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Equilibrium free-energy differences from a linear nonequilibrium equality
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Extracting equilibrium information from nonequilibrium measurements is a challenge task of great importance
in understanding the thermodynamic properties of physical, chemical, and biological systems. The discovery
of the Jarzynski equality illumines the way to estimate the equilibrium free-energy difference from the work
performed in nonequilibrium driving processes. However, the nonlinear (exponential) relation causes the poor
convergence of the Jarzynski equality. Here, we propose a concise method to estimate the free-energy difference
through a linear nonequilibrium equality which inherently converges faster than nonlinear nonequilibrium
equalities. This linear nonequilibrium equality relies on an accelerated isothermal process which is realized
by using a unified variational approach, named variational shortcuts to isothermality. We apply our method to
an underdamped Brownian particle moving in a double-well potential. The simulations confirm that the method
can be used to accurately estimate the free-energy difference with high efficiency. Especially during fast driving
processes with high dissipation, the method can improve the accuracy by more than an order of magnitude
compared with the estimator based on the nonlinear nonequilibrium equality.
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I. INTRODUCTION

How can one extract equilibrium information from
nonequilibrium measurements? This may appear a contradic-
tory question at first glance. According to the second law
of thermodynamics, the mean work performed in a nonequi-
librium driving process will be larger than the free-energy
difference between equilibrium states. Only if a system slowly
evolves along a succession of equilibrium states, for example,
in an isothermal process, will the mean work equal the free
energy difference. Recent advances in nonequilibrium statisti-
cal mechanics have suggested a promising direction to extract
free energy information from nonequilibrium measurements.
As one of the most representative achievements, the Jarzynski
equality [1] establishes a rigorous relation between the free
energy difference and the exponential average over the work
performed in a nonequilibrium driving process, thus extending
the inequality of the second law of thermodynamics. While
the equality implies that one can estimate the free energy
difference by using arbitrary fast measurements, its applica-
bility is hampered by the poor convergence that arises from
the sensitivity of the nonlinear (exponential) average to rare
events [2–4]. An illuminating question is whether we can find
a linear nonequilibrium equality to avoid this shortage, so that
we can pave the way for efficiently extracting equilibrium
information from nonequilibrium measurements.

Recently, the present authors and their coworker proposed
a concept of shortcuts to isothermality and found a lin-
ear nonequilibrium equality [see Eq. (4) below, named the
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intrinsic work equality] between the free energy difference
and the intrinsic work [5], which enlighten us to a possible
solution to the above question. As a unified framework to
accelerate the isothermal process, shortcuts to isothermality
have been successfully validated in experiment [6–8] and fur-
ther extended to the optimization of finite-time heat engines
[9–11] and the control of biological evolutions [12]. A key
point in shortcuts to isothermality is to apply an auxiliary
potential to the system of interest, such that the system evolves
along the “isothermal” line corresponding to the original
Hamiltonian. It is this “isothermality” that leads to the intrin-
sic work equality. This equality may be used to estimate the
free energy difference with high accuracy, so it provides a new
scheme for the free energy estimation in complex systems.
Unfortunately, there is an obstacle that the process of solving
the auxiliary potential requires the free energy information
in advance. Similar obstacles are prevalent in many other
schemes for estimating the free energy difference [13–16]. It
will be of great significance to the free energy estimation if we
could find a method to calculate the auxiliary potential without
resort to the free energy information.

In this work, we overcome this obstacle by developing a
unified variational approach to approximately realize short-
cuts to isothermality. Relying on the accelerated isothermality,
we can estimate the free energy difference by using the lin-
ear nonequilibrium equality. As a specific application, we
consider an underdamped Brownian particle moving in a
double-well potential, for which we show that our method
improves the accuracy by more than an order of magnitude
and shows excellent convergence in fast driving processes.
Therefore, our method offers a possible solution to the dif-
ficulties of high-efficiency free energy estimation in complex
systems, such as biological or chemical molecules.
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II. SHORTCUTS TO ISOTHERMALITY

Shortcut to isothermality [5] is a unified framework to
accelerate the conventional isothermal process and thereby
realize finite-rate transitions between two equilibrium states
at the same temperature. In the following, we briefly intro-
duce the strategy of shortcuts to isothermality. Consider a
system described by the Hamiltonian Ho(x, λ(t )) with x =
(x1, x2, . . . , xN ) representing the microstate of the system and
λ(t ) being an externally controlling parameter. The system is
coupled to a thermal reservoir with a constant temperature
T . The motion of the system is governed by the following
equation:

ẋi = f o
i (x, t ). (1)

In this work, the dot above a variable represents the time
derivative of that variable. f o = ( f o

1 , f o
2 , . . . , f o

N ) represents
a generalized “force” field that depends on the Hamiltonian
Ho(x, λ(t )) and the specific dynamics we are considering.

We introduce an auxiliary potential Ua(x, t ) to the original
Hamiltonian Ho(x, λ(t )) so that the system distribution ρ(x, t )
is always in the instantaneous canonical distribution of the
original Hamiltonian,

ρ(x, t ) = eβ[F (λ(t ))−Ho(x,λ(t ))], (2)

where β = 1/kBT with kB being the Boltzmann factor.

F (λ) ≡ −β−1 ln

[∫
dxe−βHo(x,λ)

]
(3)

denotes the free energy of the original system in equilibrium
for fixed λ. With additional requirements that Ua(x, t ) van-
ishes at two endpoints of the driving process, the system of
interest will appear to evolve along the isothermal line in a
finite rate. Along this “isothermal” line, we can derive an
equality between the free energy difference and the mean
work related to the original Hamiltonian (which is called the
intrinsic work) [5]:

�F = 〈wi〉 ≡
∫ τ

0

〈
∂Ho

∂t

〉
dt, (4)

where 〈· · · 〉 denotes the ensemble average over trajectories.
Since Eq. (4) takes a linear average over the work, it inher-
ently converges faster than other nonlinear nonequilibrium
equalities [2]. In addition to shortcuts to isothermality, many
researchers have also discussed the realization of finite-rate
transitions from an equilibrium state to another one with the
same temperature. One of the most important achievements is
the engineered swift equilibration [17] proposed by Martínez
and coworkers. They realized fast switches between equilib-
rium states of a Brownian particle system for the first time;
see also [18,19]. Since the instantaneous canonical state (2) is
not always guaranteed in the engineered swift equilibration,
the intrinsic work equality (4) cannot be derived from this
protocol.

