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Heat engines performing finite time Carnot cycles are described by positive irreversible entropy functions
added to the ideal reversible entropy part. The model applies for macroscopic and microscopic (quantum
mechanical) engines. The mathematical and physical conditions for the solution of the power maximization
problem are discussed. For entropy models which have no reversible limit, the usual "linear response regime" is
not mathematically feasible; i.e., the efficiency at maximum power cannot be expanded in powers of the Carnot
efficiency. Instead, a physically less intuitive expansion in powers of the ratio of heat-reservoir temperatures
holds under conditions that will be inferred. Exact solutions for generalized entropy models are presented, and
results are compared. For entropy generation in endoreversible models, it is proved for all heat transfer laws
with general temperature-dependent heat resistances, that minimum entropy production is achieved when the
temperature of the working substance remains constant in the isothermal processes. For isothermal transition
time t , entropy production then is of the form a/[t f (t ) ± c] and not just equal to a/t for the low-dissipation
limit. The cold side endoreversible entropy as a function of transition times inevitably experiences singularities.
For Newtonian heat transfer with temperature-independent heat conductances, the Curzon-Ahlborn efficiency is
exactly confirmed, which—only in this unique case—shows "universality" in the sense of independence from
dissipation ratios of the hot and cold sides with coinciding lower and upper efficiency bounds for opposite
dissipation ratios. Extended exact solutions for inclusion of adiabatic transition times are presented.
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I. INTRODUCTION

Macroscopic heat engines operating between two heat
baths (reservoirs) with low and high temperatures Tc and Th

unavoidably experience losses by irreversible positive entropy
generation. Thus, the efficiency η of such engines, defined
as the ratio of mechanical or electrical work output W and
absorbed heat Qh from the hot reservoir, is always below
the Carnot efficiency ηC = 1 − Tc/Th of an ideal heat engine
without irreversible entropy generation. The Carnot efficiency
is based on the classical work of Carnot [1] for an engine
working in recurrent cycles with four steps (e.g., a cylinder
with working fluid compressed or expanded by a movable
piston). In order to suppress losses, isothermal expansion and
compression of the fluid at temperature Th and Tc, respectively,
has to be performed infinitely slowly to keep the system in
thermal equilibrium with the heat baths. In the two adiabatic
branches of the cycle, the fluid is expanded and compressed
very rapidly to change the temperature of the working fluid
between Th and Tc. Denoting the time for isothermal expan-
sion and compression by th and tc and ignoring the time
for adiabatic cycle branches, the engine’s output power is
P = W/(th + tc), which tends to zero for th, tc → ∞.

"Finite time thermodynamics" [2–13] with th, tc < ∞ and
P > 0 requires model assumptions for the irreversible entropy
production due to thermal nonequilibrium conditions, friction
of moving parts, and/or heat leakage current introduced by the
engine’s setup between hot and cold reservoirs.

In microscopic and quantum mechanical systems
[5,6,14–22], deviations from principally positive entropy
production rates sometimes are considered possible on short
timescales [21], since energy transfers in those systems are
random and thermal fluctuations induce transient decreases of
entropy, allowing for possible violations of the Carnot limit
for some cycles in the time sequence. Thus the system in
Ref. [21], i.e., a single optically trapped Brownian particle
as working substance [5,6], seems to be able to work at the
Carnot limit. On the other hand, several studies [17–20] rule
out the possibility of Carnot efficiency at nonzero power,
at least if the engine-bath interactions are not designed
purposefully [17].

In the following, the usual convention is used that heat
absorbed by the engine is counted positive. Thus, Qh absorbed
from the hot reservoir during one cycle is positive and heat Qc

released to the cold reservoir is negative. By the first law of
thermodynamics (energy conservation), the work obtained in
one cycle and the efficiency η is

W = Qh + Qc = Qh − |Qc|, η = W /Qh = 1 + Qc/Qh.

(1)
Generally, the entropy S absorbed by a system is given by

the sum over the increments of absorbed heat dQ divided by
system temperature T(t) at time t of absorption:

S =
∫

dQ

T (t )
=

∫
q(t )

T (t )
dt with heat flow q(t ) = dQ(t )

dt
.

(2)

2470-0045/2021/103(3)/032141(11) 032141-1 ©2021 American Physical Society

https://orcid.org/0000-0002-8634-1206
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.032141&domain=pdf&date_stamp=2021-03-24
https://doi.org/10.1103/PhysRevE.103.032141


YORK CHRISTIAN GERSTENMAIER PHYSICAL REVIEW E 103, 032141 (2021)

In the case of an ideal Carnot engine, the entropy absorbed
by the working fluid in the isothermal process, when in contact
with the hot reservoir, is �S = Qh/Th, and the hot reservoir re-
leases the same amount −�S, so that the full system including
reservoirs does not change entropy. The entropy released from
the working fluid to the cold reservoir during the isothermal
compression stroke is Qc/Tc. After disconnection from the
cold reservoir and having finished one full cycle, the engine
is in thermal equilibrium at its initial state without change of
entropy. During the adiabatic processes no heat or entropy is
exchanged. Since the system is always in thermal equilibrium,
it can be shown that �S = Qh/Th = −Qc/Tc [23]. Thus from
Eq. (1), ηC = 1 − Tc/Th is derived.

By reverse operation of the ideal Carnot engine, the oppo-
site entropy with same magnitude |�S| is rejected from the
working fluid during compression at temperature Th and the
reversible entropy +�S is absorbed during expansion at Tc.
The engine then works in the refrigerator or heat-pump mode
with coefficient of performance defined by φ = Qd/(−W ).
Since again Qh/Th = −Qc/Tc, φc = Tc/(Th − Tc) is inferred.

