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Finite-time performance of a single-ion quantum Otto engine
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We study how a quantum heat engine based on a single trapped ion performs in finite time. The always-on
thermal environment acts like the hot bath, while the motional degree of freedom of the ion plays the role
of the effective cold bath. The hot isochoric stroke is implemented via the interaction of the ion with its hot
environment, while a projective measurement of the internal state of the ion is performed as an equivalent to the
cold isochoric stroke. The expansion and compression strokes are implemented via suitable change in applied
magnetic field. We study in detail how the finite duration of each stroke affects the engine performance. We
show that partial thermalization can in fact enhance the efficiency of the engine, due to the residual coherence,
whereas faster expansion and compression strokes increase the inner friction and therefore reduce the efficiency.
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I. INTRODUCTION

A standard heat engine operates between two heat reser-
voirs, maintained in thermal equilibrium at different tempera-
tures. The engine operation involves heat absorption from the
hotter reservoir and rejection of heat into the colder reservoir,
after performing some work, all in a cyclic fashion. For a
given set of bath temperatures, the Carnot engine sets an upper
bound of the work efficiency that is maximally achievable by
any other classical heat engines [1]. However, such efficiency
is attained only in reversible cycles that ideally run for in-
finitely long times (quasistatically) and therefore is associated
with zero power at output. Running a heat engine for long
cycle times is rather impractical. It is important to have more
power (work output per cycle) of a realistic engine, even at
the cost of lower efficiency. Curzon and Ahlborn indeed ob-
tained an optimized achievable efficiency at maximum finite
power [2].

To obtain finite power, the engines must operate for finite
duration per cycle. The study of finite-time performance for
heat engines has drawn considerable interest and seen a great
deal of progress in recent times [3–47]. In fact, the finite-
time thermodynamics [48–51] has always been attractive to
researchers. When the cycle time is finite, due to entropy
production in the engine cycle, a real heat engine is unable
to attain the theoretical limit of the maximum efficiency. This
entropy production is the thermodynamic signature of irre-
versibility [52]. In the classical engine, two types of friction
are responsible for irreversibility [34]. One of these is non-
conservative frictional force, which is primarily mechanical
in nature. On the contrary, the internal friction occurs due to
the finite-time operation of the engine.

In the quantum regime, one usually maps the internal
friction to the noncommutativity of the driving Hamiltonian
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at different times [6,53–59]. This involves transition be-
tween the instantaneous energy eigenstates. The effect of such
friction vanishes when the quantum heat engine operates
in the quasistatic limit [53]. Alternatively, one may also
apply the so-called quantum lubrication [55] or perform short-
cuts to quantum adiabaticity [20,23,35,60,61]. Several studies
attempted to determine how this internal friction affects the
performance of a quantum heat engine [6,19,46,53–59,62]
when it operates in a finite-time cycle. During finite-duration
thermodynamic processes, the system never reaches thermal
equilibrium with the thermal bath and therefore sustains resid-
ual coherence in the energy eigenstate basis [59], which in
turn affects the engine performance [34].

In this paper we focus on finite-time analysis of a realistic
heat engine. The working substance of this engine, a single
trapped ion, is treated quantum mechanically. In our earlier
studies [63–65] we showed how to implement different stages
of a quantum Otto cycle using such a system and considered
a timescale which is long enough to ensure that one obtains
effectively a full thermalization or adiabaticity in the relevant
stages. However, to make such a heat engine practically useful
(so that one gets finite power, albeit with reduced efficiency),
we must consider its finite-time operation. We look for two
different cases. (i) The isochoric heating stage of the cycle is
terminated well before the system attains thermal equilibrium
with the hot bath. (ii) The adiabatic stages are performed in
such a timescale that entropy production occurs. During this
stage, the rapid change in energy levels induces nonadiabatic
dissipation, i.e., internal friction [53]. In both cases, the engine
performs for a finite time and therefore delivers finite power.
We will also investigate how the engine performs for a few
cycles.

The main differences between this work and the earlier
studies on finite-time heat engines are as follows. (i) Here
we discuss a realistic quantum system that can actually be
used as an engine in a cyclic manner. (ii) The system-bath
interaction is never switched off during the entire cycle, while
in the earlier studies it was assumed that the system interacts
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FIG. 1. Schematic diagram displaying the relevant energy levels
of the internal and the vibrational degrees of freedom, relevant to the
ionic motion.

with the hot and cold baths, alternatively. In addition to the
reciprocating heat cycles, in which the bath interaction is
alternately switched off and on, there also exist proposals for
continuous-cycle heat engines [66,67], which is more suitable
to realize in the quantum domain [68,69]. Our model of a
quantum heat engine genuinely exploits the quantum nature
of the system and other quantum operations.

