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Work statistics and symmetry breaking in an excited-state quantum phase transition
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We examine how the presence of an excited-state quantum phase transition manifests in the dynamics of a
many-body system subject to a sudden quench. Focusing on the Lipkin-Meshkov-Glick model initialized in
the ground state of the ferromagnetic phase, we demonstrate that the work probability distribution displays
non-Gaussian behavior for quenches in the vicinity of the excited-state critical point. Furthermore, we show that
the entropy of the diagonal ensemble is highly susceptible to critical regions, making it a robust and practical
indicator of the associated spectral characteristics. We assess the role that symmetry breaking has on the ensuing
dynamics, highlighting that its effect is only present for quenches beyond the critical point. Finally, we show
that similar features persist when the system is initialized in an excited state and briefly explore the behavior for
initial states in the paramagnetic phase.
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I. INTRODUCTION

In a quantum phase transition (QPT), quantum fluctuations
dominate and the system exhibits a high degree of sensitivity
to the changing of an external parameter [1]. These transitions,
in the ground state of a quantum system, can be classified ac-
cording to the behavior of a suitable order parameter across a
critical point, where first- and second-order QPTs are arguably
the most prominent classes [1]. The study of such QPTs for
equilibrium systems has provided deep insights into the col-
lective properties of quantum systems, opening the possibility
to exploit this critical sensitivity, for example, in protocols to
achieve enhanced thermometric precision [2–4] and quantum
heat engines [5,6].

While typically QPTs are exhibited in the ground state
of a many-body system, certain special Hamiltonians may
give rise to so-called excited-state quantum phase transitions
(ESQPTs) [7–23]. Like their more traditional counterpart,
ESQPTs are characterized by a similarly closing energy gap
between excited states and, additionally, the density of states
becomes singular around a critical excitation energy. De-
pending on the number of degrees of freedom, a logarithmic
divergence can be found in the density of states itself or in
its higher-order derivatives [14,20–22]. However, ESQPTs do
not strictly occur at a fixed value of the external parameter but
rather they are characterized by the lifting of degeneracy in
the spectrum that occurs at progressively higher excitation en-
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ergies for values of the external parameter beyond the ground
state QPT [11,12,14,19].

Studying the dynamics of a system which traverses its
critical point can be broadly explored in two regimes. On
the one hand, traversing the critical point of a second-order
QPT in a finite time leads to the emergence of critical regions,
delineated by the crossover from adiabatic to impulse regimes
[24–28]. The sizes of these regions are governed by the under-
lying critical exponents [28], thus highlighting the important
role that critical features in the spectrum play in dictating the
dynamics. Alternatively, in order to avoid such an involved
temporal analysis, the study of sudden quenches has proven
to be sufficient for revealing the salient features of the effect
that criticality has on the dynamics when a system is evolved
across its QPT in an abrupt manner. In addition, the study of
thermodynamic properties, in particular, the work probability
distribution and its associated moments, are readily accessible
in this regime [29–34]. The study and analysis of how the
dynamics of a system is affected by the presence of an ESQPT
has only been recently explored. In Refs. [12–16], it was
shown that the ESQPT dramatically impacts the dynamics for
a suddenly quenched state, reducing the speed of the evolution
due to a localization of the quantum state around the critical
energy. Such impact is also visible as a cusp in the work
distribution, leading to complex survival probability dynam-
ics [12]. Remarkably, the ESQPT yields critical signatures
in other quantities, such as in out-of-time correlators [35],
decoherence rates [17,18], or in phase-space quasiprobability
distributions [36], and such signatures hold under different
protocols, either under infinitesimal [37] or time-dependent
quenches [38]. Yet, although second-order QPTs and ESQPTs
are intimately related to spontaneous symmetry breaking, the
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impact of such fundamental process in these dynamical quan-
tities has so far been overlooked, with the notable exceptions
in the realm of dynamical quantum phase transitions [39],
where symmetry breaking upon a sudden quench is key for
the emerging nonanalytical behavior [19,40–46].

In this work we complement these studies by exploring the
effect symmetry breaking has on the dynamics and thermo-
dynamics of the Lipkin-Meshkov-Glick (LMG) model. This
model has been explored extensively in the literature and
in particular how underlying QPTs can affect the dynamics
[24–27,33,44,45,47–67]. In addition, studies of this model
have come to prominence in light of recent experimental ad-
vances in the realization of critical systems in this class [68].