In the presence of irreversible entropy production, the heat
Qh absorbed per cycle by the heat engine is reduced, e.g.,
because of expansion with finite time th and limited heat
conductivity between working fluid and heat bath, or since
friction of the piston causes the working fluid to be heated,
thus reducing the heat flow from the reservoir. Such effects,
also in combination, can be represented by an additional gen-
eral irreversible entropy term Sh(th) to the reversible entropy
part �S for the hot side process, resulting in

Qh = Th[�S − Sh(th)]. (3)

Similarly for the cold side process with finite time tc, heat
rejection Qc to the cold reservoir is increased in magnitude
by the same effects with reversed sign. Thus with cold side
irreversible entropy production Sc(tc), Qc per cycle is

Qc = Tc[−�S − Sc(tc)]. (4)

The restriction Sc(tc), Sh(th) � 0 applies, due to the second
law of thermodynamics, but for the time being no further con-
ditions are assumed. The Sc(tc), Sh(th) may depend in addition
to th, tc on Th, Tc, �S and further system parameters. In partic-
ular, the Sc(tc), Sh(th) may include the effect of a heat leakage
current [12,13] caused, e.g., by the engine’s housing between
hot and cold reservoirs, which typically is a steady state pro-
cess, not linked to the cyclic operation. This is of importance
in steady state heat engines. Especially for thermoelectric and
thermionic converters [24–26] such a description is necessary
[27].

Equations (3) and (4) are a straightforward extension of the
models in Ref. [5–7], where

Sh(th) = �h/th, Sc(tc) = �c/tc, (5)

with positive constants �h, �c. That model is widely used
and known as the "low-dissipation" approximation, although
Sc(tc), Sh(th) thus defined are unlimited in size for short times
th, tc. The low-dissipation assumption is plausible for suffi-
ciently large th, tc, provided that the limit toward the ideal
Carnot engine Sc(tc), Sh(th) → 0 for th, tc → ∞ exists. In that
case, the low-dissipation entropy generations can be obtained

after series expansion in the variable 1/t : �iai(1/t )i, by dis-
carding all terms with i > 1.

For practical applications the low-dissipation assumption
often is too rough an approximation, e.g., for the endore-
versible model of the Carnot engine with ideal gas (see the
Appendix). The endoreversible model is obtained by attribut-
ing the irreversibilities Sc(tc), Sh(th) exclusively to finite heat
conductances connecting the engine’s working medium to the
heat baths, while the core engine is assumed to be in an
ideal Carnot modus. The heat conductances can be chosen
according to different heat transfer laws for the heat flows
qh(t), qc(t) at the hot and cold side with temperatures Tf h(t),
Tf c(t) of the working fluid, when in contact with the Th, Tc

reservoirs:

q j (t ) = κ j (Tf j (t ), Tj ) [Tj − Tf j (t )], j = h, c. (6)

The κ j are constants for the most common heat trans-
fer, Newton’s law. In several publications [4,8,10], the heat
flows q j are set proportional to the "thermodynamic force"
1/Tf j (t ) − 1/Tj with constant κt j in the context of linear
irreversible thermodynamics. The κt j are related to the κ j by

κ j (Tf j (t ), Tj ) = κt j/[Tf j (t )Tj]. (7)

Originally, linear irreversible thermodynamics was applied
for the full temperature drop Th, Tc, without introducing the
Tf j(t), under the condition Th − Tc � Th, Tc [28–31]. In the
present paper no such approximation will be made.

In Ref. [4] the heat transfers q j (t ) = κn j[T n
f j (t ) − T n

j ] have
been investigated which correspond for n = 1 to the New-
tonian case and for n = −1 to the thermodynamic force
heat flow according to Eq. (7). Heat transfer by thermal
radiation is included in the case of n = 4. These heat trans-
fers are covered for all positive and negative integers n by
Eq. (6) with κ j (Tf j, Tj ) = ∑n

i=1 T n−i
f j T i−1

j for positive n and

by κ j (Tf j, Tj ) = ∑n
i=1 T −i

f j T i−1−n
j for negative n with n = |n|,

so that κ j(Tf j , Tj) is always positive.
During the adiabatic branches of the Carnot cycle, the

engine is completely isolated from the heat reservoirs. There-
fore, in the case of the endoreversible models, the adiabatic
branches are reversible without any irreversible entropy pro-
duction. Usually the time ta spent in the adiabatic processes
is very short compared to isothermal process times, and ta is
nearly always ignored in the literature. Endoreversible mod-
els with inclusion of adiabatic ta will be treated in detail in
Sec. III, and it will turn out, even for the most general heat
transfer law in Eq. (6), that the irreversibilities S j(t j) are of
the form �S2/[tj f (t j ) ± �S] and are not just equal to � j/t j .

II. GENERAL ENTROPY PRODUCTION

In this section low and high irreversible entropy generation
will be treated on the same footing. In the case of entropy
production according to Eqs. (3) and (4), the heat engine is in
the same state after one full cycle and its entropy content is not
changed. However, the entropy of the full system including
heat reservoirs has changed by −Qh/Th − Qc/Tc = Sh(th) +
Sc(tc) > 0. In the refrigerator mode, the heat engine operates
in the reverse direction, absorbing heat Qc and releasing heat
|Qh| which is also described by Eqs. (3) and (4) with the
opposite sign of reversible entropy production �S, but the
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same sign for the S j(t j). Then again the entropy production
of the full system is given by Sh(th) + Sc(tc) > 0. In this work
only the power generator mode will be treated and �S < 0 is
always assumed.

The irreversibilities reduce the power output:

P(th, tc) = Qh + Qc

th + tc
= (Th − Tc)�S − ThSh(th) − TcSc(tc)

th + tc
.