Within the framework of shortcuts to isothermality, the
motion equation (1) is modified to the form,

ẋi = f o
i (x, t ) + f a

i (x, t ), (5)

with f a = ( f a
1 , f a

2 , . . . , f a
N ) representing the auxiliary field

induced by Ua(x, t ). The form of f a(x, t ) also depends on the

specific dynamics we are considering. The evolution equation
of the system distribution ρ(x, t ) can be formally written as

∂ρ

∂t
= L̂oρ − ∂

∂xi

(
f a
i ρ

)
, (6)

where L̂o represents the evolution operator related to the
original field f o(x, t ). Throughout this paper, the repeated
subscripts abide by the Einstein summation convention. We
assume that when λ is fixed, the original system will relax
toward a unique equilibrium state ρeq ∝ e−βHo(x,λ). Hence,
we can obtain L̂oe−βHo(x,λ) = 0. Substituting the instantaneous
canonical distribution (2) into the evolution Eq. (6), we can
derive that (see Appendix A for details)

f a
i

∂Ho

∂xi
− 1

β

∂ f a
i

∂xi
= dF

dt
− ∂Ho

∂t
. (7)

Similar equation was also derived by Vaikuntanathan and
Jarzynski [15]. They did not provide a general strategy to
solve for the auxiliary field f a(x, t ), but suggested one guess
the auxiliary field according to physical insight, experience,
and prior knowledge of the system.

Equation (7) highlights the difficulty of finding the aux-
iliary field f a(x, t ) [or the auxiliary potential Ua(x, t )]
precisely: Before solving the equation, we need to know in
advance the time dependence of the free energy which is
usually hard to obtain for most complex systems. Thus, our
goal is to propose a variational method that allows one to
circumvent the requirement relating to the free energy infor-
mation and determine the best possible f a(x, t ) under some
restrictions, such as some specific boundary conditions or just
experimental feasibility.

III. VARIATIONAL SHORTCUTS TO ISOTHERMALITY

Based on Eq. (7), we can define a function,

D( f ) ≡ fi
∂Ho

∂xi
− 1

β

∂ fi

∂xi
+ ∂Ho

∂t
− dF

dt
, (8)

where f = ( f1, f2, . . . , fN ) represents an approximation to
the exact auxiliary field f a(x, t ). If f = f a, then D( f ) = 0.

The Gauss principle of least constraint [20] provides a
clue to seek the best possible f a(x, t ). The Gauss principle
states that the difference between the trajectory of a restricted
system ar

i and its unrestricted Newtonian counterpart au
i =

Fi/mi can be evaluated by the least value of the so-called
“constraint” (Zwang) Z = mi(ar

i − au
i )2. Here, ar

i represents
the acceleration of the restricted motion, while au

i repre-
sents the acceleration of the free unrestricted motion which
is defined by force Fi divided by mass mi. Various efforts
have been made to extend the idea of the Gauss principle to
other similar problems, such as the development of time re-
versible deterministic thermostats [21,22] and local quantum
counterdiabatic driving protocols [23–25]. Despite the fun-
damental status of the Gauss principle, there are few reports
about the extension of the principle in nonequilibrium driving
processes.

Enlightened by the Gauss principle of least constraint, we
can define a functional,

G( f ) ≡
∫

dxD2( f )e−βHo, (9)
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as a nonequilibrium “constraint” on the approximate auxiliary
field f (x, t ). Here we have multiplied the local constraint
D2( f ) by a function e−βHo and then taken an integral over
the whole phase space. In principle, the function e−βHo can
be replaced by any positive function. We will find that the
function e−βHo can help eliminate the free energy information
in the nonequilibrium constraint (9). We can prove that finding
the exact auxiliary field in Eq. (7) is equivalent to solving the
variational equation (see Appendix B),

δG( f )

δ f
= 0. (10)

Substituting Eq. (8) into the nonequilibrium constraint (9),
we can derive

G( f ) =
∫

dx
(

fi
∂Ho

∂xi
− 1

β

∂ fi

∂xi

)2

e−βHo

− 2

β

∫
dx

(
∂Ho

∂t
− dF

dt

)
∂

∂xi
( fie

−βHo )

+
∫

dx
(

∂Ho

∂t
− dF

dt

)2

e−βHo, (11)

which reveals that the nonequilibrium constraint is closely
related to the time derivative of the system free energy dF/dt .
The third term of Eq. (11) does not affect the variation in
Eq. (10) since it is independent of f (x, t ). By using integration
by parts, we can eliminate dF/dt in the second term of the
constraint (11):

− 2

β

∫
dx

(
∂Ho

∂t
− dF

dt

)
∂

∂xi
( fie

−βHo )

= 2

β

∫
dx fi

∂2Ho

∂xi∂t
e−βHo. (12)

Here we have assumed that the boundary term vanishes at
infinity. According to the above analysis, we can finally re-
duce the nonequilibrium constraint (11) into the following
simplified form:

Gs( f ) =
∫

dx
(

fi
∂Ho

∂xi
− 1

β

∂ fi

∂xi

)2

e−βHo

+ 2

β

∫
dx fi

∂2Ho

∂xi∂t
e−βHo, (13)

which is our first central result. Here the requirement about
the free energy information has been eliminated. According
to different restrictions on the auxiliary field, we first choose a
proper trial function f (x, t ). Then, substituting the trial func-
tion into the nonequilibrium constraint (13) and applying the
variational procedure, we can find the best possible auxiliary
field f a(x, t ) and thereby approximately realize shortcuts to
isothermality. We dub such a variational scheme the “varia-
tional shortcut to isothermality.”