The reported results are expected to apply to other similar
systems such as the critical quantum Rabi model [23,69]. As
main results, we establish that breaking the Z2 parity symme-
try in the ferromagnetic phase leads the system to exhibit a
different periodicity in its dynamics only when the quench is
beyond the ESQPT. Furthermore, while the moments of the
work distribution are largely unaffected by adding a small
symmetry-breaking term, we find the distribution itself is
strongly affected. In agreement with Refs. [12,70], we find
that for quenches exactly to the ESQPT point the work dis-
tribution becomes non-Gaussian and further evidence of the
effect of symmetry breaking can be seen in a reduction of the
probability amplitudes. Furthermore, we study the entropy of
the diagonal ensemble (i.e., the Shannon entropy of the work
distribution) establishing that this accessible quantity [71–75]
is very sensitive to the presence of the ESQPT. Finally, we
examine the behavior for initially excited states where a qual-
itatively consistent behavior is found and we consider the case
of states initialized in the paramagnetic phase.

II. MODEL AND KEY QUANTITIES OF INTEREST

The Lipkin-Meshkov-Glick (LMG) model [76] describes a
set of N spin 1

2 ’s with infinite range interaction subject to a
transverse field [33,66,77–80]. The fully anisotropic Hamilto-
nian can be written in terms of the Pauli matrices σ i

x,z acting
on site i as

H = − 1

N

∑
i< j

σ i
x ⊗ σ j

x + h
∑

i

σ i
z , (1)

where h � 0 is the strength of the magnetic field in the z
direction. It is convenient to recast the LMG model in terms
of the total spin operators Sα =∑

i σ
i
α/2, with α={x, y, z},

H = − 1

N
S2

x + h

(
Sz + N

2

)
, (2)

which can be written in a bosonic form by applying the
Schwinger representation of spin operators

Sz = t†t − N

2
= n̂t − N

2
, S+ = t†s = (S−)†, (3)

where S± =Sx ± i Sy are spin ladder operators. This results in
a Hamiltonian describing a system of two species of scalar
bosons s and t , given by

H = h t†t − 1

4N
(t†s + s†t )2. (4)
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FIG. 1. Spectrum of the LMG model (4), with respect to the
magnetic field h. Main panel: energy spectrum for N =100, showing
the crossing between the critical line of the ESQPT Ec =0 and the
lifting of the degeneracy. Only 1

5 of the total eigenstates are shown
for clarity. Solid and dashed lines refer to eigenstates with opposite
parity. Lower right inset: zoom around the critical energy for N =500
spins. Upper right and lower left insets: sketch of the effective poten-
tial above and below the ESQPT, respectively.

The nonzero elements of the Hamiltonian (4) in the basis

|N, nt 〉 = (t†)nt (s†)N−nt

√
nt !(N − nt )!

|0〉 (5)

are given by

〈N, nt |H |N, nt 〉

= h nt − (nt + 1)(N − nt ) + nt (N − nt + 1)

4N
,

〈N, nt |H |N, nt +2〉

= −
√

(nt + 1)(N − nt )(nt + 2)(N−nt −1)

4N
, (6)

where |0〉 is the vacuum state and 0�nt �N and therefore the
dimension of the Hamiltonian (4) is N+1. The LMG model
exhibits a Z2 parity symmetry, given by the operator � =
eiπ (Sz+N/2) = eiπt†t so that [H,�] = 0. As a consequence, the
Hamiltonian can be split into odd and even parity blocks of
dimension Dodd =N/2 + 1 and Deven =N/2, respectively.