(8)
The corresponding efficiency according to Eqs. (1), (3),

and (4) is

η(th, tc) = 1 − Tc

Th

�S + Sc(tc)

�S − Sh(th)
< ηC . (9)

η can also be directly expressed by the full irreversible entropy
production Sirr = −Qh/Th − Qc/Tc = Sh(th) + Sc(tc) without
use of the reversible �S. Dividing Sirr by Qh and utilizing
Eq. (1) yields

η = ηC − TcSirr/Qh.

For Sh(th) → �S a singularity arises in Eq. (9) with η →
±∞, because Qh → 0 and no work output is possible. Physi-
cally Sh(th) � �S is not excluded. P(th, tc) can be maximized
with respect to the cycle times th, tc by solving the following
equations for th, tc with solutions τh, τc � 0. By use of Eqs. (8)
and (9),

∂P/∂th = 0 = ∂P/∂tc → Pmax = P(τh, τc),

ηP max = η(τh, τc). (10)

The weak dissipation Carnot limit with th, tc → ∞ may
not exist for general and more realistic Sc(tc), Sh(th), since—at
least for macroscopic engines—friction is always present and
can increase with lower piston speed, depending on the kind
and roughness of surfaces. Physically it is not mandatory that
the S j(t j) are monotonous decreasing functions with t j .

The low-dissipation assumption (5) has the advantage of
allowing for rather simple analytical calculations, whereas
other forms for S j(t j) lead to involved computations with
hardly or not at all manageable analytical expressions. The
optimized τh, τc for model (5) can be calculated exactly ana-
lytically [7]. Introducing the ratios r = Tc/Th, σ = �c/�h, the
τh, τc, and ηPmax can be written as

τh = 2�h

(1 − r)�S
(1 + √

rσ ),

τc = 2�c

(1/r − 1)�S
[1 +

√
1/(rσ )],

ηP max = (1 − r)(1 + √
rσ )

(1 + √
rσ )2 + r(1 − σ )

. (11)

It turned out [7] that ηPmax = η(τh, τc) is equal to the
Curzon-Ahlborn (CA) efficiency ηCA [2,32,33] in the case of
symmetric dissipation �h = �c; i.e., σ = 1:

ηCA = 1 −
√

Tc/Th = 1 −
√

1 − ηC,

η− = ηC

2
, η+ = ηC

2 − ηC
.

Here η−, η+ are the lower and upper efficiency bounds
for asymmetric dissipation σ = �c/�h → ∞ and → 0,

respectively. ηPmax in Eq. (11) can be expanded in powers of
ηC = 1−r:

ηP max = ηC

2
+ ηC

2

4

1

1 + √
σ

+ η3
C

8

1

1 + √
σ

+ O
(
η4

C

)
.

A. General conditions for maximum power

The general system conditions for the determination of
Pmax, ηPmax, and τh, τc from given entropies S j(t j) will be
formulated. The following physical and mathematical conse-
quences are valid:

1. S j (t j ) � 0, t j � 0, for j = h, c.
2. If W (th, tc) > 0 for th, tc → 0, then Pmax → ∞. Equa-

tion (10) for τh, τc, and Pmax determination can only be
applied for W (0, 0) � 0. For the endoreversible model, tc is
restricted to tc > �S/κc > 0, since otherwise Sc(tc) < 0 (cf.
Sec. III).

3. For Sh(th) → �S, according to Eq. (9) η → ±∞, be-
cause of Qh → 0 and the work and power output is negative.
Thus Sh(th) � �S, although physically admissible, is no pos-
sible solution for power maximization and has to be excluded.
For the endoreversible model, Sh(th = 0) = �S is the maxi-
mum with W(th = 0, tc)< 0 (cf. Sec. III). Thus τh = 0 is not
possible.

4. From Eqs. (8) and (10) it can be inferred that

Pmax + Tj
dS j

dt j
(τ j ) = 0,

j = h, c and thus
dS j

dt j
(τ j ) < 0 (12)

for Pmax < 0. This means that, at least within a neighborhood
of τh, τc, the S j(t j) are decreasing functions. If S j(t j) are
continuously increasing functions, Pmax is achieved for the
smallest t j compatible with S j(t j) � 0. Equation (12) can be
used to calculate Pmax for τh, τc < ∞, if one of the τh or τc is
known.

5. If Sc(tc), Sh(th) are increasing or decreasing linear func-
tions, a physical local maximum of P(th, tc) in the sense of
Eq. (10) does not exist, and Eq. (12) is not valid. Pmax then is
given by the largest or lowest t j in the physical time domain
compatible with S j(t j) � 0.

6. If a physical local maximum of P(th, tc) with solutions τh,
τc exists, Eq. (12) is valid and yields, by use of the derivatives
S′

j (t j ) = dS j/dt , S′
c(τc) = S′

h(τh)Th/Tc, resulting in τc(τh) =
S′−1

c [S′
h(τh)Th/Tc] with S′−1

c denoting the inverse function of
S′

c(tc). S′−1
c exists at least in a surrounding of τc. Similarly,

τh(τc) = S′−1
h [S′

c(τc)Tc/Th].
7. In the linear response regime, i.e., for Tc ≈ Th, the first

few terms of the series expansion in ηC of ηPmax or other
efficiencies are often compared for different models to dis-
cuss "universality" [34]. For ηPmax = η(τh, τc) in Eq. (9), the
expansion in ηC can only exist when the τh, τc depend on Tc,
Th through their ratio r = Tc/Th under the proviso that S j(t j)
has no further Tj dependence. This can be confirmed generally
by maximizing in Eq. (10) P/Th instead of P, with unaltered
result for the τh, τc, ηPmax, which thus only depend on r. Pmax

itself is proportional to Th and a factor containing r. In the case
that Sc(τc), Sh(τh) > 0, due to Eq. (9), ηPmax < 0 for ηC = 0.
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Furthermore, the series expansion of ηPmax in powers of ηC

(i.e., in r around r = 1) does not generally exist.
In the case of additional Tj dependence of the S j(t j), ex-

pansion of ηPmax in powers of ηC or r usually is not directly
possible. Then one of the Tj , e.g., Th, has to be chosen as a
fixed parameter and Tc is expressed as rT h.