For simple forms of Ho(x, λ(t )), calculating the integral
in the constraint (13) is very straightforward. However, for
complex systems where the integral in the nonequilibrium
constraint (13) cannot be accurately calculated, we may re-
fer to some techniques for approximating the integral, such
as the saddle-point approximation [26]. In order to get bet-
ter approximation, we make further transformations of the

nonequilibrium constraint (13). By using integration by parts,
we can derive (see Appendix C for details)

Gs( f ) =
∫

dxWe−βHo, (14)

with

W (x, t ) = 1

β2

∂ fi

∂x j

∂ f j

∂xi
+ 1

β
fi f j

∂2Ho

∂xi∂x j
+ 2

β
fi

∂2Ho

∂xi∂t
. (15)

Then, applying the saddle-point approximation to the integral
(14), we can obtain (see Appendix C)

Gs( f ) ≈
∑

m

W (xm, t )e−βHo(xm,λ)
N∏

i=1

√
2π

β
i(xm, t )
, (16)

where 
i is an eigenvalue of the Hessian matrix D with Djk ≡
(∂2Ho/∂x j∂xk )|x=xm . Equation (16) is our second central re-
sult. Here xm represents one of the minimum points of the
function Ho(x, λ). When applying the saddle-point approxi-
mation, we have assumed that the integral function We−βHo is
largely peaked around the points xm. Please see Appendix C
for detailed explanation about this assumption.

IV. APPLICATION

Considering an underdamped Brownian particle
controlled by an original potential Uo(q, λ(t )) and a
momentum-dependent auxiliary potential Ua(q, p, t ) with
q = (q1, q2, . . . , qN ) and p = (p1, p2, . . . , pN ) denoting
coordinate and momentum of the particle, respectively. The
motion of the particle is governed by the modified Langevin
equation [5],

q̇i = pi

m
+ ∂Ua

∂ pi
,

ṗi = −∂Uo

∂qi
− ∂Ua

∂qi
− γ

(
pi

m
+ ∂Ua

∂ pi

)
+ ξi(t ), (17)

with m being the mass of the particle. γ represents the coeffi-
cient of friction and ξ = (ξ1, ξ2, . . . , ξN ) denotes the standard
Gaussian white noise satisfying 〈ξi(t )〉 = 0 and 〈ξi(t )ξ j (t ′)〉 =
2γ kBT δi jδ(t − t ′). We propose the following trial form for the
auxiliary potential,

Ua(q, p, t ) = λ̇(t ){[s(λ(t ))qi + ui(λ(t ))]pi + v(q, λ(t ))},
(18)

where s(λ(t )), u(λ(t )), and v(q, λ(t )) are undetermined func-
tions. To ensure that Ua vanishes at the beginning and end
of the driving process, we impose the boundary conditions
λ̇(0) = λ̇(τ ) = 0. The cross term qi pi in the auxiliary po-
tential (18), which is very hard to be realized in experiment
[5,27], can be eliminated by introducing a change of variables
(see Appendix D for details).

As an illustrative example, we consider a one-dimensional
double-well potential,

Uo(q, λ(t )) = kq4 − λ(t )q2, (19)

where k is a constant. The Brownian motion of a particle
in the double-well potential (19) is widely used to describe
noise-driven motion in a variety of bistable physical and
chemical systems [28–31]. The evolution of the Brownian par-
ticle trajectory x = {q p}T is then described by the Langevin
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equation,

q̇ = p

m
+ ∂Ua

∂ p
,

ṗ = −∂Uo

∂q
− ∂Ua

∂q
− γ

(
p

m
+ ∂Ua

∂ p

)
+ ξ (t ). (20)

Comparing it with the general motion Eq. (5), we obtain the
corresponding relations,

f o(q, p, t ) =
{

p

m
− ∂Uo

∂q
− γ

m
p + ξ (t )

}T

, (21)

and

f a(q, p, t ) =
{

∂Ua

∂ p
− ∂Ua

∂q
− γ

∂Ua

∂ p

}T

. (22)

In the one-dimensional underdamped Brownian particle sys-
tem, the nonequilibrium constraint (16) can be simplified to
the form,

Gs ≈
∑

m

W ′(qm, t )e−βUo(qm,λ)

√
2π

β
(qm, λ)
, (23)

with

W ′(q, t ) = 1

β2

〈(
∂ fq

∂q

)2〉
p

+ 1

β2

〈(
∂ fp

∂ p

)2〉
p

+ 2

β2

〈
∂ fp

∂q

∂ fq

∂ p

〉
p

+ 1

β

〈
∂2Uo

∂q2
f 2
q

〉
p

+ 1

β

〈
f 2

p

〉
p
+ 2

β

〈
fq

∂2Uo

∂q∂t

〉
p

. (24)

Here 〈· · · 〉p ≡ ∫ +∞
−∞ · · · e−βp2/2d p represents the integral in

the momentum space. It can be calculated directly without
using the saddle-point approximation. f ≡ { fq fp}T denotes
an approximation to f a ≡ { f a

q f a
p }T . According to the trial

form (18), we assume that the auxiliary potential takes the
form,

Ua(q, p, t ) = λ̇(t )[b∗
6(t )qp + b∗

5(t )p

+ b∗
4(t )q4 + b∗

3(t )q3 + b∗
2(t )q2 + b∗

1(t )q],
(25)

where b∗
1(t ), b∗

2(t ), b∗
3(t ), b∗

4(t ), b∗
5(t ), and b∗

6(t ) are undeter-
mined parameters. Therefore, the approximate auxiliary field
should take the form,

f = {λ̇(b6q + b5) − λ̇[b6(p + γ q) + γ b5

+ 4b4q3 + 3b3q2 + 2b2q + b1]}T , (26)

with b1(t ), b2(t ), b3(t ), b4(t ), b5(t ), and b6(t ) being approx-
imations to the corresponding parameters b∗