In the thermodynamic limit, the model exhibits a sponta-
neous symmetry-breaking second-order QPT in the ground
state at hc =1 [77–80] between a ferromagnetic phase (h<1)
where the spectrum becomes doubly degenerate, and therefore
the system is effectively a double well, and a paramagnetic
phase (h>1) where all energy levels are distinct and eq-
uispaced. We qualitatively see the difference between these
phases in Fig. 1 where we show the eigenenergies of the LMG
model as a function of h, Eq. (4), for N =100. The double
degeneracy in the spectrum leads to another critical feature in
the excited states. For a finite value of N and fixed value of
h<1 we see that the spectrum is only doubly degenerate up
to a particular energy level which characterizes ESQPT [11].
We can identify ESQPTs either by fixing the energy while
varying the control parameter of the model or, equivalently, by
increasing the energy at a fixed value of the control parameter.
The ESQPT refers to a nonanalytical behavior of the density
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of states ν(E ) = ∑
k δ(E − Ek ) with Ek the eigenenergies of

the Hamiltonian, i.e.,H = ∑
k Ek|k〉〈k| [7,11]. As the system

approaches an ESQPT in the LMG, the density of states de-
velops a logarithmic divergence ν(E ) ∝ − log |E − Ec| due to
a concentration of the energy levels at Ec =0 [14,77,78] and
for h<1 which is the critical region for the ESQPT in the
Hamiltonian (4). In what follows, we explore how dynamical
signatures of the ESQPT are present in the work statistics after
a sudden quench and examine the effect of breaking the Z2

parity symmetry.
We consider protocol where the Hamiltonian (4) is ini-

tialized in a particular state |ψi〉=|ψ (0)〉 for a given value
of the magnetic field hi. At t=0 we abruptly change the
magnetic field hi →h f and study the time evolution of the
system under the final HamiltonianH f according to |ψ (t )〉=
e−iH f t |ψ (0)〉. In what follows, we consider Z2 symmetric
and Z2 symmetry-broken ground states and excited states. A
key figure of merit for studying the dynamical response of a
system to such a sudden perturbation is captured by the time-
dependent fidelity or survival probability which has been ex-
tensively used in studying the critical features of spin models
[33,53–57,61–66]. Assuming the system begins in an eigen-
state, it is defined as

L(t ) = |χ (t )|2, (7)

where

χ (t ) = 〈ψ (0)|ψ (t )〉 = 〈ψ (0)|e−iH f t |ψ (0)〉 (8)

is the characteristic function of the work distribution in the
case of a sudden quench and given by [31]

PW =
∑

m

pτ
m|nδ[W − (Em − En)], (9)

with Em (En) the energy of corresponding eigenstate of the
final (initial) Hamiltonian. Unless otherwise stated, we will
assume the system begins in the ground state, n=0, and
therefore pm|0 is the conditional probability of measuring Em

after the quench. The moments of the work distribution due to
the sudden quench can be readily determined [32]

〈W l〉 =
∑

m

(
E f

m − Ei
0

)l ∣∣〈ψ i
0

∣∣ψ f
m

〉∣∣2 ≡ (−i)l∂ l
t χ (t )

∣∣
t→0, (10)

where the first and second moments correspond to the aver-
age work and variance, respectively. Recent proposals have
demonstrated that the distribution (9) is experimentally acces-
sible [81]. Under these conditions, namely, initial ground state
and sudden quench, the work distribution is mathematically
equivalent to the infinite time average of the quantum state,
i.e., the diagonal ensemble. Therefore, we have all the infor-
mation necessary to determine the entropy of the diagonal
ensemble [74,75,82], which is simply given by the Shannon
entropy of PW :

SW = −
∑
W

PW log2 PW . (11)

III. WORK STATISTICS AND SYMMETRY
BREAKING IN ESQPTs

Before analyzing the impact of symmetry breaking and
ESQPT in the work statistics, it is convenient to find the
critical value of the magnetic field hc

f for which the initially
prepared ground state at hi is brought to the critical energy
Ec at which the ESQPT takes place. For that we rely on a
semiclassical approximation, as explained in the Appendix,
which leads to

hc
f = 1 + hi

2
, 0 � hi � 1. (12)

That is, for h f < hc
f the ground state of H at hi is confined

within the symmetry-broken phase, while a quench h f > hc
f

provides sufficient energy so that the quenched state is brought
above the ESQPT where the degeneracy is lifted (cf. Fig. 1).