Examples for additional entropy Tj dependence have been
presented for microscopic and quantum mechanical engines.
Nearly always the low-dissipation entropy production ∼1/t j is
deduced, Refs. [6,14,21,22]. In Ref. [22] a perturbation theory
for quantum master equations led to a systematic expansion
of entropies in powers of (1/t j). After discarding all higher
powers of (1/t j), again the low-dissipation approximation was
used for thermodynamic descriptions with different efficien-
cies. A microscopic engine for a colloidal Brownian particle
described by a Fokker-Planck equation (drift-diffusion ap-
proximation) was treated in Ref. [6]. This again led to the
entropy model (5), S j (t j ) = � j (Tj )/t j , which assumes differ-
ent forms with different efficiencies by the functions � j (Tj)
associated with the mobility μ(T ) of the Brownian particle:
Tc�c(Tc)/[Th�h(Th)] = μ(Th)/μ(Tc). The ηCA efficiency fol-
lowing Eq. (11) is only obtained in the case of μ(T ) ∼ 1/T .

B. Power maximization with different entropy models

Calculation results pertaining to maximized power will
be presented utilizing generalized irreversibilities S j(t j), j =
h, c. The objective is to give a nearly complete list of those
S j(t j) functions, for which an analytical solution to the power
maximization problem according to Eq. (10) is possible.

By adding a constant and linear term to the low-dissipation
model of Eq. (5), the following expressions are obtained:

S j (t j ) = c( j)
−1

/
t j + c( j)

0 + c( j)
1 t j, j = h, c. (13)

This model can be used to investigate the consequences
of nonmonotonous entropy production also in the case of
absence of a reversible limit for t j → ∞. How this can occur
was explained following Eq. (10). Because of S j(t j) � 0 for
t j > 0, c( j)

−1 � 0, c( j)
1 � 0. The constants c( j)

0 are limited from
below by the minimum condition S j(t) � 0 at t = √

c−1/c1:

c( j)
0 � −2

√
c( j)

1 c( j)
−1, j = h, c.

The solution of Eq. (10) for this model leads to

1

τh
= −b ∓ √

d
√

rσ

2
(
c(h)
−1 − c(c)

−1r
) ,

1

τc
= b ± √

d
/√

rσ

2
(
c(h)
−1 − c(c)

−1r
) , (14)

with r = Tc/Th, σ = c(c)
−1/c(h)

−1, and

b = c(h)
0 + c(c)

0 r − �S(1 − r),

d = b2 − 4c(h)
−1

(
c(h)

1 − c(h)
−1r

)
(1 − rσ ).

For a physical solution in Eq. (14), both τh and τc � 0,
which is equivalent to 1/τh + 1/τc � 0 and (1/τh)(1/τc) � 0.
In addition, d � 0 is required. Because of 1/τh + 1/τc � 0,
only the upper sign in Eq. (14) in front of

√
d can give a valid

solution. Because of (1/τh)(1/τc) � 0, b must be positioned
between −√

d
√

rσ and −√
d/

√
rσ . Thus necessarily b � 0

and b = 0 only together with d = 0. These requirements im-
ply strong restrictions for the parameter space of the entropy
model (13). In particular, a solution for ηPmax(ηC) at ηC = 0,
i.e., at r = 1, only exists if c(h)

0 + c(c)
0 � 0 and if d � 0. Al-

though systems with c(h)
0 + c(c)

0 > 0 are physically possible, a
mathematical description by a series expansion of ηPmax(ηC)
around ηC = 0 in that case is not possible, and the solution
(14) of Eq. (10) is not valid. This also holds for c(h)

1 , c(c)
1 = 0;

i.e., the S j(t j) are monotonously decreasing with S j = c( j)
0 >

0 for t j → ∞. It suffices that the reversible regime cannot be
approached, to prevent the usual "linear response regime" to
be mathematically feasible. Thus, this traditional concept is in
question and other avenues have to be considered.

An expansion of ηP max(ηC ) around ηC = 1, i.e., around
r = 0, is always possible, at least for a neighborhood of r =
0, because for all systems with a nonsingular denominator,
Eq. (9) yields ηP max(r = 0) = 1. For r = 0, b can assume
any value in the interval (−∞, 0) and is only restricted by
the requirement b = c(h)

0 − �S < 0 by the above statement
No. 3. If d = b2 − 4c(h)

1 c(h)
−1 � 0 is fulfilled for sufficiently

small c(h)
1 c(h)

−1, the solution (14) for r = 0 is τh(r = 0) =
−2c(h)

−1/b, τc(r = 0) = 2c(h)
−1/(b + √

d/σ/
√

r) ⇒ τc → 0 for
r → 0. A singularity 1/

√
r in Eq. (9) will be removed by the

prefactor r and ηP max(r = 0) = 1 is obtained. Also in the case
of r = 0, less severe restrictions for the parameter space of the
model (13) have to be observed.

With Eqs. (12)–(14) for j = h, Pmax is easily inferred:

Pmax = Th

[ (
b + ar

√
d
)2

4c(h)
−1

(
1 − a2

r

)2 − c(h)
1

]
,

where ar = √
σ r, r = Tc/Th, σ = c(c)

−1/c(h)
−1. The efficiency

ηP max = η(τh, τc) from Eq. (9) is more complicated:

ηP max = 1 − r
N

D
,

N = 2
(
1− a2

r

)[(
�S+ c(c)

0

) + 2
(
1 − a2

r

)
arc(c)

1 c(h)
−1/(arb + d )

]
+ (arb + d )ar/r,

D = 2
(
1 − a2

r

)[(
�S − c(h)

0

) + 2
(
1 − a2

r

)
c(h)

1 c(h)
−1/(b + ard )

]
+b + ard.

