fig. 4(a), Dθ has an obviously different

curve from Dθ,0 along u; while Dθ,0 monotonically increases
with u, Dθ decreases as u approaches k. This difference comes
from the fact that Iθ becomes large as u approaches k so that
the variance of the rotational motion should be small at large
u. The remarkable point is that Dθ is maximized at a nonzero
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(a) (b)

(c) (d)

Region II

Region I

FIG. 4. (a) Fluctuation of specific angular momentum Dθ with
m = 5 (solid) and Dθ,0 (dashed) as functions of u. T1 = 5 (red upper
line) and 2 (blue lower line). (b) Top, bottom: Dθ,u and u∗ as a
function of χ ≡ T1/T2 with m = 5, respectively. The dashed dotted
line in the bottom panel indicates the limit of u∗. (c) Dθ as a function
of mass m with u = 1/3 and T1 = 1–5 from blue (lower) to red
(upper). (d) Contour plot of Dθ,m for 0 < u/k < 1 and χ > 1. Region
I (II) indicates where Dθ is maximized at m = 0 (the nonzero m∗).
In the figure, lines and squares represent analytical and Langevin
simulation results, respectively. The other parameters are fixed as
T2 = 1, k = 3/2, and γ = 1.

u∗, which means the stability of rotation is minimized at this
specific u.

Furthermore, in a certain range of u, Dθ exceeds Dθ,0 under
a specific condition, that is χ > χc, where χ ≡ T2/T1 (>1)
and the critical temperature ratio is denoted by χc. To obtain
the analytical expression of χc, we expand Dθ as

Dθ = Dθ,0 + Dθ,uu2 + O(u4), (18)

where

Dθ,u = 5(T1 − T2)2 − 4T1T2

2k2γ 3
m. (19)

When Dθ,u is positive, Dθ increases more rapidly than Dθ,0

near u = 0. Thus, χc is obtained as

χc = 7 + 2
√

6

5
. (20)

Figure 4(b) plots Dθ,u (top) and u∗ (bottom) as a function of χ .
Note that the minimum value of χ for nonzero u∗ is denoted
by χ∗

u , which is less than χc. Actually, χc is the upper bound
of χ∗

u , where

χ∗
u = 1 + 2

(
1 +

√
6 + γ 2/km

)
5 + γ 2/km

. (21)

Here, χ∗
u has a value in the range (1, χc) according to the

value of γ 2/km. Thus, Dθ is maximized at the nonzero u∗ and

exceeds Dθ,0 for χ > χc at the same time. The dashed dotted
line in the bottom panel of Fig. 4(b) indicates the limit of u∗
given by

u∗ <
γ

m

√√
γ 4 + 9kγ 2m + 21k2m2 − 4km − γ 2. (22)

If the limit from Eq. (22) is larger than k, then u∗ < k due to
the existence condition for steady state (see Appendix A).

A similar behavior is also observed along m, as can be
seen in Fig. 4(c). Dθ is maximized not at m = 0 but at an
optimal mass m∗ under a specific condition, which means the
stability of rotation can be minimized at this specific mass. To
obtain the condition for the nonzero m∗, we expand Dθ near
m = 0 as

Dθ = Dθ,0 + Dθ,mm + O(m2), (23)

where

Dθ,m = [(5k2 − 3u2)(T1 − T2)2 − 4k2T1T2]u2

2k4γ 3
. (24)

Since Dθ,m should be positive for the nonzero m∗, Dθ can be
separated into two regions, as illustrated in Fig. 4(d), where
Dθ,m has a negative (positive) value in region I (II) and thus
Dθ decreases (increases) as m increases. Intriguingly, Eq. (23)
matches Eq. (18) for u2 � k2, i.e., Dθ,mm � Dθ,uu2. This
correspondence leads to similar nonmonotonic behaviors of
Dθ along u and m as well as reveals the condition χc at the
boundary of regions I and II, as indicated in Fig. 4(d).