1(t ), b∗
2(t ), b∗

3(t ),
b∗

4(t ), b∗
5(t ), and b∗

6(t ). Substituting the form (26) into the
nonequilibrium constraint (23) and then minimizing it over
the parameters, we can derive that the best possible auxiliary
potential follows:

Ua(q, p, t ) = λ̇

(
βλ

2βλ2 + 3k
qp + b∗

4q4 + b∗
2q2

)
, (27)
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FIG. 1. Comparison of estimates of �F for α = 1.0. 〈wo〉
(squares) and �Fo (diamonds) represent the estimates from the mean
work and the Jarzynski equality in the process driven by Uo only. 〈wt 〉
(circles), �Ft (upper triangles), and 〈wi〉 (lower triangles) represent
the estimates from the mean work, the Jarzynski equality, and the
intrinsic work (4) in the process driven by Uo and Ua. The solid line
represents the theoretical value [30], �F = 62.94. The estimates of
�F are shown on a logarithmic scale.

where the undetermined parameters b∗
2 and b∗

4 should satisfy
the relation,

b∗
2 + λ

k
b∗

4 = − γ βλ

4βλ2 + 6k
. (28)

Equation (28) gives us flexibility for choosing the parameters
b∗

2 and b∗
4. We can compare the form of the auxiliary potential

(27) with the one in the overdamped situation and then de-
rive that b∗

2 = −3γ βλ/(8βλ2 + 12k) and b∗
4 = γ βk/(8βλ2 +

12k). See Appendix E for detailed discussion. Therefore, the
best possible auxiliary potential takes the form,

Ua(q, p, t ) = βλ̇

8βλ2 + 12k
(4λqp + γ kq4 − 3γ λq2). (29)

We simulate the motion of an underdamped Brown-
ian particle in the potential (19) and add the auxiliary
potential (29) to approximately realize shortcuts to isother-
mality. The dimensionless driving protocol is chosen to
be λ̃(t ) = 8[1 + cos(πt/τ )] with λ̃ ≡ λ/

√
kkBT . The influ-

ence of the particle inertia is determined by a parameter
α ≡ τp/τq with τp ≡ m/γ and τq ≡ γ /

√
kkBT denoting two

characteristic times of the system. The simulations are per-
formed for dimensionless driving times τ̃ ≡ τ/τp ranging
from 0.1 to 3.0. Details of the simulation are attached
in Appendix F. We use Eq. (4) to estimate the free en-
ergy difference �F . As shown in Fig. 1, the results are
compared with the estimates given by the mean work
and the Jarzynski equality. Here, 〈wo〉 ≡ ∫ τ

0 〈 ∂Uo(x,t )
∂t 〉dt and

�Fo ≡ −β−1 ln 〈e−βwo〉, respectively, represent the estimates
from the mean work and the Jarzynski equality in the process
driven by Uo only, while 〈wt 〉 ≡ ∫ τ

0 (〈 ∂Uo
∂t 〉 + 〈 ∂Ua

∂t 〉)dt and
�Ft ≡ −β−1 ln 〈e−βwt 〉, respectively, represent the estimates
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FIG. 2. Comparison of estimates of �F for α = 0.1. The caption
for Fig. 1 applies here.

from the mean work and the Jarzynski equality in the process
driven by Uo and Ua.

Figure 1 shows that Eq. (4) provides remarkably accurate
and stable estimates of �F . Especially in short driving times,
where dissipation is expected to be high, the estimates given
by Eq. (4) largely outperform the estimates given by the mean
work and the Jarzynski equality. We also compare the esti-
mates when the inertia is small (α = 0.1). As shown in Fig. 2,
the estimates given by Eq. (4) are superior to other estimates
over the entire range of driving times. These observations
show that the variational shortcut to isothermality is promising
to provide a reliable scheme for high-efficiency free energy
estimation. This is our third central result.

Figure 3 shows the comparison of different trajectory-work
distributions for α = 1.0. Here we choose a short driving time,
τ̃ = 0.1. As shown in Fig. 3, the distribution of the intrinsic
trajectory work ρ(wi ) is sharply centered around the theoret-
ical value of �F while the peaks of the total trajectory-work
distributions ρ(wo) and ρ(wt ) deviate far from the theoretical
value of �F . Besides, ρ(wo) and ρ(wt ) take much broader
forms than ρ(wi ). These observations imply that compared
with the mean work and the Jarzynski equality, the intrinsic
work equality (4) may allow us to obtain a reliable estimate of
the free energy difference with a small number of trajectories.
This is a superiority for the intrinsic work equality (4) when
we are dealing with practical systems in which only a small
number of samples are available.

V. CONCLUSION AND DISCUSSION

Enlightened by the idea of the Gauss principle of least
constraint, we have developed the variational shortcut to
isothermality, which can approximately accelerate the con-
ventional isothermal process for complex systems. A key
advantage of this variational method is that it allows us to
obtain the best possible auxiliary potential for shortcuts to
isothermality without resort to the free energy information.
Combined with the linear nonequilibrium equality (4), the
variational method can be used to estimate the free energy
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FIG. 3. Comparison of different work distributions for α = 1.0.
The driving time is 0.1. ρ(wo) (crosses) denotes the distribution of
the total trajectory work wo in the process driven by Uo only. ρ(wt )
(open circles) and ρ(wi ) (asterisks) denote the distributions of the
total trajectory work wt and the intrinsic trajectory work wi in the
process driven by Uo and Ua.

difference. We have applied our method to an underdamped
Brownian particle moving in a double-well potential. The
simulations show that our method can accurately estimate the
free energy difference with high efficiency. A potential future
direction is to test our method on more complex multidimen-
sional systems.