Other irreversibilities, which are of special importance for
the endoreversible models (Sec. III), are represented by

S j (t j ) = c( j)
−1

/
(t j − t j0), j = h, c. (15)

These models allow for exact solutions also in the case
that the adiabatic transition times ta are explicitly taken into
account for power maximization. Then in Eq. (8) the de-
nominator for P has to be replaced by th + tc + ta. Analytical
solutions for the problem (10) are only possible without the in-
clusion of additional terms c( j)

0 + c( j)
1 t j . Despite its simplicity,

the solution for model (15) is involved, but can be achieved
with the help of a symbolic calculator [35]. The following
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solutions are obtained:

τc − tc0 = c(c)
−1r + a

( − 1 − bm/c(h)
−1

)
�S(1 − r)

, τh − th0 = c(h)
−1 − a + bm

�S(1 − r)
,

τc − tc0 = c(c)
−1r + a

( − 1 + bm/c(h)
−1

)
�S(1 − r)

, τh − th0 = c(h)
−1 − a − bm

�S(1 − r)
,

τc − tc0 = c(c)
−1r + a

( + 1 + bp/c(h)
−1

)
�S(1 − r)

, τh − th0 = c(h)
−1 + a + bp

�S(1 − r)
,

τc − tc0 = c(c)
−1r + a(+1 − bp/c(h)

−1

)
� (1 − r)

, τh − th0 = c(h)
−1 + a − bp

�S(1 − r)
,

τc − tc0 = c(c)
−1r

�S (1 − r)
, τh − th0 = ∞,

τc − tc0 = ∞, τh − th0 = c(h)
−1

�S(1 − r)
, (16)

with r = Tc/Th, and the positive constants a =
√

c(c)
−1c(h)

−1r,

bm =
√

c(h)
−1

[(√
c(h)
−1 −

√
c(c)
−1r

)2

+ �S(1 − r)(ta + tc0 + th0)
]
,

bp =
√

c(h)
−1

[(√
c(h)
−1 +

√
c(c)
−1r

)2

+ �S(1 − r)(ta + tc0 + th0)
]
.

with bm, bp including the adiabatic time ta. The solutions in
Eq. (16) correspond to local extrema of P(th, tc). The last
two solutions lead to infinite cycle times τh + τc → ∞ with
P(τh, τc) = 0. For a valid physical solution, it is required that
(τ j − τ j0) � 0. Since for the endoreversible model th0 < 0 (cf.
Sec. III), the additional requirement τh � 0 has to be posed.
Only the solution in the third line of Eq. (16),

τc − tc0 = c(c)
−1r + a

( + 1 + bp/c(h)
−1

)
�S(1 − r)

,

τh − th0 = c(h)
−1 + a + bp

�S(1 − r)
,

satisfies (τ j − τ j0) � 0 for all physical parameters c(h)
−1, c(c)

−1,
r, �S. Furthermore, only for this solution in the case of
t j0 → 0 or th0 → −tc0, and ta = 0, is the low-dissipation limit
in Eq. (11) obtained. This is verified by inserting the constants
a, bp, bm for that limit in Eq. (16), together, i.e.,

a = c(h)
−1

√
σ r, bm = c(h)

−1|1 − √
σ r|, bp = c(h)

−1(1 + √
σ r).

Here again σ = c(c)
−1/c(h)

−1. Generally, ηPmax is ex-
pressed by Eq. (9) and the above solution for τh, τc Pmax

is obtained by utilizing Eq. (12) with τh which stays
valid also in the case of ta > 0. The resulting expres-
sions can be simplified by extracting the factor c(h)

−1 out

of a = c(h)
−1ar and bp = c(h)

−1br yielding ar = √
σ r and br =√

(1 + √
σ r)2 + �S(1−r)(ta + tc0 + th0)/c(h)

−1. Then,

ηP max = (1 − r)
br

(ar + br + r)
,

Pmax = Th
�S2(1 − r)2

(ar + br + 1)2c(h)
−1

. (17)

It should be noted that in principle the radicand of br can
become negative for ta + th0 + tc0 < 0 and the solutions (16)
may lose their meaning. For the low-dissipation limit with
th0 + tc0 = 0, ta = 0, Pmax reduces to

Pmax = Th
�S2(1 − r)2

4c(h)
−1(1 + √

σ r)2 .

The model (15) makes use of five independent system
parameters: �S, c(c)

−1, c(h)
−1, th0, tc0. For the less general en-

doreversible model with constant heat conductances κ j , to
be treated in Sec. III, these parameters reduce to three: �S,
κc, κh [cf. Eq. (23)], with considerable simplifications for
ηP max, Pmax, and br , so that in this case limits for dissi-
pation ratios σ lead to lower and upper efficiency bounds
η− = η+ = ηCA which coincide with the Curzon-Ahlborn ef-
ficiency. Equation (17) should not be used in general for
deriving efficiency bounds for limits of σ , since the th0, tc0

parameters may also depend on dissipation values.
The first two terms of the series expansion of Eq. (11) in

powers of ηC can be compared with that of Eq. (17):

ηP max = ηC

2
+ η2

C

4

[
1

1 + √
σ

+ �S(ta + tc0+ th0)

2c(h)
−1(1 + √

σ ) 2

]
+ O

(
η3

C

)
.