While we analytically showed that Dθ has increasing parts
with u and m under specific conditions, it is not easy to clarify
what induces these behaviors through the expression of Dθ

alone. To explain the origin of the nonmonotonic curves, we
divide Dθ into four terms as

Dθ � lim
t→∞

t

2
[Cov(r4, ω2) + 〈ω〉2

ssVar(r2)

+ 〈r2〉2
ssVar(ω) + Cθ ], (25)

where the cycling frequency is defined as ω ≡ (x × v)/r2,
Cov(r4, ω2) ≡ 〈r4ω2〉ss − 〈r4〉ss〈ω2〉ss, and Cθ ≡ 〈r2〉2

ss〈ω〉2
ss −

〈r2ω〉2
ss. Here, we neglect Var(r2)Var(ω). Because only Cθ

is calculable and determined independent of time, we mea-
sure the other terms by Langevin simulations with time step
�t = 10−3 and total simulation time t = 103. Figure 5 depicts
the Langevin simulation results for 〈ω〉2

ssVar(r2), Cov(r4, ω2),
〈r2〉2

ssVar(ω), and Cθ . Although the magnitudes of Cov(r4, ω2)
and Cθ are much larger than the others, we should consider all
terms since the true behavior of Dθ will not be revealed if we
neglect any of the terms.

Let us first discuss Dθ in terms of u. The divergence of
〈r2〉ss in the limit of u → k results in large magnitudes of
all terms as u approaches k, as shown in Figs. 5(a)–5(d).
This increase at large u is a common property between the
inertial and overdamped models. The main discrepancy be-
tween the two models, though, is that there are local optimum
points at specific u caused by 〈ω〉ss. Since the inertia of the
particle shifts the peak of 〈ω〉ss to lower u (see Fig. 7 in
Appendix B), we find curved shapes of 〈ω〉2

ssVar(r2),
Cov(r4, ω2), and Cθ . We note that 〈r2〉ss is proportional to
T1 + T2 whereas 〈ω〉ss increases with |T1 − T2|. Therefore,
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 5. Langevin simulation results of four terms, 〈ω〉2
ssVar(r2), Cov(r4, ω2), 〈r2〉2

ssVar(ω), and Cθ , with �t = 10−3 and t = 103. (a–d) The
four terms as a function of u with T1 = 6 and m = 0 (gray triangles) or m = 10 (black squares). Right (left) tick marks indicate the value for
m = 0 (m = 10). (e–h) The four terms as a function of m with u = 1/2 and T1 = 2–12 from blue (lower) to red (upper). Dashed (solid) lines
are simulation (analytical) results and eye guides. The other parameters are fixed as k = 3/2, T2 = 1, and γ = 1.

when |T1 − T2| is not sufficiently large, the curved shapes do
not appear and the crossover between 〈r2〉ss and 〈ω〉ss leads to
the nontrivial behavior of Dθ with u, as indicated in Fig. 4(a).

It is more complicated to describe the behavior of Dθ in
terms of m since Dθ is determined by the joint effects of
several factors. As 〈ω〉ss and Var(ω) become smaller with m,
〈r2〉2

ssVar(ω) and Cθ monotonically decrease with m, as shown
in Figs. 5(g) and 5(h). In the case of 〈ω〉2

ssVar(r2), Iθ has a
role to resist changes in rotational motion, and this induces
an increase of radial variance Var(r2) with m [40]. Thus,
〈ω〉2

ssVar(r2) has a curved shape as illustrated in Fig. 5(e).
Cov(r4, ω2) has a negative value due to the elliptical shape of
the rotational motion (Figs. 1 and 2), but because the elliptical
shape becomes circular and the magnitude of 〈 jθ 〉ss decreases
with increasing m, the magnitude of Cov(r4, ω2) approaches
zero (i.e., increases), as shown in Fig. 5(f). Therefore, we can
conclude that the increases of Var(r2) and Cov(r4, ω2) along
with the decrease of 〈ω〉ss together produce the nontrivial
curves of Dθ with m.

IV. STOCHASTIC ENERGETICS: RELATION TO SPECIFIC
ANGULAR MOMENTUM

To this point we have focused on how inertia affects the
system dynamics of a Brownian gyrator, i.e., a tilted PDF
and a specific angular momentum. In the present section, we
analytically calculate energetic quantities and show that the
system dynamics is highly related to the system energetics.
Using this relation, it is possible to infer the behavior of
energetic quantities through accessible variables in an under-
damped regime. In models with multiple heat baths, such as
a Brownian gyrator, estimations of the energetic quantities
using the stochastic area tensor [52] and the cycling frequency
[46] have been reported, but they are restricted to the over-
damped regime. Therefore, we extend the previous studies
to the underdamped regime and additionally calculate the
fluctuations of the energetic quantities in this section.

