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Nonequilibrium athermal random-field Ising model on hexagonal lattices
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We present the results of a study providing numerical evidence for the absence of critical behavior of the
nonequilibrium athermal random-field Ising model in adiabatic regime on the hexagonal two-dimensional lattice.
The results are obtained on the systems containing up to 32 768 × 32 768 spins and are the averages of up to 1700
runs with different random-field configurations per each value of disorder. We analyzed regular systems as well as
the systems with different preset conditions to capture behavior in thermodynamic limit. The superficial insight
to the avalanche propagation in this type of lattice is given as a stimulus for further research on the topic of
avalanche evolution. With obtained data we may conclude that there is no critical behavior of random-field Ising
model on hexagonal lattice which is a result that differs from the ones found for the square and for the triangular
lattices supporting the recent conjecture that the number of nearest neighbors affects the model criticality.
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I. INTRODUCTION

Systems and materials whose response to external driving
is realized in a train of avalanches manifesting power-law
distributions are becoming more extensively studied in recent
decades. This type of behavior, present in a vast variety of sys-
tems (e.g., earthquakes [1–3], neural networks [4], martensitic
transformations [5], motion in granular materials [6], etc.),
stimulated the advent of several theoretical models, including
those referencing the systems whose behavior is dominated by
some intrinsic disorder [7].

Among these models [8–13], a prominent role is played by
the random-field Ising model (RFIM) [14] and in particular
by its nonequilibrium athermal version [15] describing the
hard ferromagnetic materials with quenched disorder. In this
version, the time evolution is monitored while the studied sys-
tem, responding to a variation of the external magnetic field
by following local dynamical rules, traverses the nonequilib-
rium states which causes emanation of the Barkhausen noise
[16,17].

In numerous studies of the nonequilibrium athermal RFIM
many aspects of its behavior have been revealed, see [18] for
a review. Most importantly, it was shown that on hypercubic
lattices for dimensions d � 6 the model can be described
in the mean field approximation, see [19] for instance. In
addition 2 � d � 5 there is a nontrivial phase transition from
ferromagnetic to paramagnetic phase at some critical value of
disorder Rc [20–25], which turned out to be different from
the corresponding transition in equilibrium athermal RFIM
[26] treating the least energy states as a function of the
applied external field. In Ref. [27] the authors perform sim-
ulations on two-dimensional Voronoi lattice that prevent the
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effects of faceting, for a wide range of disorders, and derive
invariant scaling combinations using normal form theory of
the renormalization group that eventually serve to determine
the arguments of the universal scaling function necessary to
perform scaling collapses. They found that the critical disor-
der in such system is zero. However, this result refers to only
one type of two-dimensional lattice and it is not clear how
it can be extended to every two-dimensional lattice. Lately, a
progress in equilibrium version of RFIM presented important
answers on the universality principles [28,29], dimensional
reduction [30] and supersymmetry [31] of the model.

A question of the nonequilibrium athermal RFIM behavior
on lattices of the same local type but changing dimensions
was raised in papers [32–36] and discovered that there is
analytic dependence of critical values of model parameters on
continuously changing lattice dimension.

Within the course of these discoveries, a standpoint grad-
ually emerged that the universality classes, characterizing the
criticality of the nonequilibrium athermal model, are deter-
mined only by the dimensionality of the underlying lattice
like in the equilibrium model. Recently, a group of authors
challenged this opinion by putting forward a competitive con-
jecture that the universality classes in nonequilibrium model
are determined by the topology of the lattice rather than by the
lattice dimensionality [37–40]. This implies that the number
of nearest neighbors (i.e., coordination number) and the way
how these neighbors are connected influence the universality
classes which was to some extent confirmed in Ref. [41] by
comparing the criticality of the model on the triangular and
quadratic lattices that are both embedded in two-dimensional
(2D) space, but have different numbers of the nearest neigh-
bors (six and four, respectively).

We address here the foregoing conjecture by putting for-
ward the results of our numerical study of the behavior of
the nonequilibrium athermal RFIM placed on the hexagonal
(i.e., honeycomb) 2D lattice where each spin has three nearest
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neighbors. We provide numerical evidence that under adia-
batic driving by the external magnetic field this model does
not exhibits a nontrivial critical behavior. Compared with the
behavior of the model on the square and on the triangular
lattices, on the hexagonal lattice there will be no ferromag-
netic phase for any nonzero disorder making questionable the
existence of a single universality class for all periodic (i.e.,
translationally invariant) 2D lattices in the case of nonequilib-
rium athermal RFIM.

The paper is organized as follows. In Sec. II we give the
explanation of the nonequilibrium athermal RFIM along with
its numerical implementation, emphasizing all points relevant
for this paper. Section III contains results on avalanche pa-
rameters distributions and their collapses that may be obtained
for a nonunique set of parameters and exponents. Section IV
presents the data gathered on systems with preset initial con-
ditions that mimic the behavior in thermodynamic limit. In
Sec. V are shown results on avalanche propagation, giving
a closer insight of how an avalanche evolves throughout the
hexagonal lattice. Last, in Sec. VI we discuss the results and
give the conclusion of the paper.

II. MODEL

The athermal random-field Ising model treats a system of
N classical Ising spins {si = ±1}N

i=1 with no thermal fluctu-
ations. The spins are located at sites i of some underlying
lattice, and the nearest-neighbor spins are ferromagnetically
coupled. Besides, each spin si interacts with the external ho-
mogeneous magnetic field H and also with a magnetic field h
generated by quenched impurities whose local values hi vary
randomly from site to site. So, the Hamiltonian of such spin
system can be taken as

H = −J
∑
〈i, j〉

sis j − H
∑

i

si −
∑

i

hisi , (1)

where J > 0 is the strength of ferromagnetic coupling (in this
paper J = 1) and the summation in the first term is done over
all distinct (unordered) pairs of nearest neighbors 〈i, j〉. The
second sum in Eq. (1) describes the interaction between the
spins and the external magnetic field H , while in the third sum,
hisi stands for the interaction of spin si with the random-field h
having local value hi at the spin’s site. Therefore, the effective
(i.e., total) magnetic field that acts on the spin si is

heff
i ≡

∑
j

s j + H + hi , (2)

where the summing is done over all nearest neighbors s j

of the spin si. The local values hi of the random field are
chosen from some zero-mean probability distribution, here the
Gaussian distribution ρ(h) = e−h2/2R2