One further entropy model which allows for analytical
solutions is of the form

S j (t j ) = c( j)
2 (t j − t j0)2 + c( j)

0 , j = h, c,

with c( j)
2 , c( j)

0 � 0 and t j0 < 0. This model is of some theoret-
ical interest, since it is always limited in the decreasing part
of the S j(t j), where the solutions τh, τc are located. However,
further investigations will not be pursued in this paper. Other
models with analytical solutions can hardly be identified, ex-
cept the simple monoterms S j (t j ) = c( j)

−2/t j
2.

A different method for the solution of Eq. (10) is the max-
imization of work W (th, tc) with the constraint that the total
cycle time th + tc = τ is a fixed value. Afterward W(τ )/τ is
maximized with respect to τ . This is equivalent to maximizing
P(th, tc). With Lagrange parameter λ for the constraint, the
work to be varied is Wλ = W (th, tc) + λ(th + tc − τ ):

∂Wλ

∂t j
= λ − TjS j (t j ) = 0, j = h, c.

This is solved for t j(λ) and then, λ has to be determined
from the constraint equation to express t j as functions of τ . In
the case of the model (15):

t j (λ) =
√

c( j)
−1Tj/λ + t j0,

√
λ =

√
c(c)
−1Tc +

√
c(h)
−1Th

τ − tc0 − th0
,

th(τ ) = τ − tc0 + arth0

1 + ar
, tc(τ ) = arτ + tc0 − arth0

1 + ar
,

with parameter ar from Eq. (17). This is inserted into W(th, tc)
which can be expressed with the help of parameter br

and tc0 + th0 = [b2
r − (1 + ar

2)]c(h)
−1/[�S(1−r)]. Differentiat-

ing d[W (τ )/τ ]/dτ = 0 leads to a quadratic equation for τ

with one physical solution:

τ = c(h)
−1br

(1 + ar + br )

�S(1 − r)
.
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Simplifying η[th(τ ), tc(τ )] yields exactly Eq. (17) for
ηPmax. Similarly, W [th(τ ), tc(τ )]/τ yields Pmax. These results
are more easily obtained compared to method (10), if the
parameters ar, br are introduced from the beginning, in order
to simplify expressions. Thus some prior knowledge from the
initial solution procedure is used.

Further methods for power maximization can be envisaged.
For example, in the case that the S j(t j) are invertible and t j(S j)
can be expressed as analytical functions, it may be possible to
maximize P(Sh, Sc) with respect to the independent variables
Sh, Sc. For model (15), this is more cumbersome than the
original method, but the results seem to be the same. Another
method can use η and Sh in P(Sh, η) as independent variables.
This has the advantage that the obtained solution pairs (Sh, η)
directly give the corresponding efficiencies η for the local ex-
trema of P(Sh, η). For model (15) the same solution, Eq. (17),
is obtained successfully, but this method poses no real ad-
vantage. However, for the maximization in an endoreversible
system with heat transfer due to thermodynamic force, Eq. (7),
this proves to be a powerful method (Sec. III B).

III. ENDOREVERSIBLE MODELS

Performance and entropy production of heat engines gen-
erally not only depend on the times th, tc, where the system
is in contact with the hot and cold reservoirs, but also on
the detailed "protocol" (time dependence of engine parame-
ters) of the changing containment of the working substance
during th, tc. The standard example is a working fluid en-
closed in a cylinder with a moving piston and the volume
of the working fluid as control parameter. For microscopic
stochastic heat engines, a prominent (nonendoreversible) ex-
ample is a colloidal Brownian particle as working substance
enclosed in a time-dependent harmonic potential [5,6,21]. For
endoreversible models, it is assumed that irreversible entropy
production arises without friction merely by heat conduc-
tances according to Eq. (6) between working medium and
heat baths. Many studies on the endoreversible model exist
and often comparisons with the low-dissipation model (5) are
carried out [10,12,13]. Both models reveal similar, but by no
means equivalent behavior with respect to irreversible entropy
production and system performance. In particular, in the short
time region strong deviations occur.

Principally, the temperature of the working medium Tf j (t)
at the hot and cold sides ( j = h, c) varies during the "isother-
mal" processes, because of the variation of V(t) (fluid volume
or external potential) of the enclosing containment. V(t) can
be a multiparameter set V = {Vi} related as control parameters
to Tf j (t). For nonconstant Tf j(t), the isothermal processes can
be considered as quasi-isothermal. In the case of an ideal gas
as working fluid, the relation between Tf j(t) and prescribed
volume evolution V(t) of the gas can be expressed analytically
as detailed in the Appendix. Generally the question arises as
to the optimum cycle path V(t) or Tf j(t), respectively, for
maximum system performance. The objective is to minimize
the irreversible entropies Sj(t j), for given t j of the isothermal
processes, with the constraint that the initial and final posi-
tions of the control parameters, different for the hot and cold
sides, are independent engine parameters and will not change
with the transition times t j . The detailed protocol Vj(t) or

Tf j(t) has to be optimized in the interval (0, t j). In a second
step, power generation or other system performances can be
maximized with respect to the times t j , as set forth in Sec. II.