To calculate the mean current of the absorbed heat, let d̄Qi

denote the absorbed heat from the environment along xi over

time interval dt . Then the absorbed heat is written as

d̄Qi = [−γ vi(t ) + ξi(t )] ◦ dxi(t ), (26)

where dxi(t ) is the evolution of xi(t ) over dt and ◦ denotes the
Stratonovich product [60]. Using the Langevin equation with
finite inertia [Eq. (7)], d̄Qi can be expressed in different ways
such as d̄Qi = [mv̇i(t ) + ∇xiU (x)] ◦ dxi(t ). Thus, we obtain
the absorbed heat d̄Qi as follows [61]:

d̄Q1 = d

(
1

2
mv2

1 + 1

2
kx2

1 + 1

2
ux1x2

)

− u

2
(x1v2 − x2v1)dt,

d̄Q2 = d

(
1

2
mv2

2 + 1

2
kx2

2 + 1

2
ux1x2

)

+ u

2
(x1v2 − x2v1)dt . (27)

Since the change of internal energy defined as dE = d̄Q1 +
d̄Q2 = d (mv2/2 + U (x)) cannot affect the steady-state aver-
age, the mean heat currents in the steady state are given by

〈Q̇2〉ss = u

2
〈x1v2 − x2v1〉ss

= u

2
〈 jθ 〉ss = γ u2(T2 − T1)

2(kγ 2 + u2m)
, (28)

where 〈Q̇2〉ss = −〈Q̇1〉ss, which reflects the energy conserva-
tion law; more specifically, the energy absorbed from the hot
bath is equally dissipated to the cold bath. In our system,
〈Q̇1〉ss is positive due to T1 > T2. Additionally, the exchanged
heat between the two heat baths is proportional to 〈 jθ 〉ss and
vanishes at u = 0. These tendencies imply that an anisotropic
potential connects the two different heat baths and converts
the rotational motion of the particle to heat that is exchanged
between the baths. This exchanged heat increases the total
entropy production, which is defined by the sum of the system
and medium entropy productions. The total production rate in
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the steady state 〈Ṡ〉ss is obtained by

〈Ṡ〉ss = −〈Q̇1〉ss

T1
− 〈Q̇2〉ss

T2

=
(

1

T1
− 1

T2

)
u

2
〈 jθ 〉ss = γ u2(T2 − T1)2

2T1T2(kγ 2 + u2m)
. (29)

Because the system entropy production rate vanishes in steady
state, 〈Ṡ〉ss coincides with the medium entropy production
rate, 〈Ṡm〉ss. Total entropy production can be used to quantify
the violation of detailed balance and has a positive value in
a NESS. Here, 〈Ṡ〉ss � 0 and the equality is satisfied when
u = 0 or T1 = T2, that is the condition for the NESS of our
system. As shown in Eqs. (28) and (29), 〈Q̇i〉ss and 〈Ṡ〉ss

are proportional to 〈 jθ 〉ss. Note that we only need the vari-
ances of the positional trajectory of the particle to measure
〈 jθ 〉ss. Therefore, the system energetics can be easily obtained
from only the positional trajectories without observing the
velocity fields.

Next, let us evaluate the fluctuations of the energetic
quantities, which is necessary to understand the stochastic
properties of the energetics or to design a reliable heat engine.
Fluctuation of absorbed heat DQi is defined as

DQ = DQ1 = DQ2 = lim
t→∞

t

2
(〈Q̇1(2)(t )2〉 − 〈Q̇1(2)(t )〉2). (30)

As indicated in the equation, DQ1 and DQ2 are the same since
the absorbed heats are symmetrically coupled by u. The rela-
tion between DQ and Dθ can be obtained as

DQ = u2

4
Dθ . (31)

The detailed calculation is written in Appendix C. In the same
way, fluctuation of the medium entropy production DSm is
given by

DSm =
(

1

T1
− 1

T2

)2 u2

4
Dθ . (32)

Thus, DQ and DSm are also proportional to Dθ , similar to the
result with the mean currents.