The paper is organized as follows. In Sec. II we describe
our single-ion model and discuss how different finite-time
strokes of the quantum heat engine can be implemented in
such system. In Secs. III and IV we explore how the efficiency
varies with the timescale involved. We summarize the paper
in Sec. V.

II. IMPLEMENTATION OF HEAT CYCLES

A. Our model

We consider a single trapped ion [63]. In the Lamb-Dicke
limit, the ion is confined to its two lowest-lying electronic
states |−〉 and |+〉 and the lowest-lying vibrational states |0〉
and |1〉 (see Fig. 1). Both the electronic and the vibrational
degrees of freedom can therefore be modeled as two-level
systems. The following Hamiltonian describes the dynamics
of the ion (in units of Planck’s constant h̄ = 1):

H1(t ) = HS (t ) + Hph + Hint, (1)

where

HS (t ) = gσx + B(t )σz, Hph = ωa†a, (2)

Hint = k(a†σ− + σ+a). (3)

Here HS is the Hamiltonian for the electronic degree of free-
dom of the ion, Hph represents the energy of the vibrational
mode with frequency ω, and Hint defines the interaction be-
tween these two modes with the coupling constant k. We
consider that the electronic states are driven by a local electric
field with Rabi frequency 2g. A time-dependent magnetic field
of strength B(t ) is applied along the quantization axis. The
operators σz and σx are usual Pauli spin operators in the basis
(|−〉, |+〉), while the operator a is the annihilation operator
operating on the vibrational states (|0〉, |1〉). We consider the
electronic degree of freedom of the ion as the working sub-

FIG. 2. Schematic diagram of a quantum Otto cycle.

stance S of the engine, while the vibrational mode plays the
role of the effective cold bath. The thermal environment at an
ambient temperature TH is considered as the relevant hot bath.

Traditionally, a bath is a system with many degrees of
freedom. Here we consider a finite-dimensional system that
interacts with the system (the electronic states) as equivalent
to a bath. Any interaction between the two subsystems in
general entangles them and a partial trace of one of these
subsystems leads to decoherence in the other. This basic no-
tion of decoherence is used here, where a finite-dimensional
system (the two-level vibrational states) is traced partially.
That a finite-dimensional system can act as a bath, leading to
decoherence in a spin, has been shown explicitly in Ref. [70].
Note that for an average excitation of this mode (vibrational
states) n̄, one can associate with it an effective temperature us-
ing the canonical probability distribution function, as given by
TL = h̄ω/ln(1/n̄ + 1)kB, where kB is the Boltzmann constant.
For n̄ = 0.02, we can have TL = 1 mK (see, for example,
[71]), which is a temperature low enough to approximate the
vibrational mode as a two-level system, as often routinely
done for quantum computing using trapped ions.

We focus on the operation of a quantum Otto cycle in the
following. This cycle consists of four stages: two isochoric
and two adiabatic stages. Here we show how to use the system
S and the two thermal baths as identified above to implement
these stages.

B. Stage 1: Isochoric heating

During this stage (1 → 2, Fig. 2), the system S interacts
with the hot bath at a temperature TH . The magnetic field
is kept constant at a value B = BH , which means that the
Hamiltonian HS of the system is kept fixed during this stage.
If we allow the system-bath interaction for a sufficiently long
time, much longer than the thermal relaxation time trelax of the
system, the system reaches thermal equilibrium with the hot
bath. Due to full thermalization, only the diagonal elements
of the system density matrix remain nonzero, when expressed
in the eigenstates basis of HS . This means that the system
retains no coherence (the off-diagonal elements of the density
matrix). On the other hand, the situation is quite different
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if we consider a partial thermalization, where the timescale
for the system-bath interaction is allowed to be less than
or comparable to the thermal relaxation time of the system.
In such a case, the coherence in the system does not decay
completely. This coherence influences the dynamics of the
engine in the next stage of the cycle. We assume here that
the system is initially prepared in its ground state |−〉 [the
ground state of the system, i.e., the lowest-energy eigenstate
of HS (g = 0) = σz], which means that the system does not
exhibit any initial coherence.