A. Symmetric ground state

We begin our analysis by initializing our system in the
ground state of the ferromagnetic phase (h<1) of the LMG
model (4) and perform a sudden quench from hi =0.5. The
ESQPT corresponds to the point at which the energy of
the final Hamiltonian, measured in the initial energy basis,
crosses the critical line of the ESQPT Ec =0 (cf. Fig. 1).
As explained above (see Appendix for details), the energy
of the postquenched Hamiltonian crosses Ec =0 at hc

f = (1 +
hi )/2 = 0.75 where the ESQPT occurs. We consider quenches
to three different values of h f : (i) below the ESQPT, h f <0.75,
(ii) to the ESQPT, h f =0.75, and (iii) beyond the ESQPT,
h f >0.75. We remark that qualitatively similar results hold
for other choices of hi with the caveat that the location of the
ESQPT is shifted accordingly as dictated by Eq. (12).

Figure 2(a) depicts the survival proabability (7) for a sys-
tem size N =2000 and a quench starting from hi =0.5. We find
that quenches either sufficiently below or above the ESQPT
point show qualitatively similar behaviors. In particular, for
h f =0.6 we find strong periodic revivals with the system al-
most perfectly returning to the initial state, while for h f =0.9
the system still exhibits sharp revivals between periods of
dynamical orthogonality, albeit with the revivals decaying in
amplitude. This qualitative behavior persists for other values
of h f , including when quenching to and beyond the second-
order ground state QPT hc =1 [33] with the notable exception
in the vicinity of the ESQPT. For quenches to the ESQPT
point we see the survival probability no longer exhibits such a
clear periodic behavior, but instead remains dynamically close
to a fully orthogonal state. The sensitivity to the presence
of the ESQPT is further reflected in the work probability
distribution shown in Fig. 2(b), where we find PW is generally
Gaussian for quenches to arbitrary values of h f , except in
the vicinity of the ESQPT, h f =hc

f =0.75, where the shape
of PW changes to a double peak with the emergence of a
dip, reflecting the effect of the presence of the ESQPT, as
previously discussed [12].

We next examine the entropy of the diagonal ensemble (11)
in Fig. 2(c) for hi =0.5 as a function of the quench amplitude
h f for various system sizes. We immediately see the emer-
gence of a peak in the entropy at the ESQPT point. We observe
a logarithmic scaling of SW ∝ log2(N ) as the system size is
increased, as demonstrated in the inset where we show this
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(a) (b) (c)

FIG. 2. Symmetric ground state. (a), (b) The survival probability (7) and the work probability distribution (9), respectively, for a system
size N =2000 and initial magnetic field hi = 0.5, when the quench is performed to below (hf =0.6), above (hf =0.9), and at the ESQPT
critical point (hf =0.75). (c) The Shannon entropy (11) with respect to the magnetic field hf for various system sizes N =100[bottom, blue]→
1000[top, cyan], the inset show the scaling of the maximum of SW with respect to log2(N ).

explicitly for the peak, however, we remark that this scaling
holds for any value of h f . Finally, we note that the moments of
the work distribution are also readily accessible, however, they
exhibit no sensitivity to the presence of the ESQPT, with the
first (second) moments scaling linearly (quadratically) with
the quench amplitude (plots not shown) [33].

B. Symmetry-broken ground state

As previously mentioned, in the thermodynamic limit and
for h < 1 the LMG undergoes a spontaneous Z2 symmetry
breaking. For finite systems, any small perturbation in Sx leads
to a symmetry breaking in the ferromagnetic phase (h < 1),
while it does not alter the paramagnetic phase (h > 1). For
that reason, we introduce a small perturbation |ε| 	 1 in
Sx, such that it does not affect the critical features of the
model, i.e.,

H = − 1

N
S2

x + h

(
Sz + N

2

)
+ ε Sx. (13)

In this case, the nonzero elements of the Hamiltonian in the
basis (5) are given by Eq. (6) and

〈N, nt |H |N, nt + 1〉= ε

2

√
(N − nt )(nt + 1). (14)

When h<1 the ground state of the Hamiltonian (13) is a fully
symmetry-broken (FSB) ground state, i.e., a superposition of
the two degenerate fully symmetric ground states with oppo-

site parity |ϕ±〉 such that �|ϕ±〉 = ±|ϕ±〉. In particular, the
FSB states can be written as |ϕFSB,±〉 = (|ϕ+〉 ± |ϕ−〉)/

√
2

which yield a maximum value of the symmetry-breaking or-
der parameter |〈Sx〉| and are only degenerated up to an energy
factor |ε| 	 1.