According to Eqs. (28), (29), (31), and (32), we know that
the mean current and the fluctuations of heat and medium
entropy production have the same curves as 〈 jθ 〉ss and Dθ as a
function of m: 〈Q̇1〉ss and 〈Ṡ〉ss become smaller with increasing
m, and DQ and DSm are maximized at m∗ and exceed the
overdamped ones in region II as depicted in Fig. 4(d). Despite
these similarities not only with m but also other parameters,
only the dependence on u differs, as shown in Figs. 6(a) and
6(b). 〈Q̇1〉ss and DQ are not typically maximized at moder-
ate u, while their magnitudes increase with u in contrast to
Dθ . Nonetheless, some important features still remain. First,
|〈Q̇1〉ss| is sufficiently smaller than the value from m = 0,
∂DQ/∂u decreases as u increases, and most interestingly, DQ

exceeds the fluctuation of the overdamped model at the same
condition as Dθ , which is χ > χc.

Although we do not consider external force in this paper
to simplify the situation, we can extend our result to a system
with applied external force. To extract work from the Brow-
nian gyrator, we must exert an external force in the opposite
direction of the rotation of the particle. When we choose a

(a)

(b)

FIG. 6. (a) Mean heat current 〈Q̇1〉ss as a function of u. 〈Q̇1〉ss is
plotted for m = 0–10 with T1 = 5. The solid gray lines darken as m
increases. (b) Fluctuation of heat DQ as a function of u. DQ is drawn
with T1 = 2, 4, 6, and 8 from blue (lower) to red (upper) with m = 5.
Solid and dashed lines represent the inertial and overdamped models,
respectively. The other parameters are fixed as T2 = 1, k = 3/2,
and γ = 1.

linear nonconservative force Fext (x(t )) = K (x2,−x1)T with a
constant K [21,22,62], the work current Ẇ (t ) is written as

Ẇ (t ) ≡ Fext (x(t )) · ν(t ) = −K jθ (t ). (33)

Thus, investigating jθ (t ) is equivalent to investigating the
applied work current.

V. CONCLUSIONS

In our work, we have examined how Langevin dynamics
describes the rotating particle of the Brownian gyrator by
explicitly considering the inertia of the particle, in contrast to
its description with Brownian dynamics. Several NESS fea-
tures of the Brownian gyrator (such as a tilted PDF, rotational
motion, and entropy production by the heat current between
the two heat baths) distinguish the inertial model from the
overdamped model, i.e., Langevin dynamics from Brownian
dynamics.

From the analytic solution of the Fokker–Planck equation
and the simulation of each model, we have shown that the
inertia plays an important role in resisting the breakdown of
the detailed balance and reducing the nonequilibrium effects.
For instance, in the inertial model, the distortion and tilt of
the positional PDF decrease and vanish with increasing mass,
starting from the case of the overdamped model. The mean of
specific angular momentum jθ , selected as the measure of the
rotational motion and proportional to the systematic torque,
also shows similar behavior.

The most salient feature of our Langevin dynamics de-
scription is the nonmonotonic behavior of the measure for
the rotational motion, which cannot be found through Brow-
nian dynamics. In the inertial model, the mean of jθ has a
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nonmonotonic behavior along u. This is because the
anisotropy u initiates the rotational motion while the averaged
moment of inertia, increasing with u, has a contrary role in
resisting the rotational motion. Next, the fluctuation of jθ has
nonmonotonic behaviors along u and m. Intriguingly, we have
found that the fluctuation of jθ with inertia is larger than the
value of the overdamped model in some specific conditions.
These nonmonotonic behaviors of the rotation-related quan-
tity appear only in the inertial model. It will be interesting
work, therefore, to check whether other nonequilibrium sys-
tems have similar nonmonotonic features or not.

Considering this intrinsic difference between the two de-
scriptions, i.e., inertial and overdamped models, even in a long
time limit, it is necessary to choose Langevin dynamics rather
than Brownian dynamics except under the special condition
of negligible mass compared to friction. Brownian dynamics
may be inadequate to study the Brownian gyrator in experi-
ment, where the particle is not so tiny that it is controllable
and observable.

For the successful experimental observation of the iner-
tial effects including the nonmonotonic behaviors, the two
terms of the denominator of Eq. (12) should be compara-
ble so that u2m/kγ 2 is on the order of ∼O(1). Considering
recent experimental achievements [50,63,64], this condition
is actually difficult to attain in a typical liquid environment
due to high viscosity. Instead, one may realize this condition
in a low-density environment. For instance, the condition is
satisfied if we consider an optically trapped particle in a gas
with optical trapping stiffness k ∼ 1pN/μm [50], viscosity
η ∼ 1–10μPa s (γ ∼ 10−8–10−7g/s) [64], and the mass of
the particle in the range from 10−13g to 10−11g, comparable
to a polystyrene or silica particle with a diameter of 1 μm.
Then we could see the interesting nonmonotonic behaviors by
adjusting the anisotropy u (with the same order as k) and the
mass m in the possible range via optical tweezers. For related
experiments in a liquid environment, it will be necessary to
strengthen the optical trapping stiffness k or u, which might
be challenging.