This problem was successfully treated in Ref. [8] for heat
flows q j set proportional to the thermodynamic force 1/Tf j(t)
− 1/Tj , Eq. (7). The problem will be tackled here for the
most general heat transfer law according to Eq. (6). The en-
doreversible entropy production for the full system (including
reservoirs) during isothermal process time t j is given accord-
ing to Eq. (2) by the heat increments dQ j = q j(t )dt absorbed
or released by the working medium at temperature Tf j(t) plus
the same heat increment −dQ j of the reservoir released or
absorbed at temperature Tj . Thus,

S =
∫ t j

0
q j (t )

(
1

Tf j (t )
− 1

Tj

)
dt

=
∫ t j

0
κ j (Tf j (t ), Tj )

[Tj − Tf j (t )]2

Tf j (t )Tj
dt, (18)

where in the last integral Eq. (6) has been used. Since no
friction or other entropy sources are assumed, Eq. (18) con-
stitutes the complete irreversible entropy production for the
isothermal process in the endoreversible limit. Equation (18)
leads to zero as lowest possible entropy production in the
case of Tf j(t) → Tj . Due to Eq. (6), the absorbed or rejected
heat Qj = ∫ t j

0 q j (t )dt then also is zero and no work can be
done. In Ref. [8] the problem was solved by imposing the
constraint that Qj is a constant fixed value. This leads to
the correct solution. For the general case of Eq. (6), it is
more appropriate to choose the engine parameter �S as to
be constrained to a fixed value. �S is independent of the
varying working conditions and only depends on the initial
and final positions of the control parameters in the isothermal
processes. For the ideal gas heat engine with V equal to the gas
volume (cf. Appendix): �S = mRlog(Vmax/Vmin). �S thus is
a measure for engine volume and mass of the working fluid
and is independent of the transition times th, tc.

For the general case, �S can be expressed by Eqs. (3) and
(4) and by utilizing Eq. (18) for the S j(t j):

±�S = Qj

Tj
+ S j (t j ) =

∫ t j

0

q j (t )

Tf j (t )
dt, j = h, c. (19)

The plus sign in front of �S applies for j = h. Otherwise
the minus sign has to be used.

The minimization of the entropy in Eq. (18) is now per-
formed by introducing a variational parameter in Tf j(t) and
by differentiation of the integral after that parameter, after the
addition of the constraint Eq. (19), multiplied by a Lagrange
parameter λ. Then Tf j(t) can be varied without restriction in
the complete functional:

δ

∫ t j

0

[
q j (t )

Tf j (t )
− q j (t )

Tj
+ λ

(
q j (t )

Tf j (t )
∓ �S

t j

)]
dt = 0.

Here δ denotes differentiation after the variation parameter,
which means differentiation of the integrand after Tf j with
subsequent differentiation of Tf j itself. This leads to an overall
factor δT f j in the integrand, which is an arbitrary function in
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t . Thus the varied integrand necessarily is zero:

0 = (1 + λ)δ
q j (t )

Tf j (t )
− δq j (t )

Tj

= (1 + λ)
δq jTf j − q jδTf j

Tf j (t )2 − δq j

Tj
.

From Eq. (6), δq j = [κ ′
j (Tj − Tf j ) − κ j]δTf j , where κ ′

j =
∂κ j/∂Tf j and therefore

κ ′
j (Tf j, Tj )

κ j (Tf j, Tj )
= (1 + λ)T 2

j /T 2
f j − 1

(Tj − Tf j )[(1 + λ)Tj/Tf j − 1]
. (20)

This equation determines the unknown temperatures Tf j of
the working medium. Together with the constraint (19), two
equations are formed for evaluation of Tf j and λ. Since the
parameters Tj and λ are independent of time, Tf j(t) itself is a
constant independent of t , when solving Eq. (20) for Tf j . This
is the essential result of the minimization procedure for en-
tropy (18) and it is valid for all heat transfer laws κ j(Tf j, Tj).

For constant Tf j , Eq. (19) reduces to �S = Qh/Tf h =
−Qc/Tf c which is the condition for a reversible ideal heat
engine working between the temperature levels Tf j . This is the
original criterion for endoreversibility according to Ref. [2].
Furthermore, by use of Eq. (6) in Eq. (19),

±�S = t jκ j (Tf j, Tj )

(
Tj

Tf j
− 1

)
, j = h, c, (21)

which serves as determining equation for the constant Tf j in
the case of given heat transfer law κ j(Tf j, Tj). By replacing
Qj with ±�S Tf j , the first part of Eq. (19) leads to

S j (t j ) = ±�S

(
1 − Tf j

Tj

)
, j = h, c.

By elimination of Tf j /Tj with the help of Eq. (21), the final
result is obtained for the irreversible entropies, minimized
with respect to the detailed protocols in (0, t j):

S j (t j ) = �S2

t jκ j (Tf j, Tj ) ± �S
, j = h, c. (22)

For general κ j(Tf j, Tj), Eq. (21) determines Tf j which then
in turn depends on the transition time t j . Thus an effective
heat conductance κ

(e)
j (t j ) = κ j[Tf j (t j ), Tj] has to be used in

the denominator of Eq. (22). The consequences of different
assumptions for κ j(Tf j, Tj) will now be investigated.

A. Newtonian heat transfer and CA efficiency

For constant κ j (Newton’s law), the entropies of Eq. (15)
in Sec. II B are valid with coefficients given by Eq. (22):

c( j)
−1 = �S2

/
κ j, th0 = −�S/κh, tc0 = +�S/κc. (23)

Thus, also for adiabatic time ta > 0, all the conclusions
expressed in Eq. (17) for power maximization are in force,
including the low-dissipation limit of Eq. (11). Equation (11)
also holds for t j0 �= 0 provided that th0 = −tc0 and ta = 0.
This is fulfilled for symmetric dissipation κh = κc which
leads to σ = c(c)

−1/c(h)
−1 = 1. Inserting the coefficients (23)

in the expressions for ηPmax and Pmax in Eq. (17), br is
simplified for ta = 0 to br = √

σ + √
r > 0, although th0 +

tc0 = �S(1/κc − 1/κh) can assume any negative value. From
Eq. (17) the Curzon-Ahlborn efficiency ηCA is obtained for
all ratios σ = κh/κc = σ = κh/κc = c(c)

−1/c(h)
−1, since this ratio

drops out in the evaluation:

ηP max = ηCA = 1 − √
r = 1 −

√
Tc/Th,

Pmax = Th
κh(1 − √

r)2

(1 + √
σ )2 = Th

(1 − √
r)2

(
√

1/κh + √
1/κc)

2
.