Considering the experimental feasibility, we have proposed
a trial form (18) for the auxiliary potential of the underdamped
Brownian particle system. In numerical simulations, we can
assume a trial form with high-order couplings between the
coordinate and the momentum. The variational shortcut to
isothermality is still applicable in this situation and may pro-
vide a more accurate estimate of the free energy difference.

Here we have stressed the application of our variational
method in accelerating the isothermal process and estimating
the free energy difference. Related problems are that of impor-
tance sampling [32–34], shortcuts to stochastic near-adiabatic
pumping [35,36], preprocessing strategies before heating and
cooling [37–39], thermodynamic controls [40], and so on.
Similar to shortcuts to isothermality, the dynamics of impor-
tance sampling is also modified so as to simulate rare events
of the original dynamics more frequently [34]. In spite of the
different targets and ways of modifying the dynamics, the idea
of our variational method is promising to be extended to these
problems.
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APPENDIX A: DERIVATION OF THE EVOLUTION
EQUATION FOR THE AUXILIARY FIELD, EQ. (7)

Consider a system following the motion equation:

ẋi = f o
i (x, t ). (A1)

The evolution equation of the system distribution ρ(x, t ) can
be formally written as

∂ρ

∂t
= − ∂

∂xi
(ẋiρ) = − ∂

∂xi

(
f o
i ρ

)
. (A2)

If we consider f o(x, t ) containing both deterministic and
stochastic parts (such as the Langevin dynamics), the time
evolution Eq. (A2) will be different for each realization of
the stochastic parts [41]. After averaging over the stochastic
parts, we can formally derive the evolution equation of the
observable probability:

∂ρ

∂t
= L̂oρ, (A3)

where L̂o ≡ L̂o(x, t ) represents the evolution operator. If we
add an auxiliary potential Ua(x, t ) to the original Hamiltonian,
the motion equation is modified to the form,

ẋi = f o
i (x, t ) + f a

i (x, t ), (A4)

where the auxiliary field f a(x, t ) depends on Ua(x, t ) and the
dynamics we are considering. Since the ensemble average
over the stochastic parts of f o(x, t ) does not affect the de-
terministic field f a(x, t ), we can formally derive the modified
evolution equation as

∂ρ

∂t
= L̂oρ − ∂

∂xi

(
f a
i ρ

)
, (A5)

which is just Eq. (6) in the main text. When we adopt the
strategy of shortcuts to isothermality, the system distribution
will always stay in the instantaneous canonical distribution of
Ho(x, λ(t )):

ρ ieq(x, λ(t )) = eβ[F (λ(t ))−Ho(x,λ(t ))]. (A6)

Substituting the instantaneous canonical distribution (A6) into
the modified evolution equation (A5), we can derive

f a
i

∂Ho

∂xi
− 1

β

∂ f a
i

∂xi
= dF

dt
− ∂Ho

∂t
, (A7)

which corresponds to Eq. (7) in the main text.
Since both F (λ(t )) and Ho(x, λ(t )) depend explicitly on

time through the controlling parameter λ(t ), we can further
derive

f a
i

∂Ho

∂xi
− 1

β

∂ f a
i

∂xi
=

(
dF

dλ
− ∂Ho

∂λ

)
λ̇. (A8)

Comparing two sides of Eq. (A8), we find that f a can be
preassumed to take the form,

f a(x, t ) = λ̇(t )ν(x, λ(t )), (A9)

with ν(x, λ(t )) being an undetermined function.

APPENDIX B: EQUIVALENCE BETWEEN THE
EVOLUTION EQ. (7) AND THE VARIATIONAL EQ. (10)

We start from the definition of the function,

D( f ) ≡ fi
∂Ho

∂xi
− 1

β

∂ fi

∂xi
+ ∂Ho

∂t
− dF

dt
, (B1)

where f ≡ f (x, t ) represents an approximation to the exact
auxiliary field f a(x, t ). If f = f a, then D( f ) = 0. For any
forms of f , we can derive∫

dxD( f )e−βHo = − 1

β

∫
dx

∂

∂xi
( fie

−βHo )

+
∫

dx
(

∂Ho

∂t
− dF

dt

)
e−βHo = 0. (B2)

Referring to the Gauss principle of least constraint [20], we
define a functional,

G( f ) ≡
∫

dxD2( f )e−βHo, (B3)

as a nonequilibrium “constraint” on the auxiliary field f . If
the form of the auxiliary field is free from restrictions, the
nonequilibrium constraint (B3) will be minimized whenever
f satisfies:

δG
δ f

= 0 ⇒ ∇D| f= f a = 0, (B4)

which then implies

D| f= f a = C(t ), (B5)

with C(t ) being a time-dependent parameter. Because of the
property (B2), we can derive C(t ) = 0, i.e.,

D| f= f a = f a
i

∂Ho

∂xi
− 1

β

∂ f a
i

∂xi
+ ∂Ho

∂t
− dF

dt
= 0, (B6)

which, as anticipated, is just Eq. (7) in the main text.
Therefore, unrestricted minimization of the nonequilibrium
constraint (B3) is mathematically equivalent to solving
Eq. (7). If restrictions prevent the free choice of f , we can
still minimize the nonequilibrium constraint (B3) under the
given restrictions.