/
√

2πR with zero mean
and standard deviation R, which is the most important model
parameter, called disorder. These local values are chosen in-
dependently at different lattice sites, giving 〈hih j〉 = R2δi, j ,
where δi, j is the Kronecker-δ function and 〈...〉 means aver-
aging over all different configurations of random fields. Any
distribution that satisfies previous conditions may be chosen
as distribution ρ(h). The reason we choose Gaussian distri-
bution is because in the past studies of RFIM it was the most
common choice of random-field distribution and to adequately

FIG. 1. Hexagonal lattice in two dimensions. Each site of this
lattice has three nearest neighbors. The lattice is shown to avoid
possible confusion with its dual triangular lattice with six nearest
neighbors for each site.

compare present results to the some previous we should stick
to the same choice of random-field distribution. However,
further analysis on different random-field distributions would
be useful for better understanding of nonequilibrium RFIM
behavior.

In the nonequilibrium model the system’s dynamics is gov-
erned by the local (and deterministic) dynamical rule stating
that a spin is stable if is aligned with the effective magnetic
field heff

i at its site; otherwise, the spin is unstable and flips
at the next moment of (discrete) time decreasing, thus, the
system’s energy. This spin flipping may destabilize some of
its neighbors causing the unstable spins to flip, which in turn
will destabilize their neighbors, and in this way, an avalanche
of spin flipping is created. The avalanche lasts as long as there
are unstable spins, and dies when all spins become stable at
the current value of the external field. In a consequence, the
energy of such metastable states, like for the real ferromagnets
driven by an external field, does not necessarily attain its
global minimum for the corresponding external field, and this
makes the main difference between the nonequilibrium and
equilibrium model (in which all traversed states are global
energy minima).

After avalanches die, the system can be destabilized only
by changing the external field. Of a particular theoretical
importance is the so-called adiabatic regime as the zero limit
case of the finite driving rate encountered in experiments.
In this regime the external field remains constant during the
avalanches and, instead of being infinitely slowly varied be-
tween the avalanches (say, increased), the external field is
changed exactly by the amount that flips only the least stable
spin. Under such driving at most one avalanche is active at a
time, and the simulation speed is greatly increased.

In this paper, we analyze the nonequilibrium behavior in
the adiabatic regime of the athermal RFIM spin systems sit-
uated at a hexagonal lattice in two dimensions, see Fig. 1.
All spins at this lattice have three nearest neighbors. Initially,
we set the external field to H = −∞ and all spins to −1
(unless stated otherwise), and then we increase the field un-
til all spins are being flipped. Each avalanche starts at the
moment t = 1 of discrete time when only one spin flips,
making its neighbors potentially unstable. After that, at t = 2,
all unstable spins from t = 1 flip, making their neighbors
potentially unstable and so on. The sum of all flipped spins
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during one avalanche represents the avalanche-size S, and the
number of discrete time steps during the avalanche represents
its duration, T . With this choice of system evolution, and
using periodic boundary conditions, we repeat the simulations
for many different configurations of the random field and
subsequently analyze the system response averaged over all
employed configurations.

During an active avalanche we track all the nearest neigh-
bors of the spins flipped at the moment t . We check if
they are unstable and flip them in the moment t + 1 in case
they are unstable. This is a relatively fast process. The most
time-consuming process in these simulations is the process
of finding the next spin to flip once the avalanche is over
(i.e., the first spin in the following avalanche). Brute force
algorithm would suggest to check all nonflipped spins in the
system and to see which one has the lowest effective field
acting on it. In big systems such as 32 768 × 32 768 the time
needed for such approach is extremely large. To decrease the
time consumption by the process of finding the first flipped
spin in an avalanche we used the sorted list algorithm which
we implemented in Fortran. This algorithm is described in
Ref. [42] and even in more details in Ref. [43].

Results gathered from simulations are analyzed using the
programs coded in Fortran, Visual Basic and Wolfram Math-
ematica. We used Fortran and Visual Basic to obtain statistics
regarding the avalanche parameters as well as magnetization
and susceptibility. On the other side, we used Wolfram Mathe-
matica and its implemented functions to obtain the fitting and
collapse procedures to the desired accuracy.

III. REGULAR SYSTEMS

We present the results regarding the behavior of the
nonequilibrium athermal RFIM spin systems situated at
hexagonal lattices in two dimensions for regular systems. In
this paper by regular systems we mean the systems whose
all spins are pointing downwards in the beginning of the
simulation and are free to evolve. Such systems are adiabat-
ically driven by the external magnetic field along the entire
rising part of the magnetization curve and the final results
are the quenched averages over different configurations of
the random field obtained in 200 runs for each disorder on
the lattice having 32 768 × 32 768 spins and closed boundary
conditions. For the sake of better precision, this number of
runs is increased to 1700 in the determination of the effective
critical disorder done for systems with sizes ranging from
256 × 256 to 32 768 × 32 768.

A. Critical behavior

Without thermal fluctuations, the behavior of the RFIM
spin system in adiabatic regime is governed by disorder R
and system size L. If the model exhibits a nontrivial critical
behavior then there is a critical value of disorder Rc such
that for R > Rc the magnetization curves MR(H ) of infinite
systems are smooth functions of external field H , while for
R < Rc these curves have a jump at the effective critical value
H eff

c (R) of the external magnetic field. When R → Rc, the
magnetization curves from both families tend to the criti-
cal magnetization curve which corresponds to R = Rc. Like

FIG. 2. Examples of magnetization curves obtained in a single
run for the values of disorder in range R = 0.28–0.50 on the system
having 32 768 × 32 768 spins.

for R > Rc curves, this critical curve is still a continuously
differentiable function of H , except at the critical external
field Hc = limR→Rc H eff

c (R) where its first derivative dM/dH
is infinite and magnetization reaches the critical value Mc =
MRc (Hc).