Finally, we have clarified how the system energetics is
associated with the system dynamics in the underdamped
regime. We have shown that the mean current and fluctuation
of heat currents and entropy production could be inferred
using the dynamic characteristics of the system. For example,
by observing the tilted angle of the positional PDF or the rota-
tional motion of the particle, it is possible to infer how much
energy is exchanged or how much total entropy production
increases.

We expect our results to be helpful in studying the dy-
namic properties of various systems with motion influenced
by inertia, such as insects, microflyers, and other mesoscale
organisms [32]. Moreover, our results will provide practical

ways to investigate various biological systems from an en-
ergetic perspective or to quantify the violation of detailed
balance. In many experimental cases, detailed information is
frequently unknown, and it is difficult to estimate the ener-
getics directly. The dynamic characteristics can be adequate
measures in such systems for estimating the energetics or
inferring their behaviors, as also claimed in Refs. [46,52]. Par-
ticularly, jθ will be a useful tool for measuring the energetics
of tractable nonequilibrium systems because jθ is directly as-
sociated with them and can be evaluated using experimentally
accessible quantities and positional trajectories.

As future work, various models in NESS such as the
N bead-spring model or self-propelled particles can be con-
sidered to study the inertial effects and the relation between
the dynamics and the energetics of the system.
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APPENDIX A: STEADY-STATE PROBABILITY DENSITY

To obtain the steady-state PDF p(x, v), let z ≡
(x1, x2, v1, v2)T be a state vector. Then we can rewrite
Eq. (7) as

ż(t ) = −F · z(t ) + η(t ), (A1)

where F = ( 0 −I
−A/m Γ/m), 0 (I) is a 2 x 2 null (identity)

matrix, and A and Γ are drift and friction matrices, respec-
tively. η is a Gaussian white noise satisfying 〈ηi(t )〉 = 0 and
〈η(t ) · η(t ′)T 〉 = 2δ(t − t ′)Dz where Dz = (0 0

0 D) and D is

a diffusion matrix. In our system, A ≡ −(k u
u k), and Γ ≡

(γ 0
0 γ ) and D ≡ γ

m2 (T1 0
0 T2

) as mentioned in Sec. III.
Since our system assumes an Ornstein–Uhlenbeck pro-

cess, the steady-state PDF takes a Gaussian form as p(z) ∝
exp [−(1/2)zT · C−1 · z], where C is the covariance matrix of
the state vector z in the steady state defined as 〈zzT 〉ss. The
covariance matrix C is given by

C = F−1(Dz + Q), (A2)

where Q is an antisymmetric 4 x 4 matrix that can be uniquely
determined by

FQ + QFT = FDz − DzFT . (A3)

Here, Q is nonzero in the NESS, which implies the violation
of the detailed balance [65,66]. Solving Eq. (A3) and inserting
the result into Eq. (A2), we obtain

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

2k2γ 2T1+u2(km(T1+T2 )+γ 2(T2−T1 ))
2(k2−u2 )(kγ 2+u2m) − u(T1+T2 )

2(k2−u2 ) 0 − uγ (T1−T2 )
2(kγ 2+u2m)

− u(T1+T2 )
2(k2−u2 )

2k2γ 2T2+u2(km(T1+T2 )+γ 2(T1−T2 ))
2(k2−u2 )(kγ 2+u2m)

uγ (T1−T2 )
2(kγ 2+u2m) 0

0 uγ (T1−T2 )
2(kγ 2+u2m)

2kγ 2T1+u2m(T1+T2 )
2m(kγ 2+u2m) 0

− uγ (T1−T2 )
2(kγ 2+u2m) 0 0 2kγ 2T2+u2m(T1+T2 )

2m(kγ 2+u2m)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A4)
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For the existence of a steady state, F should be positive-
definite. This condition provides the existence condition for
steady state u2 < k2. Otherwise, the particle diverges from the
potential.