APPENDIX C: APPLYING THE SADDLE-POINT
APPROXIMATION TO THE NONEQUILIBRIUM

CONSTRAINT

Consider an integral of the form,∫ y1

y0

dyw(y)eAg(y), (C1)

where w(y) and g(y) are some real functions and A >

0 is a parameter. For large values of A, the integral
(C1) is completely dominated by the peaks with each
peak located at a maximum of g(y). Without loss of
generality, let us first assume that ym is the only max-
imum point of g in the interval (y0, y1). Changing the
integral variable according to y = ym + z/

√
A and then
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expanding Ag(y) in power of z, we have

Ag(y) = Ag(ym) + z2

2

d2g(y)

dy2

∣∣∣∣
y=ym

+ O

(
1√
A

)
. (C2)

Here the first-derivative term is missing because ym is the maximum of g. In the exponential form, we can further derive that

exp(Ag(y)) = exp

(
Ag(ym) + z2

2

d2g(y)

dy2

∣∣∣∣
y=ym

)(
1 + O

(
1√
A

))
. (C3)

Assuming that w(ym) = 0, we can similarly expand w(y) in power of z:

w(y) = w(ym)

(
1 + O

(
1√
A

))
. (C4)

Substituting Eqs. (C3) and (C4) into (C1), we have∫ y1

y0

dyw(y)eAg(y) = w(ym)eAg(ym )

√
A

∫ z1

z0

dz

[
exp

(
z2

2

d2g(y)

dy2

∣∣∣∣
y=ym

)(
1 + O

(
1√
A

))]
. (C5)

In the large A limit, z0 and z1 will tend to −∞ and +∞, respectively. Therefore, we can give the saddle-point approximation:∫ y1

y0

dyw(y)eAg(y) ≈ w(ym)eAg(ym )

√
2π

−Ad2g(y)/dy2|y=ym

. (C6)

If there are multiple maxima of g(y) in the integral interval (y0, y1), we can divide the interval into smaller intervals according
to the location of each maximum point. The integral (C1) equals to the sum of the approximation in each small interval.

In the following, we apply the saddle-point approximation to the integral in the nonequilibrium constraint. Starting from the
nonequilibrium constraint (13), we can derive

Gs( f ) =
∫

dx fi f j
∂Ho

∂xi

∂Ho

∂x j
e−βHo + 1

β2

∫
dx

∂ fi

∂xi

∂ f j

∂x j
e−βHo − 2

β

∫
dx fi

∂Ho

∂xi

∂ f j

∂x j
e−βHo + 2

β

∫
dx fi

∂2Ho

∂xi∂t
e−βHo. (C7)

If we apply the saddle-point approximation directly to the integral in the nonequilibrium constraint (C7), the first term and the
third term will vanish since there are first-order derivatives of Ho in them. In order to get a better approximation, we make further
transformations to the nonequilibrium constraint (C7). Applying integration by parts to the first term, we can derive∫

dx fi f j
∂Ho

∂xi

∂Ho

∂x j
e−βHo = − 1

β

∫
dx fi f j

∂Ho

∂xi

∂ (e−βHo )

∂x j

= 1

β

∫
dx

[
∂

∂x j

(
fi f j

∂Ho

∂xi

)]
e−βHo

= 1

β

∫
dx

(
f j

∂ fi

∂x j

∂Ho

∂xi
+ fi f j

∂2Ho

∂xi∂x j
+ fi

∂Ho

∂xi

∂ f j

∂x j

)
e−βHo. (C8)

Here we have also assumed that the boundary terms vanish at infinity. We can similarly obtain

1

β

∫
dx f j

∂ fi

∂x j

∂Ho

∂xi
e−βHo = 1

β2

∫
dx

(
∂ fi

∂x j

∂ f j

∂xi
+ f j

∂2 fi

∂xi∂x j

)
e−βHo, (C9)

and

1

β

∫
dx fi

∂Ho

∂xi

∂ f j

∂x j
e−βHo = 1

β2

∫
dx

(
∂ fi

∂xi

∂ f j

∂x j
+ f j

∂2 fi

∂xi∂x j

)
e−βHo. (C10)

Substituting Eqs. (C8), (C9), and (C10) into (C7), we can finally derive

Gs( f ) = 1

β2

∫
dx

∂ fi

∂x j

∂ f j

∂xi
e−βHo + 1

β

∫
dx fi f j

∂2Ho

∂xi∂x j
e−βHo + 2

β

∫
dx fi

∂2Ho

∂xi∂t
e−βHo =

∫
dxWe−βHo, (C11)

with

W (x, t ) = 1

β2

∂ fi

∂x j

∂ f j

∂xi
+ 1

β
fi f j

∂2Ho

∂xi∂x j
+ 2

β
fi

∂2Ho

∂xi∂t
. (C12)
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Here we have canceled out the terms containing the first-order
derivative of Ho in the nonequilibrium constraint.

Without loss of generality, we assume that the Hamiltonian
function Ho has only one minimum located at xm. We use � ≡
Emin − Emax to denote the difference between the minimum
Emin of the function Ho and its adjoining maximum Emax. Then
the exponential term −βHo can be transformed into

−βHo = AH̃o, (C13)

where A ≡ −β� and H̃o ≡ Ho/�. When A � 1, the saddle-
point approximation can be applied to the integral (C11).
Changing the integral variable according to x = xm + z/

√
A,

we can expand AH̃o in power of z:

AH̃o(x, λ) = AH̃o(xm, λ) + ziz j

2

∂2H̃o

∂xi∂x j

∣∣∣∣
x=xm

+ O

(
1√
A

)
.

(C14)

Similarly, we can derive that

exp(AH̃o) = exp

(
AH̃o(xm, λ) + ziz j

2

∂2H̃o

∂xi∂x j

∣∣∣∣
x=xm

)

×
(

1 + O

(
1√
A

))
, (C15)

and

W (x, t ) = W (xm, t )

(
1 + O

(
1√
A

))
. (C16)

Substituting Eqs. (C15) and (C16) into (C11), we have

Gs( f ) = W (xm, t )eAH̃o(xm,λ)

√
A

∫
dz

[
exp

(
ziz j

2

∂2H̃o

∂xi∂x j

∣∣∣∣
x=xm

)

×
(

1 + O

(
1√
A

))]
. (C17)

In the large A limit, we can give the saddle-point approxima-
tion:

Gs( f ) ≈ W (xm, t )e−βHo(xm,λ)
n∏

i=1

√
2π

β
i(xm, t )
, (C18)

where 
i is an eigenvalue of the Hessian matrix,

D =

⎛
⎜⎜⎜⎜⎝

∂2Ho

∂x2
1

∂2Ho
∂x1∂x2

. . . ∂2Ho
∂x1∂xn

∂2Ho
∂x2∂x1

∂2Ho

∂x2
2

. . . ∂2Ho
∂x2∂x1

...
...