In Fig. 2, we show a set of magnetization curves obtained in
the range 0.28–0.50 of disorder R at the 32 768 × 32 768 lat-
tice. Each curve is acquired in a single run for given disorder.
However, there are some important differences manifested
here, and also in comparison of the magnetization curves of
infinite systems and finite RFIM systems in general. Thus, the
jumps of magnetization encountered in single runs of finite
systems are caused not by the (obviously impossible) infinite
avalanches but by large avalanches spanning the finite system
along at least one of its spatial dimensions. These spanning
avalanches are likely to appear below the so-called effective
critical disorder Reff

c (L) that depends on the lattice size L
and for the model at hexagonal lattice at most one spanning
avalanche is found in a single run like on quadratic and trian-
gular 2D lattices, see Refs. [41,44] and also Refs. [33,45,46].
As the size of that spanning avalanche and the value of the ex-
ternal magnetic field at which this avalanche is triggered both
depend on the configuration of the quenched random field, the
averaged magnetization curves acquired above Reff

c (L) have
no jump but instead exhibit finite slope everywhere like on
quadratic 2D lattice, see Ref. [44] for details.

The effective critical field H eff
c (R) is determined as the

value of external magnetic field for which system suscep-
tibility attains its maximum. Note that the effective critical
field depends on system size L as well, but we omit that
for the simpler notation. We define the susceptibility χR(H )
as the change in magnetization for a given external field,
χR(H ) = dM/dH [47,48], i.e., twice the number of flipped
spins at external field H (since one flipped spin changes
magnetization by value 2) divided by the number of spins
in the system. In the main panel of Fig. 3(a) is presented
one example of the susceptibility curve averaged over 200
runs for disorder R = 0.5 and lattice size L = 32 768. In
the upper left and upper right insets of Fig. 3(a) are pre-
sented the susceptibility curves for two single runs (two
different random-field configurations) for each of the disor-
ders R = 0.15 and R = 0.55, respectively, and lattice size
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FIG. 3. (a) Main panel: Susceptibility curve of 32 768 × 32 768 system and disorder R = 0.5, averaged over 200 runs. Upper left inset:
two single-run susceptibility curves, black solid and red dashed curve, for systems of size 32 768 × 32 768 and disorder R = 0.15. Upper right
inset: two single-run susceptibility curves, black solid and red dashed curve, almost overlapped for the 32 768 × 32 768 system and disorder
R = 0.55. (b) The effective critical field H eff

c versus disorder R (for the 32 768 × 32 768 system).

32 768 × 32 768. We see that for disorders that are below
the effective critical disorder, see Sec. III A 1, the single-run
susceptibility curves differ a lot, meaning that a large number
of runs is needed to obtain sufficiently smooth averaged sus-
ceptibility curve and effective critical field. However, when
disorder is above the effective critical disorder there are no
much fluctuations in sample-to-sample curves so obtaining of
a smooth susceptibility curve is possible in a smaller number
of runs. In Fig. 3(b) are presented the effective critical fields
for system of size 32 768 × 32 768 and various disorders.

1. Effective critical disorder

For the systems of finite-size L, the effective critical disor-
der Reff

c (L) can be found from the curve showing the number
N2 of 2D spanning avalanches (i.e., avalanches spanning the
system along both of its spatial dimensions) as a function of
disorder R. This is illustrated in Fig. 4 by the N2 data (pink
dots), obtained in the range of disorder 0.24 to 0.46 in the
case of system having 5792 × 5792 spins. Like in the cases of

FIG. 4. Number of two-dimensional spanning avalanches per
single-run N2 in the 5792 × 5792 spin system (pink dots) for dis-
orders in the range R = 0.24–0.46, together with the fitting curve
Eq. (3). 100 simulations employing different random-field configu-
rations were performed for each of these values of disorder.

quadratic and triangular 2D lattices [41,44], and also for the
modified 2D spanning avalanches in the case of (thin) cubic
3D lattices [33], these data can be fitted by the two-parameter
model function

NR0,W (R) = 0.5 × erfc[(R − R0)/W ] , (3)

plotted by the full line; erfc(x) = 2/
√

π
∫ ∞

x e−t2
dt is the

complementary error function. Parameter W of this model
function describes the width of the transition region of dis-
order in which the N2 data roughly fall from 1 to 0 (more
precisely from 0.76025 to 0.23975, see Ref. [33]), while the
center R0 of this transition region can be taken as the effective
critical disorder Reff

c (L) for the given lattice size L. The ef-
fective critical disorder Reff

c (L) obtained in this way is always
greater than the critical disorder, Reff

c (L) > Rc, and tends to it
in the thermodynamic limit, limL→∞ Reff

c (L) = Rc.
In Table I we present the values of effective critical dis-

orders for various lattice sizes. For comparison, we show
the values of effective critical disorders for other two two-
dimensional lattice types (square and triangular). One can try
to plot the values of effective critical disorders versus the
linear lattice size for hexagonal lattice, analogously as pre-
sented in, e.g., Refs. [25,41] for square and triangular lattices,
to obtain the value of critical disorder. However, applying
this method, it is impossible to obtain Rc with the satisfying
accuracy, since it turns out that all values of Rc, from 0 to 0.31,
give equally good fitting results. This was not the case for the
square or triangular lattices. In inset of Fig. 20 in Ref. [25] is
presented how different values of critical disorder for square
lattice lead to the obviously different fit qualities. Similarly
can be done with the triangular lattice using here presented
values of effective critical disorders and results from Ref. [41].

2. Finite-size effects

In Fig. 3(b) the following behavior of H eff
c (R) may be

observed. While the disorder is greater than the effective crit-
ical disorder, the effective critical field increases as disorder
increases, which is expected. However, for R < Reff

c (L) we no-
tice that effective critical field decreases as disorder increases
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TABLE I. Effective critical disorders for three lattice types for different systems’ size, L ranged from 256 up to 65 536.

L 256 512 1024 2048 8192 16 384 32 768 65 536

Hexagonal 0.421 ± 0.003 0.409 ± 0.003 0.388 ± 0.004 0.381 ± 0.004 0.356 ± 0.005 0.349 ± 0.005 0.341 ± 0.005 0.334 ± 0.005
Square 0.837 ± 0.003 0.798 ± 0.004 0.761 ± 0.004 0.716 ± 0.004 0.669 ± 0.005 0.648 ± 0.005 0.629 ± 0.005 0.614 ± 0.006
Triangular 1.478 ± 0.003 1.369 ± 0.003 1.265 ± 0.004 1.207 ± 0.004 1.107 ± 0.004 1.075 ± 0.005 1.036 ± 0.005 1.010 ± 0.005

and we show here that this happens due to the finite-size
effects. To this end let us use the probability p(SNN , H, R) that
the spin, whose sum of nearest neighbors is SNN , will flip if the
disorder value is R and external field is H :

pH,R(SNN ) =
∫ ∞

−(SNN +H )
ρ(h)dh

= 1

2

[
1 + erf

(
SNN + H

R
√

2

)]
. (4)

Here, erf (x) = 2/
√

π
∫ x

0 exp(−t2)dt is the standard error
function. In the following text we will denote this flipping
probability simply by p(SNN ).