The dynamics of the ion under the action of the Hamil-
tonian H1(t ) and a heat reservoir can be described by the
Liouville–von Neumann equation [72] as

dρ1

dt
= − i

h̄
[H1(t ), ρ1(t )]

+(n̄th + 1)
�

2
(2σ−ρ1σ+ − σ+σ−ρ1 − ρ1σ+σ−)

+(n̄th)
�

2
(2σ+ρ1σ− − σ−σ+ρ1 − ρ1σ−σ+), (4)

where � is the vacuum decay rate of the electronic states of
the ion, n̄th is average photon numbers of the hot thermal bath
at a temperature TH , and σ− = |−〉〈+| and σ+ = |+〉〈−| are
the usual annihilation and creation operators in the (|−〉, |+〉)
basis, respectively. In Eq. (4) the assumption is the Born-
Markov approximation only. The Born approximation is about
the weak coupling between the system and reservoir. The
Markov approximation is valid when the correlation among
the reservoir (hot bath in this case) decreases much faster
compared to the relaxation time of the system. Here, of course,
we model the reservoir as a collection of infinitely many
harmonic oscillators. Also, Eq. (4) does not address the issue
of pure dephasing, as we have not considered any information
backflow from the hot bath to the system. In this model, the
hot bath is coupled to both the electronic state and vibrational
state. However, the proper choice of the thermalization en-
sures that there is no anomalous heat flow from a hot bath
to a cold bath (vibrational state). Now in Eq. (4) ρ1 is the
joint density matrix of the electronic state and the vibrational
mode of the ion and can be written in terms of the joint basis
{|−, 0〉, |−, 1〉|+, 0〉|+, 1〉}. We find the evolution of ρ1 and
evaluate the density matrix ρS of the system S by taking the
partial trace over the vibrational state [63]. We are interested
in the heat exchange by the system only. During this stage
from t = t0 to t = t1, the heat QH absorbed by the system can
be expressed in terms of the change in average internal energy
of the system as

QH = Tr[ρS (t1)HS (BH )] − Tr[ρS (t0)HS (BH )], (5)

where the initial density matrix ρS (t = t0) = |−〉〈−| evolves
into ρS (t = t1) during this stage. Note that the system does not
do any work, as the magnetic field is maintained at a constant
value.

C. Stage 2: Expansion stage

During this stage (2 → 3, Fig. 2), the magnetic field is
changed from BH to BL (BL < BH ) through a duration τ .
Usually it is assumed that the heat bath is disconnected from
the system. This is true if the evolution takes place within the

timescale τ � 1/γ (where γ is the decay rate of the system
to the heat bath). This ensures that the heat energy exchanged
between the system and environment can be neglected and the
driven dynamics becomes a unitarity. In addition, to maintain
quantum adiabaticity, one needs to vary the magnetic field
slow enough such that τ � g

8 | 1
B2

L
− 1

B2
H
| [63,73]. Clearly, for

a faster variation, one may attain a nonadiabatic evolution.
Here we emphasize that, at the timescale mentioned above,
we effectively disconnect the thermal environment from the
system, ensuring thermal isolation. This guarantees the ther-
modynamic adiabaticity. However, during the timescale, it
may be possible that internal excitation in the instantaneous
energy eigenstates occurs, which indicates that the stroke may
be nonadiabatic in the quantum mechanical sense [74].

We solve the full master equation (4), where the Hamil-
tonian H1 is given in Eq. (1) and the magnetic field varies
linearly with time as given by [63,75]

B(t ) = BH + BL − BH

τ
t, (6)

where τ is the finite timescale of the change of the magnetic
field from BH to BL or vice versa. The output of stage 1,
the joint state ρ1(t1), is considered as the initial condition for
solving the master equation. This state evolves into ρ1(t2) at
time τ later (such that t2 = t1 + τ ). As described in Sec. II B,
we can obtain the reduced density matrix ρS (t2) of the system
S by taking a suitable partial trace. The change in the internal
energy of the system during this stage can now be obtained as

W1 = Tr[ρS (t2)HS (BL )] − Tr[ρS (t1)HS (BH )]. (7)

The above could be considered as the work done by the
system if there would be no heat exchange with the bath [76].
This holds true for the case of a perfect reversible adiabatic
process. The time taken to complete the process should ideally
be infinite (τ → ∞), ensuring that the system will remain in
the instantaneous eigenstate of the system Hamiltonian. The
initial thermal state ρ th