. . .
...

∂2Ho
∂xn∂x1

∂2Ho
∂xn∂x2

. . . ∂2Ho
∂x2

n

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣
x=xm

. (C19)

Similarly, if the Hamiltonian function H0 has multiple minima
{xm} with m = 1, 2, . . ., the integral (C11) will be the sum of
the approximation around each minimum point:

Gs( f ) ≈
∑

m

W (xm, t )e−βHo(xm,λ)
n∏

i=1

√
2π

β
i(xm, t )
. (C20)

We have assumed that A � 1 when applying the saddle-point
approximation (C18). In a nutshell, this assumption means
that the integral function We−βHo is largely peaked around the
minimum points xm.

APPENDIX D: FAST-FORWARD PROTOCOL
IN SHORTCUTS TO ISOTHERMALITY

We start from the modified Langevin equation,

q̇i = pi

m
+ ∂Ua

∂ pi
,

ṗi = −∂Uo

∂qi
− ∂Ua

∂qi
− γ

(
pi

m
+ ∂Ua

∂ pi

)
+ ξi(t ), (D1)

where the auxiliary potential takes the trial form,

Ua(q, p, t ) = λ̇(t ){[s(λ(t ))qi + ui(λ(t ))]pi + v(q, λ(t ))}.
(D2)

Similar to the nonlocal term in shortcuts to adiabaticity, the
cross term qi pi in the auxiliary potential (D2) is hard to be
realized in experiment [5,27]. We now introduce a change of
variables that can effectively eliminate the cross term.

Substituting Eq. (D2) into Eq. (D1), we can obtain

q̇i = pi

m
+ λ̇(sqi + ui ),

ṗi = − ∂Uo

∂qi
− λ̇

(
spi + ∂v

∂qi

)
− γ

[ pi

m
+ λ̇(sqi + ui )

]
+ ξi(t ).

(D3)

Consider the evolution of the observables,

Qi = qi, Pi = pi + mλ̇(sqi + ui ), (D4)

along a trajectory governed by the Langevin equation (D3).
Taking the time derivative of the observables, we obtain

Q̇i = q̇i,

Ṗi = ṗi + mλ̈(sqi + ui ) + mλ̇2

(
∂s

∂λ
qi + dui

dλ

)
+ λ̇spi.

(D5)

By applying the mapping relations (D4) and (D5) into
Eq. (D3), we get

Q̇i = Pi

m
,

Ṗi = −∂Uo

∂Qi
+ F a

i − γ
Pi

m
+ ξi(t ), (D6)

with the auxiliary force,

F a
i (Q, t ) = −λ̇

∂v

∂Qi
+ mλ̈(sQi + ui ) + mλ̇2

(
∂s

∂λ
Qi + dui

dλ

)
.

(D7)

Here λ̈ represents the second time derivative of λ.
Similar to the fast-forward protocol in shortcuts to adi-

abaticity [42–46], Eq. (D6) can approximately realize a
transition between two equilibrium states at the same temper-
ature in finite time. Additional boundary conditions λ̈(0) =
λ̈(τ ) = 0 need to be satisfied by the driving protocol. In the
intermediate driving process, the system will depart from the
instantaneous equilibrium state. Since Fa is an explicit func-
tion of Q and t , it will generically be easier to implement in
experiment than the momentum-dependent auxiliary potential
(D2).
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APPENDIX E: APPLYING THE VARIATIONAL SHORTCUT
TO ISOTHERMALITY TO A BROWNIAN PARTICLE

IN THE OVERDAMPED SITUATION

In the overdamped situation, the motion of the Brownian
particle is governed by the Langevin equation,

q̇ = − 1

γ

∂Uo

∂q
− 1

γ

∂Ua

∂q
+ 1

γ
ξ (t ). (E1)

Comparing Eq. (E1) with the general motion equation (A4),
we can obtain the corresponding relations:

f o(q, t ) = − 1

γ

∂Uo

∂q
+ 1

γ
ξ (t ), (E2)

and

f a(q, t ) = − 1

γ

∂Ua

∂q
. (E3)

Note that f o(q, t ) contains both the deterministic part
−γ −1∂Uo/∂q and the stochastic part γ −1ξ (t ) while f a(q, t )
is presupposed to be deterministic.

In the one-dimensional overdamped Brownian particle sys-
tem, the nonequilibrium constraint (16) can be simplified to
the form,

Gs ≈
∑

m

W (qm, t )e−βUo(qm,λ)

√
2π

β
(qm, λ)
, (E4)

with

W (q, t ) = 1

β2

(
∂ f

∂q

)2

+ 1

β
f 2 ∂2Uo

∂q2
+ 2

β
f
∂2Uo

∂q∂t
. (E5)

Here 
(qm, λ) = (∂2U0/∂q2)|q=qm with qm representing one
of the minimum points of the function U0.