In Fig. 5 we present by points how H eff
c depends on R

for three different values of L (L = 256 squares, L = 1024
circles, L = 32 768 triangles). For small disorders a linear
dependence of H eff

c (R) is observed and the slope of the linear
curve increases with L. This happens because the system is
too small for that low value of disorder so that it takes larger
external field to even flip the first spin in the system. Once the
first spin is flipped the sum of its nearest neighbors becomes
−1, instead of −3 before flipping. This, in combination with
the external field that is already high enough (high external
field was needed to flip the first spin), allows the spanning
avalanche to occur. Basically, the values of H eff

c (R) for lower
disorders are determined by the value of the external field
needed to flip the first spin in the system. This leads to
the conclusion that the linear dependence of H eff

c (R) can be
described by the equation connecting the system size L and
the probability p(−3) as p(−3) = 1/L2. This means that the
external field should take the value that flips one spin in the
system of L2 spins. Combined with Eq. (4) this equation leads

FIG. 5. Effective critical field versus disorder for three different
values of system size. For L = 256 the effective critical field is
presented by black squares, for L = 1024 by blue circles, for and
L = 32 768 by orange triangles. Straight lines represent the linear
dependence given by Eq. (5) which holds for low values of disorder.

to the linear dependence

H eff
c (R) = 3 − R

√
2erf−1

(
1 − 2

L2

)
, (5)

between the external critical field and disorder, where erf−1(x)
is the inverse error function. In Fig. 5, Eq. (5) is confirmed
by the straight lines which fit the numerical data for L = 256
(solid line), L = 1024 (dashed line) and L = 32 768 (dash-
dotted line) up to the effective critical disorder for the given
system size.

B. Distributions

1. Avalanche-size distribution

In infinite systems manifesting a nontrivial critical be-
havior the distributions of avalanche-size S triggered at the
external field H and disorder R > Rc > 0 follow the scaling
prediction [8,15,24,25]

D(S)
R,H (S) = S−τD(S)

+ (Sσ r, h′r−βδ ). (6)

Here, σ is the cutoff exponent describing the scaling Smax ∼
r−1/σ of the largest avalanche-size Smax with the reduced dis-
order r = 1 − Rc/R, τ is the avalanche-size exponent, h′ =
H − Hc − br is a reduced magnetic field rotated by a pa-
rameter b, with Hc being the critical external field, β is the
critical exponent that describes the scaling of the magnetiza-
tion jumps below Rc, 	M ∼ |r|β , δ is the critical exponent
that describes how reduced magnetization scales with the
reduce magnetic field, [M(H ) − Mc] ∼ h′δ , with Mc being
the critical magnetization and M(H ) the magnetization of the
system when the external field is equal to H , and D(S)

+ is the
corresponding universal scaling function that depends on two
variables X,Y taken in Eq. (6) as X = Sσ r and Y = h′r−βδ .
Integrating the distribution D(S)

R,H (S) over all values of external
field H , one gets the integrated avalanche-size distribution
D(S,int)

R (S) ≡ ∫ ∞
−∞ DS

R,H (S)dH which scales as

D(S,int)
R (S) = S−(τ+σβδ)D̂(S,int)

+ (Sσ r), (7)

and has D̂(S,int)
+ (X ) ≡ ∫ ∞

−∞ D(S)
+ (X,Y )dY as its universal scal-

ing function. This scaling predicts that if we plot the
D(S,int)

R (S)Sτ+σβδ data against Sσ r then the integrated size
distributions, pertaining to various disorders, should collapse
onto a single curve.

Scaling predictions analogous to Eqs. (6) and (7) exist in
the case of avalanche-size distributions for finite systems as
well. These distributions, collected on sufficiently large finite
systems, match the corresponding distributions of infinite sys-
tems, and therefore can be collapsed using Eqs. (6) and (7) in
what follows.

Instead of distributions of avalanches triggered only at a
given value of the external field, whose collecting is obviously
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FIG. 6. (a) Upper right inset: Avalanche-size distributions for the values of disorder R = 0.48, 0.50, 0.52, 0.54. Main panel: Collapsing of
the curves from the upper right inset according to Eq. (7) with the values of parameters and exponents Rc = 0.31, σ = 0.11 and τ + σβδ =
2.06. Upper left inset: Collapsing of the integrated avalanche-size curves for the same disorders. (b) Inset: Avalanche-size distributions for the
values of disorder R = 0.42, 0.44, 0.46, 0.48, 0.50. Main panel: Collapsing of the curves from the inset according to Eq. (7) with the values of
parameters and exponents Rc = 0.20, σ = 0.045 and τ + σβδ = 2.06.

impossible, in the upper right inset of Fig. 6(a) we show the
distributions of avalanche sizes,

D(S,wnd)
R (S) ≡

∫ H eff
c (R)+rβδh′

0

H eff
c (R)−rβδh′

0

D(S)
R,H (S)dH, (8)

collected in the small windows of the external field for various
disorders between R = 0.48 and R = 0.54. For each R the
corresponding window is centered at the effective critical field
H eff

c (R), i.e., at the value of H at which the susceptibility
χR(H ) attains its maximum for that disorder. The size of each
window on H axis is determined by rβδh′

0, where the value
of h′

0 is chosen so that the windows are reasonably small still
containing not too few avalanches in each run. As elaborated
in Ref. [25], such windowed distributions should collapse ac-
cording to Eq. (7), D(S,wnd)

R (S) = S−(τ+σβδ)D(S,wnd)
+ (Sσ r), and

their collapsing is shown in the main panel of Fig. 6(a), with
the best values of collapsing parameters and exponents Rc =
0.31 ± 0.01, σ = 0.11 ± 0.01 and τ + σβδ = 2.06 ± 0.05.
For the same set of values, in the upper left inset of Fig. 6(a)
we show the collapsing of integrated avalanche-size distribu-
tions for the same disorders according to Eq. (7).