S (t1) (when B = BH ) remains thermal as
ρ th

S (t2) at the end of the process, when B = BL.1 However, for
the finite-time nature of the evolution and noncommutativity
of the internal and the external part of the Hamiltonian (2), the
adiabatic theorem is not expected to hold. As a result, internal
friction arises [5,53,59,77–79], which has a significant impact
on the efficiency of the engine. In this case, the final state of
the system deviates from its equilibrium thermal state due to
coherence generation in the energy eigenbasis. One can define
irreversible work as the extra amount of energy that needs
to be done on the system by the driving agent against this
friction when the process does not remain reversible. Precisely
speaking, if the final state after finite time τ becomes ρS (t2),
instead of the thermal equilibrium state ρ th

S (t2), the irreversible
work [79] can be written as

W ir
1 = W τ

1 − W τ→∞
1

= Tr[ρS (t2)HS (BL )] − Tr
[
ρ th

S (t2)HS (BL )
]
. (8)

1The reference to times t1 and t2 here corresponds to the values of
B = BH and B = BL , respectively, which are used in the Hamiltonian
HS while calculating ρ th

S ∝ Trph exp(−H1/kBTH ).
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It is possible to connect this quantity W ir
1 to the quan-

tum relative entropy [59]. The quantum relative entropy of
two density operators ρ and σ is defined as S(ρ||σ ) =
kB[Tr(ρ ln ρ) − Tr(ρ ln σ )], which measures the distance be-
tween two quantum states. Based on Klein’s inequality, the
non-negativity of relative entropy ensures that W ir

1 is always a
non-negative quantity and is expressed as (in units of kB = 1)

W ir
1 = TH S

[
ρS (t2)||ρ th

S (t2)
]

= TH
(
Tr{ρS (t2) ln[ρS (t2)]} − Tr

{
ρS (t2) ln

[
ρ th

S (t2)
]})

.

(9)

Due to the finite-time Hamiltonian driving, the final system
state is out of equilibrium due to the interlevel transitions.
Here we examine the quantum relative entropy to investigate
how close the nonequilibrium system state is to the corre-
sponding equilibrium state. The quantum relative entropy has
a significant thermodynamic interpretation [59]. It is related
to the inner friction arising due to the finite-time adiabatic
strokes and the heat exchanges during the cycle’s relaxation,
which is defined as the difference between the work done on
an actual finite-time process and the work done for the qua-
sistatic transformation. Due to the non-negativity of S(ρ‖σ ),
the heat exchange during the relaxation process is always pos-
itive. This can be interpreted as the additional energy that the
driving agent should supply to the system to compensate for
the same change due to the fast driving. This means an extra
amount of energy W ir will be stored in the system, making
the system state deviate from the equilibrium state and be pre-
pared in a nonequilibrium state. This extra amount of stored
energy will be released to the heat bath during the cycle’s
relaxation process at the beginning of the next isochoric stage
[46,80]. Therefore, the net positive work output is decreased
[see Eq. (15)].

D. Stage 3: Isochoric cooling

During this stage (3 → 4, Fig. 2), the system releases QL

heat to the cold bath and the system Hamiltonian remains
fixed at HS (BL ). Here we employ a projective measurement of
the electronic state of the system that postselects the ground
state |−〉. This essentially is equivalent to a probabilistic cool-
ing of the system [63] and to heat release out of the system.
This increases the effective temperature of the vibrational
mode, which therefore can be considered as a heat sink. Note
that as the probability that the ion is in the ground state |−〉
is much higher than that for the excited state, the probability
of cooling of the system is quite high. Though at the onset of
this stage, the system is in an entangled state ρ1(t2) in the
electronic-vibrational joint basis, the measurement process
disentangles them. After the instantaneous projective mea-
surement, the final state of the system will be

ρS (t3) = |−〉〈−|. (10)

So the heat released from the system to the vibrational mode
can be calculated as

QL = Tr[ρS (t3)HS (BL )] − Tr[ρS (t2)HS (BL )]. (11)

The cooling process, as described above, is evidently prob-
abilistic and depends upon the measurement outcome, i.e.,

postselection. It may be noted that an alternative way of
cooling the system was proposed in Ref. [81], which is based
on a sequence of nonselective quantum nondemolition mea-
surement of the state of the system S, in a continuous-cycle
scheme. This leads to decoupling of S from the phonon bath,
i.e., ρS,ph → ρS ⊗ ρph, if the measurement outcomes or, al-
ternatively, the states of the measuring device are not read or
averaged out.