APPENDIX B: RELATION BETWEEN THE SYSTEMATIC
TORQUE AND THE SPECIFIC ANGULAR MOMENTUM

Here we derive the relation between the systematic torque
and jθ (t ) in Eq. (11) in the underdamped regime. The system-
atic torque M that the particle exerts on the potential U (x) can
be expressed as

M ≡ 〈x × ∇xU (x)〉ss

=
∫

dx
∫

dv 〈x × ∇xU (x)|x, v〉ss p(x, v)

= −
∫

dx x × A · xp(x),

(B1)

where x × A · x = x1(A · x)2 − x2(A · x)1. Solving the Lya-
punov equation FC + CFT = 2Dz, we can obtain the follow-
ing equations:

CT
xv + Cxv = 0, (B2)

Cvv + 1

m
ACxx − 1

m
ΓCT

xv = 0, (B3)

and

1

m

(
ACxv + CT

xvA
) = 1

m
(ΓCvv + CvvΓ) − 2D, (B4)

where the covariance matrix C is denoted by

C ≡
(

Cxx Cxv

CT
xv Cvv

)
. (B5)

Using Eqs. (B2) and (B3), we can express the drift matrix A
by the covariance matrix, that is,

A = −mCvvC−1
xx + γ CT

xvC−1
xx . (B6)

Inserting Eq. (B6) into Eq. (B1), the systematic torque is
written as

M = −γ

∫
dx x × CT

xvC−1
xx · xp(x)

+ m
∫

dx x × CvvC−1
xx · xp(x). (B7)

The first term on the right-hand side can be rearranged into a
function of 〈 jθ 〉ss as follows:

− γ

∫
dx x × CT

xvC−1
xx · xp(x)

= −γ

∫
dx x × 〈v|x〉p(x) = −γ 〈 jθ 〉ss. (B8)

In the second row of Eq. (B8), we use the local averaged
velocity 〈v|x〉 = CT

xvC−1
x·x · x [67]. To evaluate the second term

on the right-hand side of Eq. (B7), let us consider a linear
transformation x′ = B · x where B is a nonsingular matrix.
Then, the covariance matrix in the transformed coordinates
C′

xx can be given by C′
xx = BCxxBT [68]. If we consider the

specific coordinates that satisfy C′
xx = I, then the second term

on the right-hand side of Eq. (B7) vanishes:∫
dx x × CvvC−1

xx · xp(x)

=
∫

dx (−x2 x1)CvvC−1
xx

(
x1

x2

)
p(x)

= 1

det B

∫
dx′ (−x′

2 x′
1)C′

vv

(
x′

1

x′
2

)
p(x′) = 0, (B9)

since C′
vv is a symmetric matrix. Consequently, we obtain the

relation as

M = −γ 〈 jθ 〉ss. (B10)

It is also possible to calculate the cycling frequency by
using the relation in the same way as in Refs. [46,47]. We
can express the conditional average 〈v|x〉 in another way as
〈v|x〉 = Ω · x, where Ω is a matrix of frequencies defined as
Ω ≡ CT

xvC−1
xx [68]. In the transformed coordinates, the matrix

of frequencies is given by

Ω′ =
(

0 −α

α 0

)
, (B11)

since Ω′ is skew-symmetric. Thus, the eigenvalues of Ω can be
obtained by λ = ±iα where α is a real number. Then, 〈 jθ 〉ss

can be calculated as

〈 jθ 〉ss =
∫

dx x × Ω · xp(x)

= 1

det B

∫
dx′ x′ × Ω′ · x′ p(x)

= α

det B
〈x′2

1 + x′2
2〉ss = 2

α

det B
. (B12)

Using the fact that α is equal to the cycling frequency 〈ω〉ss defined as ω(t ) = [x(t ) × v(t )]/r(t )2 [47], the cycling frequency
can be calculated as

〈ω〉ss = 〈 jθ 〉ss

2
√

det Cxx
= γ u(T2 − T1)

√
k2 − u2√

(u2m + kγ 2)2(T1 + T2)2 − γ 4(k2 − u2)(T1 − T2)2

. (B13)

Here, we used det B = √
det C′

xx/ det Cxx to derive
Eq. (B13). As illustrated in Fig. 7, the magnitude of 〈ω〉ss

decreases with m and the peak of 〈ω〉ss is shifted to lower u as
m increases because Iθ becomes larger as m and u increase.
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ω
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|
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m =10

FIG. 7. Magnitude of averaged cycling frequency 〈ω〉ss as a func-
tion of u. |〈ω〉ss| is plotted for m = 0, 1, 5, and 10. The other
parameters are T1 = 5, T2 = 1, k = 3/2, and γ = 1.