If we add curves for systems of lower disorders and try
to collapse them for the same values of parameters and ex-
ponents we fail. To collapse those curves we have to shift
the above presented values of parameters and exponents. In
the main panel of Fig. 6(b) is presented how the curves col-
lapse in the range of disorders from R = 0.42 to R = 0.50.
The best collapse is obtained for the values Rc = 0.20 ±
0.01, σ = 0.045 ± 0.001 and τ + σβδ = 2.06 ± 0.05. This
indicates that the value of the supposed critical disorder is
significantly smaller than the lower one obtained above, i.e.,
0.20, or that it even tends to zero. To further test the value
of Rc by the presented method of curve collapsing one would
need to include the curves corresponding to disorders even
smaller than 0.42. This would demand a significant increase
in the system size and number of simulations for different

random-field configurations, which would eventually lead to
an extreme increase of simulation time.

2. Avalanche-duration distributions

Similarly to the avalanche-size distribution, there is a scal-
ing form [24,25]

D(T )
R,H (T ) = T −αD(T )

+ (T σγ r, h′r−βδ ), (9)

for the distribution D(T )
R,H (T ) of duration T of avalanches trig-

gered at the value H of the external field in infinite system.
Here, α is the duration distribution exponent, γ is the expo-
nent describing the scaling 〈T 〉S ∼ S1/γ of the mean duration
〈T 〉S of avalanches having size S, while D(T )

+ is the univer-
sal scaling function for the avalanche-duration distribution
D(T )

R,H (T ) for disorders above the critical disorder Rc. Further,

the integrated avalanche-duration distribution D(T,int)
R (T ) ≡∫ ∞

−∞ D(T )
R,H (T )dH scales as

D(T,int)
R (T ) = T −(α+σβδγ )D̂(T,int)

+ (T σγ r), (10)

where D̂(T,int)
+ (X ) ≡ ∫ ∞

−∞ D(T )
+ (X,Y )dY is the universal

scaling function for the integrated duration distribution
D(T,int)

R (T ). Finally, the corresponding duration distributions
pertaining to finite systems approximately follow scaling
Eqs. (9) and (10) provided their lattice size is sufficiently
large.

Like for avalanche-size distributions, in the upper right
inset of Fig. 7(a) we present the windowed avalanche-duration

distributions D(T,wnd)
R (T ) ≡ ∫ H eff

c (R)+rβδh′
0

H eff
c (R)−rβδh′

0
D(T )

R,H (T )dH . In the
main panel of Fig. 7(a) we show a collapsing of the windowed
size distributions obtained with the aid of D(T,wnd)

R (T ) =
T −(α+σβδγ )D̂(T,wnd)

+ (T σγ ) with parameters’ and exponents’
values for the best collapse Rc = 0.31 ± 0.01, σγ = 0.19 ±
0.02, and α + σβδγ = 2.80 ± 0.06. In the upper left inset is
given the collapse of integrated avalanche-duration distribu-
tions for the same systems and the same values of parameters
and exponents.
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FIG. 7. (a) Upper right inset: Avalanche-duration distributions for the values of disorder R = 0.48, 0.50, 0.52, 0.54. Main panel: Collapsing
of the curves from the upper right inset according to (10) with the values of parameters and exponents Rc = 0.31, σγ = 0.19, and α + σβδγ =
2.8. Upper left inset: Collapsing of the integrated avalanche-duration curves for the same disorders. (b) Inset: Avalanche-duration distributions
for the values of disorder R = 0.42, 0.44, 0.46, 0.48, 0.50. Main panel: Collapsing of the curves from the inset according to (10) with the
values of parameters and exponents Rc = 0.20, σγ = 0.073, and α + σβδ = 2.8.

Similarly to the case of avalanche-size distribution, it
becomes impossible to obtain a proper collapse of the
avalanche-duration distribution curves with the above men-
tioned values of parameters and exponents if we add curves
for systems with lower disorders. In the main panel of
Fig. 7(b) we present a collapse of the avalanche-duration
distribution curves for disorders that range from R = 0.42 to
R = 0.50. Appropriate parameters and exponents read Rc =
0.20 ± 0.01, σγ = 0.073 ± 0.004, and α + σβδγ = 2.80 ±
0.06. The data presented in Fig. 7 are from the same set of
simulations as the data shown in Fig. 6.

Again, as for the avalanche-size distributions, we see that
as we try to collapse the distributions obtained for lower
disorders the supposed value of critical disorder lowers as
well. This indicates that either Rc is much smaller than 0.20,
or that there is no nontrivial critical behavior for the athermal
nonequilibrium RFIM on the hexagonal lattice.

As explained above, the simulation time would explode if
we try to investigate larger systems with smaller disorders to
obtain Rc via the method of curve collapsing. Additionally, if
Rc = 0 then all previously mentioned collapsing procedures
cannot be applied and some other investigation is needed to
come closer to the answer. We want to see what happens in
thermodynamic limit, but obviously, we are not able to simu-
late infinite systems. To this end we try to set some conditions
in the system, before the evolution starts, that would mimic
the behavior in the thermodynamic limit. This is presented in
the next section.

In contrast to the hexagonal lattice, for the square and
triangular two-dimensional lattices the parameters for which
the best collapses of the distribution curves are obtained
are stable regardless the disorder range. This is presented in
Fig. 8(a) for square lattice of size 32 768 × 32 768 and disor-
ders that range from R = 0.68 up to R = 0.88, and in Fig. 8(b)
for triangular lattice of size 65 536 × 65 536 for disorders
from R = 1.09 to R = 1.30. On the main panels of Fig. 8
are presented the appropriate collapses of avalanche-size
distribution curves, while in insets are presented the col-
lapses of avalanche-duration distribution curves. The values of

parameters and exponents for which the best collapses are
obtained are presented in Ref. [25] for square and in Ref. [41]
for triangular lattice. This comparison shows the obvious dif-
ference between square and triangular lattices on one side and
the hexagonal lattice on the other side. One possible reason
for this difference might lie in the absence of the nontrivial
critical behavior in the case of hexagonal lattice.