E. Stage 4: Compression stage

The magnetic field strength is changed from BL back to
BH during this stroke (4 → 1, Fig. 2). For infinitely slow
variation of the magnetic field, the evolution of the system
would be adiabatic. However, as discussed in Sec. II C, for
finite-time evolution, certain irreversible work W ir

2 is done
while the system maintains its interaction with both the hot
bath and the vibrational mode. To calculate this quantity, we
use the initial state of the system plus vibrational mode as
the state obtained during stage 3, which can be expressed as
ρ1(t3) = |−〉〈−| ⊗ ρph, where ρph is the state of the vibra-
tional mode after the projective measurement. The state ρ1(t3)
evolves into ρS (t4) during this stage, which can be obtained as
a solution of Eq. (4). The work done on the system during this
stage now becomes

W2 = Tr[ρS (t4)HS (BH )] − Tr[ρS (t3)HS (BL )], (12)

which includes the contribution from the irreversible work, as
given by

W ir
2 = TH S

[
ρS (t4)||ρ th

S (t4)
]

= TH
(
Tr{ρS (t4) ln[ρS (t4)]} − Tr

{
ρS (t4) ln

[
ρ th

S (t4)
]})

.

(13)

Note that the above protocol of the heat engine is valid
for a single run of the engine cycle. However, as in the
case of a nonselective measurement [82], this would lead to
heating of the system when averaged over many cycles. To
circumvent this issue, a feedback control [83], namely, a local
unitary transformation in the system based on the measure-
ment outcome, may be used. Precisely speaking, a π pulse
(as commonly used in a trapped-ion system [84]) needs to be
applied to the system only if it is measured in the state |+〉
to return it to the state |−〉 [85]. Otherwise, when averaged
over many cycles, this would affect the amount of cooling
and thereby reduce the efficiency of the engine, considering
the probabilistic nature of projective measurement. However,
we have found that the probability that the system will be
projected in the excited state is really much lower compared
to that for the ground state. This means that for most of the
cycles, the system will get cooled.

III. EFFICIENCY OF THE HEAT ENGINE

In the following, we consider the effect of finite-time driv-
ing of the thermalization and adiabatic evolution.

A. Case I: Partial thermalization and full adiabatic stage

Here we specifically focus on the effect of partial ther-
malization [34] on the engine efficiency [see Fig. 3(a) for a
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FIG. 3. Representative diagram of an engine cycle: (a) partial
thermalization and fully adiabatic stroke and (b) full thermalization
and partially adiabatic stroke.

detailed protocol]. As discussed in Sec. II B, the interaction
time between the system and hot bath is sufficiently short such
that the thermalization is incomplete. However, the adiabatic
stages (stage 2 and 4) are considered to run for a suitably
long timescale such that the quantum adiabatic condition is
satisfied. This means that there is no irreversible work that
otherwise would get wasted from the total work output. From
Fig. 4 it is clear that if the thermalization time t1 increases
during the first stage, the heat exchange QH with the hot
bath increases as well, and QH saturates asymptotically for
a long thermalization time. When QH saturates, it signifies
full or complete thermalization, i.e., the system has reached
thermal equilibrium with the thermal environment. There is no
coherence in the energy eigenbasis in this thermal equilibrium
state. However, if we terminate the stroke before saturation,
certain coherence is sustained in the system. This coherence
can enhance the performance of the engine.

From Fig. 5 it can observed that for shorter thermal-
ization time t1 during stage 1, the work done by the
system W1 increases. This is specifically due to residual
coherence in the system during the partial thermalization

FIG. 4. Variation of heat exchanged QH with the hot bath as a
function of the thermalization time t1 during first stage. The other
parameters are BH = 10, g = 0.2, k = 0.1, kBTH = 10, ω = 1, � =
0.085, and n̄th = 0.1. Here we set all parameters to be dimensionless
with respect to ω, while h̄ = 1.

FIG. 5. Variation of the efficiency η as a function of the ther-
malization time t1 during stage 1. Stages 2 and 4 are run in a fully
adiabatic fashion. The projective measurement (stage 3) is consid-
ered as an instantaneous process and the measurement is performed
in the |−〉 state. During the adiabatic process, the magnetic field is
varied from BH = 10 to BL = 5 and vice versa. The other parameters
are the same as in Fig. 4. The inset shows variation of work done W
by the system as a function of t1.