APPENDIX C: MEAN AND FLUCTUATION OF
ENERGETIC QUANTITIES

In this section, we present how to calculate the fluctuations
of jθ , absorbed heat, and medium entropy production using
the scaled cumulant generating function (SCGF). We follow
the same procedure as in Refs. [21,22,69]. Because the work
current Ẇ (t ) is proportional to jθ (t ), we calculate the mean
current and fluctuation of work instead of calculating the
values of jθ (t ) directly.

When we apply an external force defined by Fext[x(t )] =
K (x2,−x1)T , the extracted work, absorbed heat, and medium
entropy production over time τ are given by

W (τ ) =
∫ τ

0
W · z(t ) ◦ dz(t ),

Q1(2)(τ ) =
∫ τ

0
Q1(2) · z(t ) ◦ dz(t ), (C1)

and

Sm(τ ) = −
∫ τ

0

(
Q1

T1
+ Q2

T2

)
· z(t ) ◦ dz(t ), (C2)

where the matrices W and Q1(2) are defined as

W =

⎛
⎜⎜⎜⎝

0 K 0 0

−K 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠, (C3)

Q1 =

⎛
⎜⎜⎜⎝

k u − K 0 0

0 0 0 0

0 0 m 0

0 0 0 0

⎞
⎟⎟⎟⎠, (C4)

and

Q2 =

⎛
⎜⎜⎜⎝

0 0 0 0

u + K k 0 0

0 0 0 0

0 0 0 m

⎞
⎟⎟⎟⎠. (C5)

They are dynamical observables due to the dependence on the
trajectory over time τ . Thus, the SCGF of work is written as

λ(h) = lim
τ→∞

1

τ
ln 〈exp [hW (τ )]〉

= 〈Ẇ 〉ssh + DW h2 + O(h3),
(C6)

with a real valued h. Here, the mean current and fluctuation
of work are denoted as 〈Ẇ 〉ss and DW , respectively. It is
known that λ(h) is the largest eigenvalue of the tilted operator
given by

L† = −zT · FT · (∇z + hW · z)

+ (∇z + hW · z)T · Dz · (∇z + hW · z), (C7)

with ∇z ≡ ∂/∂z. Equation (C6) can be derived from the
fact that the quantity 〈exp [hW (t )]〉 has a semigroup prop-
erty and is governed by tilted operator [Eq. (C7)]. This is
the so-called Feynman–Kac formula [69]. Assuming that the
left eigenfunction g(z, h) of λ(h) is Gaussian as g(z, h) =
exp (−(1/2)zT · G(h) · z) with a symmetric matrix G(h), the
SCGF can be expressed as

λ(h) = [L†(h)g(z, h)]/g(z, h)

= tr{Dz[hW − G]} + zT · FT (G − hW) · z

+ zT · (hW − G)T Dz(hW − G) · z.

(C8)

Comparing the coefficients, we can obtain

λ(h) = tr{Dz[hW − G(h)]}, (C9)

and

FT (hW − G) + (hW − G)T F = 2(hW − G)T Dz(hW − G).

(C10)

To solve Eq. (C10), we expand G(h) near h = 0 as

G(h) = G1h + G2h2 + O(h3). (C11)

Here, the constant term of G(h) is zero since λ(h) = 0 with
g(z, h) = 1 [69]. Inserting Eq. (C11) into Eq. (C10) and com-
paring the coefficients of h and h2, the mean current and
fluctuation of work are obtained by

〈Ẇ 〉ss = tr{Dz(W − G1)} = tr{FCWa}, (C12)

and

DW = −tr{DzG2} = tr{FCWaC(WT − G1)}, (C13)

where Wa = (W − WT )/2 is a skew-symmetric matrix. We
used the Lyapunov equation FC + CFT = 2Dz to derive
Eqs. (C12) and (C13).

Since the work done by the external force Fext is
proportional to jθ (t ), we can calculate the mean and
fluctuation of jθ (t ) as

〈 jθ 〉ss ≡ lim
K→0

−〈Ẇ 〉ss

K
, Dθ = lim

K→0

DW

K2
. (C14)

In the same way, the mean current and fluctuation of the
absorbed heat and medium entropy production can also be
obtained by using the matrix defined in Eqs. (C4) and (C5).
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