IV. SYSTEMS WITH PRESET INTERFACE

Since we saw that the linear decrease of H eff
c versus R

originates in finite-size effects we would like to eliminate
them. That we intend by fixing one spin pointing upwards in
the beginning and preventing it to change during the subse-
quent system evolution. That spin plays the role of the one
that would be flipped if the system was large enough. Since
the boundary conditions are closed it is irrelevant which spin
we choose to flip. However, some problems arose if none of
its three neighbors are able to start an avalanche before the
external field is greater than some value at which a spanning
avalanche occurs. This again leads to similar behavior as pre-
sented in Fig. 5. For this reason we fix in the beginning more
than one spin pointing upwards. This gave more stable results,
but there is a question whether we disturbed the system evolu-
tion if we fixed more than one spin pointing upwards. This is
why we performed simulations with various preset interfaces,
ranging from one spin up to whole linear size, i.e., L spins
(in the system of size L × L). If we take into account only
those cases when no finite-size effects occur it turned out
that the systems evolve independently on the preset interface
length (from one to L), i.e., the systems behave in the same
manner and all results presented in this section are the same
irrespective of the number of preset spins. This allowed us to
analyze the systems where the probability of seeing finite-size
effects, in the sense of jumping to the non realistically values
of external field, is the smallest. Those are the systems whose
interface length is L. In those systems in all our simulation we
didn’t notice any finite-size effect, in the mentioned sense. By
the preset interface of length l (in the system of size L × L,
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FIG. 8. (a) Main panel: Collapsing of the integrated avalanche-size distribution curves for the square lattice of size 32 768 × 32 768
according to Eq. (7) for the disorders that range from R = 0.68 to R = 0.88. Inset: Collapsing of the integrated avalanche-duration distribution
curves according to Eq. (10) for the same data as in main panel. (b) Main panel: Collapsing of the integrated avalanche-size distribution curves
for the triangular lattice of size 65 536 × 65 536 according to Eq. (7) for the disorders that range from R = 1.09 to R = 1.30. Inset: Collapsing
of the integrated avalanche-duration distribution curves according to Eq. (10) for the same data as in main panel.

where L � l) we mean the line of l neighboring spins in one
column whose orientations are set to +1 in the beginning of
the simulation and are prevented from changing during the
simulation.

A. Effective critical field

Let us start from the problem of dependence of effective
critical field on system’s disorder presented in Fig. 3(b) and
Fig. 5. We repeated the same set of simulations for the sys-
tems with preset interface as we did with regular systems. In
the main panel of Fig. 9 are presented the effective critical

FIG. 9. Main panel: Effective critical field versus system’s dis-
order R for regular systems and the systems with preset interface.
Black squares represent regular systems of linear size L = 1024,
pink circles represent regular systems of linear size L = 32 768,
orange triangles represent the systems with preset interface of linear
size L = 1024, and blue inverted triangles represent the systems
with preset interface of linear size L = 32 768. Solid line shows
the connection between effective critical field and disorder given by
p(−1) = 0.6. Inset: Example of two single-run susceptibility curves,
presented by black solid and red dashed lines, for system with preset
interface and size 32 768 × 32 768 and disorder R = 0.1.

fields for the systems with preset interface for L = 1024 and
L = 32 768. For the sake of comparison there are also left
the effective critical fields for the regular systems of the same
sizes. We see that H eff

c (R) does not depend on L for the
systems with a preset interface, meaning that we may take
those values as the values of effective critical fields in the
thermodynamic limit.

In a next step, let us notice the values of the effective
critical field, obtained for disorders R > Reff

c are the same for
regular systems and the systems with the preset interface. This
is expected since above the effective critical disorder there are
a lot of spins that may be flipped even if they are not connected
to the interface, creating thus islands of flipped spins that
dominantly determine the further system evolution.

An interesting result is that H eff
c depends on R linearly even

for the systems with the preset interface. But here, the slope
is positive and is determined by the condition p(−1) = 0.6.
So, for any system size and any disorder (up to R ≈ 0.5) the
susceptibility will reach the maximum once the external field
is such that the flipping probability of a spin with exactly one
flipped neighbor is approximately 0.6. Although at present we
don’t have any exact answer to the question why is that so we
will try to give some clue in the next section on the avalanche
propagation. In inset of Fig. 9 are presented two single-run
susceptibility curves for the system with preset interface, size
32 768 × 32 768, and disorder R = 0.1. We see that even for
that low disorder there are very little differences in the sample
to sample comparison, which reminds on the situation from
Fig. 3(a) for disorders above the effective critical disorder.

In Fig. 10(a) we present the analogous graphs for the
square lattices and in Fig. 10(b) for the triangular lattices.
There we notice that the values of H eff

c (R) differ for the
various interface sizes for the disorders that are below the
critical disorder. This suggests that there appears a difference
in the values of H eff

c (R) for various preset interface sizes if the
system is in ferromagnetic phase, while in the paramagnetic
phase the values of H eff

c (R) remain the same no matter what
is the size of the preset interface. Judging on this, it turns out
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FIG. 10. (a) Effective critical field for the square lattice of the different sizes, L = 1024 and L = 32 768, and for different preset interface
values, zero interface (regular system), interface of size 100 and interface of the size of L. Straight lines represent fits obtained from Eq. (11).
(b) The same as in (a) but for triangular lattice. Straight lines are obtained using Eq. (12).

that the two-dimensional hexagonal lattice is in paramagnetic
phase for all disorders greater than zero.

Straight lines in Fig. 10 represent the theoretical predic-
tions, that originates in finite-size effects, similar to Eq. (5),
but for the square and triangular lattices. The methodology
of deriving these predictions is the same, the only thing that
differs is the number of nearest neighbors of the first flipping
spin in the system. Thus, for the square lattice it reads

H eff
c (R) = 4 − R

√
2erf−1

(
1 − 2

L2

)
, (11)

and for triangular

H eff
c (R) = 6 − R

√
2erf−1

(
1 − 2

L2

)
. (12)

B. Spanning avalanches

Let us take a look at the appearance of spanning avalanches
in the systems. We mentioned earlier that those avalanches
play the role of infinite avalanches causing jump in magnetiza-
tion of the infinite systems (i.e., in the thermodynamic limit).
If there are no spanning avalanches in finite systems, then we
may expect that there is no nontrivial critical behavior of the
model.