stage. In such a case, the efficiency of the heat engine
η = (work output)/(heat input) = (W1 + W2)/QH reaches its
maximum value (see Fig. 5). Such an enhancement of ef-
ficiency can be attributed to the coherence in the system.
However, there is a specific value of t1 (here t1,min = 14)
below which the engine does not operate, as it does not get
sufficient heat energy to produce a positive work output. When
the value of t1 is sufficiently large, the engine efficiency η

reaches the minimum, which is equal to the maximum effi-
ciency of a perfect single-ion Otto engine [63],

ηO = 1 − BL

BH
= 0.5. (14)

B. Case II: Full thermalization and nonadiabatic stage

Now we investigate the effect of the nonadiabaticity on the
thermal efficiency of the engine [see Fig. 3(b) for a detailed
protocol]. When the time τ for the change in the magnetic
field is not long, internal excitations between the energy
eigenstates of the system can occur, which act as a source
of entropy generation in the engine cycle. In this case, we
allow the system to thermalize completely with the hot bath
during the first stage, while there will be no coherence in the
system. However, stages 2 and 4 are run for a duration, when
it does not satisfy the quantum adiabatic condition, such that
irreversible work is generated. That is the primary source of
irreversibility in the engine cycle. This is how quantum coher-
ence contributes to irreversibility. Here we redefine the engine
efficiency by considering the effect of irreversible work as

ηir = (W1 + W2) − (
W ir

1 + W ir
2

)

QH
. (15)
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FIG. 6. Variation of the irreversible efficiency ηir as a function of
the total adiabatic time τ . The thermalization timescale is considered
t1 = 100 such that at the end of the first stage, the system attains
thermal equilibrium with the hot bath. During stages 2 and 4, the
magnetic field is varied from BH = 10 to BL = 5 and vice versa. The
others parameters are the same as in Fig. 4. The insets shows the
total irreversible work production W ir during these two stages and the
total work done W by the system during the entire cycle, as functions
of τ .

Figure 6 displays the variation of the thermal irreversible
efficiency ηir as a function of τ . It is clear that the engine
efficiency has a strong dependence on τ . For small values of
τ , the entropy production in the adiabatic branches is greater,
which is reflected in the value of total irreversible work (W ir =
W ir

1 + W ir
2 ) (see the inset in Fig. 6). This shows the presence

of internal friction in the system. Also, the total work done
(W = W1 + W2) by the engine is decreased significantly for
the small value of τ . This occurs because, due to the short
adiabatic time, the system is unable to follow the evolution
of the instantaneous eigenstate of the system Hamiltonian and
the occupation probability does not remain the same in this
basis. Further, a critical observation in Fig. 6 reveals that
the duration τ of the expansion and compression stages has
a minimum value (here τmin = 8), below which the engine
cannot run [86]. This is because, due to smaller τ , the entropy
generation is so great that the engine will not be able to pro-
duce useful work. When the adiabatic strokes are performed
quasistatically (i.e., τ → ∞) such that the adiabaticity is
maintained, the engine extracts the maximum possible amount
of work. This is because the quantum adiabatic theorem holds
for large τ and the occupation probability remains the same in
the instantaneous eigenstate. As a result, entropy production is
minimized and internal friction is also minimized. The engine
efficiency reaches the efficiency of a perfect single-ion Otto
engine [63].

IV. POWER OF THE HEAT ENGINE

In the preceding section our discussion was limited to a
single cycle of the engine. However, from a practical point
of view, along with finite-time behavior, it is important to

FIG. 7. Variation of the total power P as a function of the ir-
reversible efficiency ηir of the engine over the 20 cycles. Here the
thermalization timescale is considered as t1 = 25 such that at the end
of the first stage, the system does not reach equilibrium with the hot
bath. Also, stages 2 and 4 are run for a duration τ = 11 such that
these stages remain nonadiabatic. The other parameters are the same
as in Fig. 6.

study how the engine will behave over many cycles [87].
In this particular case, the thermalization and adiabatic time
are chosen such that thermalization is not complete during
stage 1 and stages 2 and 4 do not remain adiabatic. We start
our engine with the system initially in the ground state |−〉.
So in the next cycle, the initial condition for stage 1 would
change. However, due to the measurement procedure, after
just two cycles, all cycles become similar, having the same
initial conditions. A similar observation appears for different
initial conditions of the first cycle and different cycle times.
We can calculate the average efficiency of the engine for the
nth cycle as ηir

avg,cy(n) equal to the total work for the nth cycle
and the (n − 1)th cycle divided by the total heat input in the
nth cycle and the (n − 1)th cycle, which is equal to [(Wcy(n) +
Wcy(n−1)) − (W ir

cy(n) + W ir
cy(n−1))]/(QH,cy(n) + QH,cy(n−1)). Here

the power P of the engine in the nth cycle is defined as
Pcy(n) = ηir

avg,cy(n)/T , where T is the total time to complete a
single engine cycle. From Fig. 7 we can conclude that the effi-
ciency of the engine at maximum power is 0.25. This indicates
that the engine in our model runs with an efficiency close to
the Curzon-Ahlborn efficiency ηCA = 1 − √