We can now examine the effect that breaking the Z2

symmetry has on the figures of merit. Considering the same
quench parameters as before, in Fig. 3(a) we show the behav-
ior of the survival probability. While largely consistent with
the previous case, we nevertheless see some qualitative differ-
ences appearing. For quenches below the ESQPT, we see that
symmetry breaking has no effect and the survival probability
is identical in both instances, as can be seen by comparing the
blue dotted-dashed curves in Figs. 2(a) and 3(a). For quenches
beyond the ESQPT, breaking the symmetry leads to a change
in the period of the revivals in the survival probability. In fact,
the period of these revivals doubles in the symmetry-broken
case with respect to the symmetric ground state due to the
fact that the Z2 symmetry is no longer conserved. In this case,
the absent peaks in the survival probability with respect to
the symmetric ground state [cf. Fig. 2(a)] correspond to the
overlap |〈ϕFSB,−|e−iH f t |ϕFSB,+〉|2, which is intimately related
to the emergence of a dynamical quantum phase transition
[39,44]. Quenches to the ESQPT point are notably affected
by breaking the symmetry, with the system remaining closer
to orthogonality throughout.

The work distribution is similarly affected, showing ev-
idence of the symmetry breaking only when the quench is

(a) (b) (c)

FIG. 3. Fully symmetry-broken ground state. (a), (b) The survival probability (7) and the work probability distribution (9), respectively,
for a system size N =2000 and initial ground state at hi = 0.5, when the quench is performed to below (hf =0.6), above (hf =0.9), and
at the ESQPT critical point (hf =0.75). (c) The Shannon entropy (11) with respect to the magnetic field hf for various system sizes
N =100[bottom, blue]→1000[top, yellow].
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sufficiently strong. As shown in Fig. 3(b), the distribution is
the same for both the symmetric and symmetry-broken initial
states when the quench is below the ESQPT as the energies in
this region are not symmetry dependent (cf. Fig. 1). However,
while PW retains its Gaussian profile for quenches far above
and below the ESQPT point, when quenching beyond the
ESQPT the distribution peak is halved, which is due to the
spreading of PW over both parity subspaces of the model.
The effect of symmetry breaking is most notable in the work
distribution when the system is quenched to the ESQPT. Once
again the distribution loses the Gaussian profile and exhibits
a dip similar to symmetric case. We now find that to the left
of the dip, corresponding to states below the critical energy,
both the symmetric and symmetry-broken initial states show
the same distribution, however, to the right of the dip the am-
plitude of the probabilities is halved again due to involvement
of both parity subspaces.

The behavior of the entropy of the diagonal ensemble
(11) when we break the Z2 symmetry is shown in Fig. 3(c)
for various system sizes N =100[blue]→1000[yellow] and
is consistent with the behavior of the fully symmetric case
shown in Fig. 2(c). As in the symmetric case, SW increases
quickly, peaking at the ESQPT point hc

f =0.75. We remark
that, while a symmetric ground state can only populate a sin-
gle parity subspace, an initial symmetry-broken ground state
populates both subspaces. As a consequence, the entropy SW

is larger in the symmetry-broken case by a factor log2(2) = 1
when h f > hc

f , reflecting the spreading of PW over the two
parity subspaces. Finally, in contrast to these figures of merit,
the first and second moments of the work distribution are
unaffected by symmetry breaking.

C. Weighted superposition

Having discussed the features of symmetric and fully
symmetry-broken ground states, we complete the picture by
considering the case of an initial state which does not max-
imize the value of the symmetry-breaking order parameter
|〈Sx〉| but still breaks the Z2 parity symmetry. As an example,
we choose |ϕsup〉 ∝ 2|ϕ+〉 + |ϕ−〉 and we (arbitrarily) fix hi =
0.25 with N =1000. In Fig. 4(a) we show the work probability
distribution for all three initial states when the quench is
exactly to the ESQPT critical point hc

f =0.625. All dis-
tributions exhibit the same double-peaked behavior and,
furthermore, the distributions are identical to the left of the
cusp. It is only for values of the work above the cusp, which
corresponds to those states of the final eigenspectrum that are
above the critical energy, that show the effects of symmetry
breaking. Indeed, by taking a suitable superposition we can
smoothly transition between the two extreme cases shown
above. The entropy of the diagonal ensemble similarly reflects
the effect of taking such a superposition, as shown in Fig. 4(b),
where SW also interpolates between the two extreme behav-
iors, and nevertheless clearly spotlights the presence of the
ESQPT.