In the main panel of Fig. 11 we show the average size
of spanning avalanches over system size, 〈Ssp av〉/L2, for dif-
ferent disorders. The trend is decreasing. As the system size
grows, the biggest avalanche in the system occupies less
portion of the whole system. We see that for each system
size there is a plateau of 〈Ssp av〉/L2 values, starting from
R = 0 up to the R = Reff

c (L). If there is no spanning (infi-
nite) avalanche in the system in thermodynamic limit then
we would expect that the plateau value tends to zero, i.e.,
limL→∞〈Ssp av plateau〉/L2 = 0. Thus, we propose a scaling of
the plateau values as

〈Ssp av plateau〉/L2 = a

Lb
. (13)

This relation would imply indeed that the plateau value goes
to zero as the system grows. We tested it and in inset of
Fig. 11 we present the proposed fit. We see that there is a
good agreement between the fitting line and the numerical

data for the parameters’ values a = 0.470 ± 0.015 and b =
0.090 ± 0.005.

V. CLOSER INSIGHT TO THE
AVALANCHE PROPAGATION

In this section we present some results that could be of
interest for further study of avalanche propagation. Obviously,
it is quite hard to give any kind of theoretical analysis for
local avalanche propagation in such random systems. For this
reason we were observing smaller systems, so that it is easier
to track down the changes, with varying model parameters
and try to “catch” some regularities in the evolution of those
systems.

A. Avalanche propagation for a given value of external field

In the previous section we showed that there is a spe-
cific condition for appearing of the biggest avalanches which
holds in a wide range of disorders starting from zero up to

FIG. 11. Main panel: Fractional average size of spanning
avalanche to the system size, 〈Ssp av〉/L2, versus disorder R. Black
squares represent the systems of linear size L = 16, orange circles
represent the systems of linear size L = 128, pink triangles represent
the systems of linear size L = 1024, blue inverted triangles represent
the systems of linear size L = 32 768. Inset: The plateau values of
fractional average size of spanning avalanche versus system size,
fitted using Eq. (13).
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FIG. 12. Fractional size of avalanche, SH/L2, for a given value
of external field [presented on x axis in terms of probability p(−1)].
The linear system size is L = 1024 and interface length linf =
2, 16, 128, 512. The disorder in all presented cases is R = 0.1.

approximately 0.5. This condition reads that the probability
of flipping a spin with exactly one flipped neighbor should be
p(−1) ≈ 0.6 independently on the system size. To closer in-
vestigate this rather interesting finding we simulated systems
at a fixed value of external field with various preset interfaces.
This gives us a clue whether there is a role of interface size or
is it just the value of external field that dictates the avalanche
propagation. The employed values of external field are such
that the probability p(−1) ranges from 0.5 up to 0.7. In the
beginning the system is set in a way that the interface is flipped
and all the nearest neighbors are active spins, i.e., if any of the
interface neighboring spins is unstable, then it will flip and
further avalanche propagation runs, as described in Sec. II. In
this way we mimic the situation when the avalanche starts to
propagate at a given value of external field and reaches some
length of the front interface.

In Fig. 12 we show the impact of interface length
on avalanche size. The system size is L = 1024, disor-
der R = 0.1, and the interface length takes values linf =
2, 16, 128, 512. We see that there are differences in avalanche
size at a given external field only in the small range of growing
part of the curve (just above the value 0.6 on x axis), where
SH/L2 is larger for larger values of interface length. This is
due to the larger probability of stopping an avalanche with a
smaller interface length before it manages to create a larger
propagation front, which is expected. Nevertheless, no matter
what the value of interface length is, the avalanche size starts
to grow at the same value of external field when p(−1) ≈ 0.6.

The results presented in this subsection are the same re-
gardless the value of disorder. We checked it for disorders
from R = 0.05 up to R = 0.45, and the results coincide.

B. Stopping islands

Here we give a rather naive, but hopefully useful, ex-
planation of what is the most efficient way of stopping
an avalanche at the hexagonal lattice. In Fig. 13, black
solid arrows (lower left part) present the directions along
which the avalanche propagation is easier, while red dashed

FIG. 13. Left lower: favorable avalanche propagation directions.
Left upper: an example of the next step in propagation along the fa-
vorable direction. Right lower: nonfavorable avalanche propagation
directions. Right upper: an example of the next step in propagation
along the nonfavorable direction.

arrows (lower right part) show the directions along which the
avalanches propagate hardly. To demonstrate that, we show
the examples of necessary conditions to stop an avalanche.
In the upper left part of Fig. 13 is presented one example of
avalanche propagation along a favorable direction. To stop this
avalanche all circled spins must not flip in the next moment
of discrete time. If some of them flip, then their neighbors
will flip almost surely (because they will have two flipped
neighbors), prolonging even more the avalanche propagation.
On the other side, in the upper right part of Fig. 13 is presented
the avalanche propagation along one of the nonfavorable di-
rections. We see that in this case the avalanche can be stopped
only by not flipping every second spin in a row. This means
that the avalanche will not propagate further even if it encoun-
ters an obstacle created from the nonconnected spins. It is
easier to find such an obstacle than the one from the upper
left part of Fig. 13 where the nonflipping spins are connected.
That is why the avalanches propagate dominantly along the
favorable directions.

In Fig. 14 is shown the system of size 16 × 16 whose
disorder is R = 0.1. This is a state of that system when
the external field is H = 1.025, i.e., p(−1) = 0.598706.
Blue squares represent flipped spins, while circles represent
the spins that are not flipped so far. Red circles represent
the spins that do not flip with the given external field and
have one flipped neighbor. On the other side, white circles
are spins that would flip with given external field and with
one flipped neighbor, but so far none of their neighbors is
flipped, so they remain unflipped. As one can see, the most
of the “edges” that stop the further avalanche propagation are
along the nonfavorable directions for avalanche propagation.