BL/BH = 0.292
[65], which is attainable at maximum power, by definition.
Note that here we have not considered the measurement cost
[63]. If we include this measurement cost, the actual efficiency
ηir

avg will decrease below ηCA. It may be possible that we
can achieve Curzon-Ahlborn efficiency by suitably adjusting
thermalization and adiabatic time. Future work may consider
the shortcut to adiabaticity to improve the power of the engine
[20,23,35,60,61].

In this model, because a projective measurement has been
employed to expedite the process of cooling the system, ad-
ditionally, a measurement device plays the key role in the
process. In that case, this device would indeed be the actual
bath, while the vibrational states would just act as an ancillary
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system. We assumed that this measurement process is instan-
taneous, and the vibrational mode “acts” as a effective cold
bath. Note that we have considered the vibrational mode as an
effective cold bath, which is confined to its lowest-lying pair
of energy levels. So it has a finite heat capacity and its tem-
perature changes during stage 3 → 4. However, as the system
(i.e., electronic degrees mode) and the effective cold bath (i.e.,
vibrational mode) thermalize with the hot bath during stage
1 → 2 (next cycle), the effective cold bath in our model can
be reused for the next cycle of the engine. On the other hand,
as we have considered the thermal environment as the hot bath
in our model, which has infinite heat capacity, its temperature
remains the same during the cycle.

Though we have not presented any interaction model
between the system and measuring device, we can choose any
arbitrary observable for measurement with the only constraint
that the observable must be noncommuting with the system
Hamiltonian. It is well known that such an interaction will
lead to energy exchange between the system and measuring
device. Detection of the state of the measuring device on a
suitable basis will be equivalent to the projective measurement
of the system’s state. Such interaction will also lead to a
change in the entropy of both the system and measuring
device. So when the system is projected from a mixed state
to a pure state, the relevant energy cost can be calculated
as M = −kBTL(P− ln P− + P+ ln P+), where P− (P+) are the
probabilities of getting the system in the ground state (excited
state) after the measurement and TL is the ambient temperature
during measurement. Such an energy cost would refer to
erasing (or recording) the measurement outcome, reminiscent
of Landauer’s erasure principle [88]. Explicitly, the projective
measurement cost has a maximum value M = kBTL ln 2 [89],
which corresponds to the erasure of one bit of information
(the case of a maximally mixed state). This measurement
cost further reduces the effective efficiency of the engine
to ηM = (work output)/(heat input + measurement cost) =
(W1 + W2)/(QH + M ) = η/(1 + M/QH ). Note that the
denominator (1 + M/QH ) is always positive. For a clear
pictorial view about how the efficiency η and ηM (for a
maximally mixed state) vary with the work output of the
system, we refer to the parametric plot of Fig. 2 in our earlier
work [63]. Obviously, the actual power of the engine will
also decrease. However, if we reduce our thermalization time
below a specific value, the engine does not operate in the
physical domain [as discussed before, in Sec. III A). This
means that QH always has a minimum positive value and
similarly for the case of work output W of the engine (see
Fig. 5). So with the proper choice of thermalization time,
we can operate our engine such that it produces maximal
efficiency at a finite power. Note that in recent studies of the
thermodynamic aspects of the measurement-based quantum
heat engine [85,90], the authors also discussed how the
measurement cost affects engine efficiency.

This proposal can be incorporated using the existing
trapped-ion technology. As an example, for a single trapped
ion [84,91], the trap frequency ω can be of the order of
2π × 10 MHz, while the timescale of decay of the system, i.e.,
the electronic excited state, can be of the order of 1168 ms.
Thus the vacuum decay rate � becomes of the order 0.085ω.
In fact, the ion should be cooled in the red sideband limit,
where � (spontaneous decay rate) should be less than 0.1ω,
which also ensures the Lamb-Dicke regime. Note that the
magnitude of � remains of the same order when the magnetic
field changes (if the magnetic field B is halved, � becomes 1