Considering the double-well potential,

Uo(q, λ(t )) = kq4 − λ(t )q2, (E6)

we can derive that there are two minimum points q1 = √
λ/2k

and q2 = −√
λ/2k. According to the form of the original

potential (E6), we assume that the auxiliary potential takes
the form,

Ua(q, t ) = λ̇(t )[a∗
4(t )q4 + a∗

3(t )q3 + a∗
2(t )q2 + a∗

1(t )q],
(E7)

where a∗
1(t ), a∗

2(t ), a∗
3(t ), and a∗

4(t ) are undetermined param-
eters. Therefore, the approximate auxiliary field should take
the form,

f (x, t ) = − λ̇(t )

γ
[4a4(t )q3 + 3a3(t )q2 + 2a2(t )q + a1(t )],

(E8)
where a1(t ), a2(t ), a3(t ), and a4(t ) are approximations to the
corresponding parameters a∗

1(t ), a∗
2(t ), a∗

3(t ), and a∗
4(t ). Sub-

stituting the trial form (E8) into the nonequilibrium constraint
(E4) and then minimizing it over the parameters, we obtain

M

⎛
⎜⎜⎜⎝

a∗
4

a∗
3

a∗
2

a∗
1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−γ q1

−γ q2

−γ q3

−γ q4

⎞
⎟⎟⎟⎟⎟⎠, (E9)

where

M ≡

⎛
⎜⎜⎜⎜⎜⎝

24kq5 − 4λq3 18kq4 − 3λq2 12kq3 − 2λq1 6kq2 − λq0

24kq6 − 4λq4 + 6
β

q2 18kq5 − 3λq3 + 3
β

q1 12kq4 − 2λq2 + 1
β

q0 6kq3 − λq1

24kq7 − 4λq5 + 12
β

q3 18kq6 − 3λq4 + 6
β

q2 12kq5 − 2λq3 + 2
β

q1 6kq4 − λq2

24kq8 − 4λq6 + 18
β

q4 18kq7 − 3λq5 + 9
β

q3 12kq6 − 2λq4 + 3
β

q2 6kq5 − λq3

⎞
⎟⎟⎟⎟⎟⎠. (E10)

Here

qn ≡
√

2π

4βλ

[
qn

1e−β(kq4
1−λq2

1 )+qn
2e−β(kq4

2−λq2
2 )], n=0, 1, 2, . . . .

(E11)

Solving Eq. (E9), we can derive

a∗
1 = a∗

3 = 0, a∗
2 = −3γ

8λ
, a∗

4 = γ k

8λ2
. (E12)

Therefore, the best possible auxiliary potential takes the form,

Ua(q, t ) = γ λ̇

8λ2
(kq4 − 3λq2). (E13)

Note that the saddle-point approximation (E4) applies when
the distance between the maximum and the minimum of
βUo, i.e., A ≡ βλ2/(4k), is much larger than 1. Therefore,

the auxiliary potential (E13) only works when the controlling
parameter satisfies λ(t ) � √

4k/β, and it fails when λ → 0.
Let us recall that, in the underdamped situation, the param-

eters b∗
2 and b∗

4 are still undetermined in the auxiliary potential
(27). Comparing Eq. (E13) with Eq. (27), we find that both
problems can be reconciled if assuming that the auxiliary
potential takes the form,

Ua(q, p, t ) = βλ̇

8βλ2 + 12k
(4λqp + γ kq4 − 3γ λq2), (E14)

in the underdamped situation and

Ua(q, t ) = γ βλ̇

8βλ2 + 12k
(kq4 − 3λq2), (E15)

in the overdamped situation. In this way, the parameters
in Eq. (27) take the forms b∗

2 = −3γ βλ/(8βλ2 + 12k) and

032146-9



GENG LI AND Z. C. TU PHYSICAL REVIEW E 103, 032146 (2021)

b∗
4 = γ βk/(8βλ2 + 12k), which can be verified to satisfy

the relation (28). Besides, the denominator in Eq. (E13) is
amended to avoid divergence of the auxiliary potential in the
limit λ → 0. Note that Eq. (E14) will reduce to Eq. (E15)
in the overdamped limit m/γ → 0, which can support our
assumptions about the form of the auxiliary potentials (E14)
and (E15).

APPENDIX F: DETAILS OF THE SIMULATION

We simulate an underdamped Brownian particle moving in
the double-well potential (E6) and add the auxiliary potential

(E14) to approximately realize shortcuts to isothermality. The
motion of the Brownian particle is governed by the modified
Langevin equation (20). There are two characteristic times
τp ≡ m/γ and τq ≡ γ /

√
kkBT in the system. Through in-

troducing the characteristic length lc ≡ (kBT/k)1/4, we can
reduce the coordinate q̃ ≡ q/lc, the momentum p̃ ≡ pτ/mlc,
the time s ≡ t/τ , and the driving protocol λ̃ ≡ λ/(kl2

c ). The
modified Langevin equation (20) can be transformed into the
dimensionless form:

q̃′ = p̃ + ατ̃ 2 ∂Ũa

∂ p̃
,

(F1)

p̃′ = − ατ̃ 2 ∂Ũo

∂ q̃
− ατ̃ 2 ∂Ũa

∂ q̃
− τ̃

(
p̃ + ατ̃ 2 ∂Ũa

∂ p̃

)
+ τ̃

√
2ατ̃ζ (s),

where τ̃ ≡ τ/τp and α ≡ τp/τq. The prime on a variable represents the derivative of that variable with respect to the time s. ζ (s)
represents Gaussian white noise that satisfies 〈ζ (s)〉 = 0 and 〈ζ (s1)ζ (s2)〉 = δ(s1 − s2). The dimensionless form of the auxiliary
potential takes

Ũa(q̃, p̃, s) = λ̃′

ατ̃ 2(8λ̃2 + 12)
(4λ̃q̃ p̃ + τ̃ q̃4 − 3τ̃ λ̃q̃2). (F2)

Equation (F2) is solved by using the Euler algorithm,

q̃(s + δs) = q̃(s) + p̃δs + ατ̃ 2 ∂Ũa

∂ p̃
δs,

(F3)

p̃(s + δs) = p̃(s) − ατ̃ 2 ∂Ũo

∂ q̃
δs − ατ̃ 2 ∂Ũa

∂ q̃
δs − τ̃

(
p̃ + ατ̃ 2 ∂Ũa

∂ p̃

)
δs + τ̃

√
2ατ̃δsθ (s),

where δs is the time step and θ (s) is a random number sampled from Gaussian distribution with zero mean and unit variance.
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