In the case of square and (especially) triangular lattice the
obstacles for avalanche propagation cannot be formed that
easily. Namely, in those lattices avalanche can propagate in
layers. Imagine an interface of flipped spins along a straight
line in a square or triangular lattice. All spins in a layer next
to the interface are connected between themselves, contrary
to the hexagonal lattice. It is enough for one spin, connected
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FIG. 14. System of size 16 × 16 and disorder R = 0.1 at external
field H = 1.025. Blue squares are flipped spins. White circles are
nonflipped spins that would flip if they had at least one flipped
neighbor. Red spins are nonflipped spins that wouldn’t flip even if
they had one flipped neighbor.

to the interface, to flip, and after that its neighbor will have
two flipped neighbors, which will, very probably (because
its effective field is changed by 2), force that spin to flip,
forcing further its neighbor to flip...and so on until the whole
layer is flipped. The same mechanism repeats for the next
layer, which in combination with the already flipped isolated
islands of spins in the system creates a spanning avalanche. As
mentioned, such a mechanism is not possible in the hexagonal
lattice, since the geometry does not allow that the spins which
are neighbors of the interface of flipped spins belong to the
one connected layer.

VI. DISCUSSION AND CONCLUSION

Our results, presented in the previous sections, provide a
numerical evidence that there is no nontrivial critical behavior
of the nonequilibrium athermal random-field Ising model on
the hexagonal 2D lattice. This is corroborated by the varia-
tion of the critical parameters and exponents for collapses of
avalanche parameters distributions for different ranges of dis-
orders and by the results obtained from simulations of systems
with the preset interfaces collected from extensive simulations
that were performed in a wide range of disorders and on the
systems containing up to ≈109 spins. We also gave a closer
insight to the avalanche propagation in the last section. Several
other manifestations of model’s criticality (like the correla-
tion functions, joint distributions, distributions of avalanche
energy and amplitude, and distributions of moments) we have
omitted here for the purpose of simplicity concentrating only
on the most important distributions of avalanche size and
duration.

The foregoing statements support the conclusions stated
in Refs. [38,39,49], although the models analyzed in these
papers are somewhat different from ours. Also, we inspected
here much larger lattices to try to avoid the finite-size ef-
fects as much as possible. For the analysis of cases when
even the biggest lattices were not large enough we introduced
a method for investigation of criticality, utilizing the preset
interface, that mimic the behavior in thermodynamic limit.
By this method we discovered that for a range of disorders

from zero up to ≈0.5 the value of the external field for which
the susceptibility reaches the maximum is determined by the
condition that the probability of flipping a spin whose exactly
one neighbor is flipped is p(−1) ≈ 0.6. This result might
be interesting for future theoretical analysis of the RFIM on
hexagonal lattice.

Until recently, it was commonly considered that the vari-
ants of the nonequilibrium athermal RFIM situated on lattices
of the same dimensionality should belong to the same uni-
versality class despite the possible differences in lattice
topologies (e.g., number of nearest neighbors and their in-
terconnections). However, this standpoint was challenged in
Refs. [38,39] by the conjecture that “the existence of critical
hysteresis depends on the coordination number of the lattice
rather than the dimensionality of space in which the lattice is
embedded”; see Ref. [39]. Our present numerical analysis, to-
gether with the results of previous numerical studies [24,41],
makes this conjecture questionable by indicating that the lat-
tice topology in regular 2D lattices can influence not only the
nonuniversal critical parameters and critical exponents, but
also the existence of a nontrivial critical behavior.

The results on different lattices in two dimensions pre-
sented in papers [24,38,39,41] and in the present one can be
compared. These works deal with the question of the critical
behavior of the nonequilibrium RFIM on triangular, square
and hexagonal two-dimensional lattices. For the square and
triangular lattices there are differences in the values of critical
parameters and critical exponents. Still, they follow the same
collapsing procedures of distributions of avalanche parame-
ters and obey the same rules regarding the collapsing of the
magnetization and susceptibility curves. Those are the rules
presented by Eqs. (7) and (10) and analogous laws for other
quantities in Ref. [25]. However, one could raise a question
what if those collapses fail as they do in the case of hexagonal
lattice, which is presented here in Sec. III. The collapsing
works in the vicinity of critical point. Thus, the curves that
were obtained for the systems whose disorders are not much
above the critical disorder should collapse for the same set
of critical exponents and parameters no matter what range of
disorders is in question. This is the case in Refs. [24,41] for
square and triangular lattices. But, as it can be seen, that is
not the case for the hexagonal lattice. The change of range of
disorders for curves that are collapsed leads to the relatively
large change in estimated values of parameters and exponents.
These results suggest that the critical disorder is significantly
smaller than the the values used for data collapsing in two
different ranges of disorder and that some other approaches
are to be used to conclude further on the criticality of the
RFIM on hexagonal lattice.

To conclude, in this paper we have presented the results of a
numerical study of the nonequilibrium athermal random-field
Ising model in adiabatic regime on the hexagonal 2D lattice.
Our results, based on extensive simulations involving regular
systems and systems with preset interface with up to ≈109

spins, provide the evidence suggesting that this variant of
model do not exhibits a nontrivial critical behavior. Previous
results showed that the values of the exponents and nonuni-
versal critical parameters are different on the square and on
the triangular 2D lattices. Together with the present result,
this supports the recent conjecture that the number of nearest
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neighbors, together with the lattice dimensionality, affect the
model criticality not only in terms of the nonuniversal critical
parameters and the values of the model exponents, but also
altering the existence of nontrivial critical behavior.

ACKNOWLEDGMENT

This work was supported by the Ministry of Education,
Science, and Technological Development of the Republic of
Serbia.

[1] F. Omori, J. Coll. Sci., Imp. Univ. Tokyo 7, 111 (1894).
[2] H. Kanamori and E. E Brodsky, Rep. Prog. Phys. 67, 1429

(2004).
[3] E. A. Jagla, F. P. Landes, and A. Rosso, Phys. Rev. Lett. 112,

174301 (2014).
[4] F. Lombardi, H. J. Herrmann, D. Plenz, and L. de Arcangelis,

Sci. Rep. 6, 24690 (2016).
[5] E. Vives, J. Ortín, L. Mañosa, I. Ràfols, R. Pérez-Magrané, and

A. Planes, Phys. Rev. Lett. 72, 1694 (1994).
[6] M. Bretz, J. B. Cunningham, P. L. Kurczynski, and F. Nori,

Phys. Rev. Lett. 69, 2431 (1992).
[7] D. S. Fisher, Phys. Rep. 301, 113 (1998).
[8] J. P. Sethna, K. A. Dahmen, and O. Perković, in The Science of
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