D. Quenching from excited states

An interesting feature of the model is that the double de-
generacy occurring in the ferromagnetic phase is not restricted

(a)

(b)

FIG. 4. (a) The work probability distribution PW [Eq. (9)] and
(b) the Shannon entropy SW [Eq. (11)] with respect to hf in the LMG
model (13). In both panels we quench from hi =0.25 in a system
of size N =1000, initialized in the symmetric ground state (S), fully
symmetry-broken (FSB) ground state, and in superposition between
the two ground states. Note the peak at hf ≈ 0.625 which corre-
sponds the critical value hc

f = (1 + hi )/2 in this case [cf. Eq. (12)].

to the ground and first excited states and, in fact, extends to
higher excited states up to the critical energy for 0 � h � 1.
These higher excited states exhibit the same critical features
and therefore here we examine whether signatures of the
ESQPT are also present in the dynamics and work statistics
for systems initialized in their excited state conserving the Z2

parity symmetry. To this end, we fix hi =0.5, N =2000 and
initialize the system in the second excited state. In Fig. 5(a) we
show the survival probability when the quench is performed to
below (h f =0.6), above (h f =0.9), and to the ESQPT critical
point hc

f =0.75. Note that although hc
f corresponds to the

critical value when quenching from the ground state, for low
lying excited states it ensures that the quenched state has an
energy in the vicinity of the ESQPT. While the behavior is
in keeping with the ground state cases, a remarkable feature
emerging is the presence of higher frequencies in the revivals
of the survival probability for quenches both below and above
the ESQPT point and quenching to the critical energy again
ensures the system remains close to orthogonality throughout
the dynamics. A consequence of these higher frequencies is
directly exhibited in the work probability distribution, where
a bimodal shape emerges. For quenches to the ESQPT point
we find that there is still a cusp appearing in the distribu-
tion, similarly as for the ground state case. In addition, it is
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(a)

(b)

FIG. 5. Symmetric excited state. (a) The survival probability (7)
for a system size N =2000, when the quench is performed from
hi =0.5 to below (hf =0.6), above (hf =0.9), and to the ESQPT
critical point (hf =0.75). (b) The work probability distribution (9)
for a system of size N =2000 quenched from hi =0.5 to the ESQPT
critical point (hf =0.75).

worth commenting that the same phenomenology of symme-
try breaking applies to this scenario too.

IV. QUENCH FROM THE PARAMAGNETIC PHASE

For completeness we also consider the case of a system
initialized in the paramagnetic phase (h>1). Unlike from the
ferromagnetic phase, it is not possible to cross the ESQPT by
quenching the ground state with hi > 1 (cf. the Appendix). To
the contrary, the quench will be able to signal the QPT when
h f = hc = 1, while for h f < 1 the state is brought to the criti-

cal energy of the ESQPT. In Fig. 6(a) the survival probability
is shown for system size N =2000 and a quench starting from
hi =1.5. Constraining the quench to within the same phase,
that is h f =1.2 (blue dotted-dashed curve), shows small os-
cillations with perfect revivals. Conversely, quenching either
to the second-order QPT h f =hc =1 (orange solid line) or
beyond h f = 0.5 (dashed green line) initially drives the state
far from equilibrium and the dynamics is no longer oscillatory.
Furthermore, large quenches beyond the QPT drive the system
to orthogonal states [33,52]. The work probability distribution
reflects the results found for the survival probability as shown
in Fig. 6(b). PW is dominated by a single value of the work
when the quench is confined within the same phase; this
is a consequence of the fact that the energy levels in the
paramagnetic phase are equidistant. Quenching to the QPT,
we see that the distribution is still ruled by one value of the
work, however, other contributions are starting to emerge. A
large quench crossing the QPT results in a broader probability
distribution reflecting the irreversible nature of the dynamics
when crossing a critical point.