8 ).
We have checked from the numerical calculation that for mod-
erate changes of �, the efficiency of the engine does not get
substantially affected. Moreover, the average photon numbers
of the hot thermal bath n̄th should remain much smaller than
unity, which ensures that the average excitation of the vibra-
tional mode is low such that it can be considered as a two-level
system. The temperature TH of the thermal environment can
be of the order of a few millidegrees Kelvin [92]. An external
magnetic field gives rise to a Zeeman splitting, typically in
the range from 2π × 5 to 2π × 20 MHz. We can consider a
temperature TH such that the average photon number of the
hot thermal bath can be n̄th = 0.1. The Lamb-Dicke parame-
ter, proportional to k, governs the coupling strength between
internal and vibrational states. The typical value of k can be
0.07. The timescale for each engine cycle can be of the order
of a few microseconds.

V. CONCLUSION

In summary, we have shown how a single trapped ion
can be employed to perform as a finite-time quantum Otto
engine. We explored the role of coherence in the engine per-
formance. When the engine operates in full thermalization
with a partially adiabatic stroke, its performance deteriorates.
This is due to the irreversible work (internal friction), which
is produced due to fast operation. If we maintain the quan-
tum adiabaticity during engine operation, i.e., if the adiabatic
cycle time is long enough, we restore the efficiency of an
ideal single-ion Otto engine. On the other hand, when the
engine operates in partial thermalization with fully adiabatic
strokes, its performance improves. This is due to the residual
coherence after the thermalization stroke. Furthermore, when
the thermalization time is quite long, i.e., when the system
reaches thermal equilibrium with the hot bath at the end
of the thermalization stroke, we restore the ideal single-ion
Otto engine efficiency. More interestingly, we have shown
that if we suitably choose the timescale of thermalization and
adiabatic strokes, we can increase the engine efficiency and
also produce finite power and we can attain the efficiency at
maximum power, close to the Curzon-Ahlborn bound.
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Eur. Phys. J. D 71, 75 (2017).
[80] S. Deffner and E. Lutz, Phys. Rev. Lett. 105, 170402 (2010).
[81] N. Erez, G. Gordon, M. Nest, and G. Kurizki, Nature (London)

452, 724 (2008).

[82] J. Yi, P. Talkner, and Y. W. Kim, Phys. Rev. E 96, 022108
(2017).

[83] T. Sagawa and M. Ueda, Phys. Rev. Lett. 100, 080403 (2008).
[84] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod.

Phys. 75, 281 (2003).
[85] C. Elouard, D. Herrera-Martí, B. Huard, and A. Auffèves, Phys.

Rev. Lett. 118, 260603 (2017).
[86] D. Türkpençe and F. Altintas, Quantum Inf. Process. 18, 255

(2019).
[87] G. Watanabe, B. P. Venkatesh, P. Talkner, and A. del Campo,

Phys. Rev. Lett. 118, 050601 (2017).
[88] R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
[89] T. Sagawa and M. Ueda, Phys. Rev. Lett. 102, 250602

(2009).
[90] C. Elouard and A. N. Jordan, Phys. Rev. Lett. 120, 260601

(2018).
[91] J. Goold, U. Poschinger, and K. Modi, Phys. Rev. E 90,

020101(R) (2014).
[92] D. von Lindenfels, O. Gräb, C. T. Schmiegelow, V. Kaushal, J.

Schulz, M. T. Mitchison, J. Goold, F. Schmidt-Kaler, and U. G.
Poschinger, Phys. Rev. Lett. 123, 080602 (2019).

032144-9

https://doi.org/10.1103/PhysRevLett.75.4011
https://doi.org/10.1103/PhysRevB.101.054513
https://doi.org/10.1103/PhysRevE.90.032102
https://doi.org/10.1103/PhysRevE.100.062140
https://doi.org/10.3390/e15062100
https://doi.org/10.1088/0031-8949/91/7/075101
https://doi.org/10.1140/epjd/e2017-70443-1
https://doi.org/10.1103/PhysRevLett.105.170402
https://doi.org/10.1038/nature06873
https://doi.org/10.1103/PhysRevE.96.022108
https://doi.org/10.1103/PhysRevLett.100.080403
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/PhysRevLett.118.260603
https://doi.org/10.1007/s11128-019-2366-7
https://doi.org/10.1103/PhysRevLett.118.050601
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1103/PhysRevLett.102.250602
https://doi.org/10.1103/PhysRevLett.120.260601
https://doi.org/10.1103/PhysRevE.90.020101
https://doi.org/10.1103/PhysRevLett.123.080602