Turning our attention to the entropy of the diagonal en-
semble, Fig. 6(c) shows that the entropy is small in the
paramagnetic phase h>1, reflecting the fact that the dynamics
is reversible and dominated by a single eigenstate. As we
approach the QPT, the entropy sharply increases and a cusp
appears tending to h f →hc = 1 as N →∞, thus indicating
that the entropy of the diagonal ensemble is a faithful indicator
of the ground state QPT in this case. We remark this is in
contrast to the case of initial states in the ferromagnetic phase
discussed previously where the presence of the ESQPT and
its crossing was succinctly captured by the diagonal entropy,
regardless of the presence of absence of symmetry breaking,
but it was agnostic to the ground state QPT at h f =1.

V. CONCLUSION

In this work we have examined the dual effect of
symmetry-breaking and excited-state quantum phase transi-
tions have on the dynamics of a many-body system. Focusing
on the LMG model we have demonstrated that while the
average work, and higher moments of the distributions, are
indifferent to either the presence of an ESQPT or the effect of
symmetry breaking, the distribution itself is acutely sensitive
to both. Furthermore, we have established that the entropy
of the diagonal ensemble is a favorable figure of merit for

(a) (b) (c)

FIG. 6. Paramagnetic ground state. (a), (b) The survival probability (7) and the work probability distribution (9), respectively, for a system
size N =2000, when the quench is performed to below (hf =1.2), above (hf =0.5), and the second-order QPT critical point (hf =1.0). (c) The
Shannon entropy (11) with respect to the magnetic field hf for various system sizes N =100[bottom, blue]→1000[top, cyan].
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pinpointing and studying ESQPTs and the symmetry-breaking
effects [38]. The qualitative features exhibited when the sys-
tem is initialized in the ground state were shown to largely
extend to initially excited states, with some notable changes,
in particular, the emergence of a bimodal distribution for the
work that is nevertheless sensitive to quenches to the ESQPT.
Finally, we examined the behavior for quenches that start
in the paramagnetic phase, where the only critical features
exist in the ground state and demonstrated that the entropy
of the diagonal ensemble continues to be a useful tool for
spotlighting the underlying critical features of the spectrum.
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APPENDIX: CRITICAL QUENCH STRENGTH

Here we detail how to obtain the critical value hc
f to reach

the ESQPT from the ground state of H with hi. For that we
rely on a semiclassical approximation as in Ref. [77]. We
first compute the semiclassical energy using a spin-coherent
representation |α〉 = (1 + α2)−JeαS+ |J,−J〉 with α ∈ R and
where |J, mJ〉 denotes the standard basis of {S2, Sz} for the

Dicke states, such that Sz|J, mJ〉 = mJ |J, mJ〉. The energy is

E (α, h) = lim
N→∞

〈α|H |α〉 = (α4 − 1)h − 2α2

(1 + α2)2
, (A1)

where we have neglected the irrelevant constant energy
contribution hN/2, which does not modify the double-well
structure of E (α, h). The ground state parameter under this
spin-coherent representation is achieved by minimization of
E (α, h), which yields

αgs(h) =
{

0, h > 1

±
√

1−h
1+h , 0 � h � 1.

(A2)

The solution α = 0 that ensures dE (α, h)/dα = 0 becomes
a local maximum for h > 1, which is precisely the ESQPT.
For the energy functional as given in Eq. (A1), the ESQPT
takes place at the critical energy Ec = −h for 0 � h � 1. The
two equivalent solutions for 0 � h � 1 signal the spontaneous
symmetry breaking.

In this manner, we can compute the energy of
the quenched initial state as Eq(hi, h f ) ≡ E (αgs(hi ), h f ) =
limN→∞〈αgs(hi )|H (h f )|αgs(hi )〉 where we have explicitly
written the dependence of the Hamiltonian on the final
parameter h f . The critical quench strength follows from
Eq(hi, hc

f ) = Ec which for 0 � hi � 1 results in the simple
expression given in the main text [cf. Eq. (12)]

hc
f = 1 + hi

2
. (A3)

Note, however, that if the hi > 1, then E (hi, h f ) = −h f which
corresponds to the ground state energy for h f � 1 and the
critical energy of the ESQPT for h f < 1. Hence, the impact of
the QPT can be captured by quenching from the paramagnetic
phase (hi > 1) to the critical point h f = hc = 1.
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