(24)

This result is valid for irreversible entropies minimized
with respect to the detailed protocol of the control parameters
and it is not restricted to linear irreversible thermodynamics
or the linear response regime. It states the universal nature
of ηCA for temperature-independent heat transfer coefficients
κ j without need for lower and upper bounds for asymmetric
heat dissipation which coincide with ηCA. Thus it is strikingly
different from all other models, in particular in comparison to
the low-dissipation model in Eq. (11). Equation (24) becomes
plausible by the expression for Pmax which depends on κ j

symmetrically by some kind of harmonic average of κ j . The
low-dissipation Pmax following Eq. (17) does not have that
symmetry with respect to the c( j)

−1, at least not for r �= 1.
Some annotations are appropriate on the result (24). In the

original work, Refs. [32,33], the efficiency ηCA was estab-
lished not within finite time thermodynamics with transition
times th, tc, but for heat flows qj averaged over full cycle time
[thus different from those in Eq. (6)]. The problem of power
maximization with corresponding efficiency was solved for
the extremely asymmetric case with finite heat conductance
only on the hot side. Then P maximization with respect to
Tf h led to Tf h = √

ThTc. Published in specialized journals and
less conclusive, Refs. [32,33] apparently did not receive much
attention. In Ref. [2], ηCA was inferred exactly analytically
for arbitrary constant κ j by introducing the endoreversibility
definition Qh/Tf h = −Qc/Tf c with ensuing ηCA. The only ap-
proximation made was Tf j(t) = const. and neglect of general
adiabatic cycle times. Later on it was proved by variational
techniques in Refs. [3,4] that for maximized work output,
Tf j(t) = const. is valid. In Ref. [3], the κ j were restricted to the
symmetric case κh = κc. Nevertheless, the universality of ηCA

posed a problem in subsequent works in the literature. The an-
swer given in the present work utilizes the more general exact
analytical solution (16) for the entropies in Eq. (15), which
include the Newtonian case of temperature-independent κ j .
The exact solution in the case of the endoreversible model
[Eq. (23)] is completely independent of dissipation ratios of
hot and cold sides and only for this unique case and in this
sense, "universality" is obtained with coinciding lower and
upper efficiency bounds for opposite dissipation ratios. This
also explains why the originally strongly simplifying assump-
tions in Refs. [32,33] could be successful. Furthermore, since
Newtonian heat transfer is a first (and often sufficient) approx-
imation in many practical cases, ηCA thus can provide a good
description.

As pointed out at the end of Sec. I, for all endoreversible
models, irreversible entropy production does not occur during
the adiabatic process time ta. Thus the adiabatic processes can
be included in power maximization by replacing in Eq. (8)
the denominator th + tc by th + tc + ta. This was already done
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in the original CA paper [2] by introducing ta as being pro-
portional to th + tc by a factor γ − 1 according to varying
engine speeds, so that th + tc + ta = (th + tc)γ . Thus in the
maximized power Pmax, Eq. (24), an additional factor γ ap-
pears in the denominator without altering the efficiency ηCA.
However, generally it is necessary to introduce ta as an inde-
pendent parameter. As will be shown below, this leads to more
complicated expressions for Pmax and ηPmax. It is not possible
to tackle this problem with the formalism of Ref. [2], since in
that theory only the transit-time ratios th/tc can be calculated,
but not the th, tc individually, essentially because no use is
made of the reversible entropy �S as system parameter of the
ideal lossless heat engine. On the other hand, the more general
formalism for the entropy model (15) with its solutions (17)
lends itself well to this kind of problem.

Again using Eq. (23) for the model parame-
ters in (15), the value for br with ta > 0 is br =√

(
√

σ + √
r)2 + ta κh(1 − r)/�S and the efficiency and

Pmax can be inferred from (17):

ηPmax = (1 − r)

/[
1 + √

r

/√
1 + ta

κh(1 − r)

�S(
√

σ + √
r)2

]
,

Pmax = κhTh(1 − r)2[
1 + √

σ r + (
√

σ + √
r)

√
1 + ta

κh (1−r)
�S(

√
σ+√

r) 2

]
2
.

(25)

Obviously for ta → 0, ηCA of Eq. (24) is obtained and
for ta → ∞ the Carnot efficiency 1 − r arises, however, with
Pmax → 0. This is intuitively clear, because of vanishing ir-
reversibilities for sufficiently large t j � ta. For ta → 0, also
the CA power maximum in (24) is recovered. The lower
efficiency bound for asymmetric dissipation with σ → ∞ is
η− = ηCA with Pmax from (24). The upper efficiency bound η+
for σ → 0 can be read off from (25) and in the case of ta > 0
is larger than ηCA.

The short time behavior of model (15) with coefficients
(23) is quite different from that of model (5). The hot side
entropy Sh(th) is always finite with Sh(th = 0) = �S as its
maximum, as shown by the solid line in Fig. 1. This is not
so for the cold side Sc(tc). A singularity occurs at tc0 = �S/κc

and tc is restricted to tc > tc0 > 0. The physical reason for this
tc limitation is given by Eq. (21), solved for Tf c = Tc/[1 −
�S/(κc tc)] leading to Tf c → ∞ for tc → �S/κc. In fact, for
Tf c → ∞ any amount of heat Qc can be rejected from the
fluid in an arbitrary short time, but not any amount of entropy
Qc/Tf c can be released. Thus, an infinite amount of work
input is needed in the case of Tf c → ∞ with infinite pressure.
In Fig. 2, Sc(tc) approaches tc0 = 10 s asymptotically (solid
line).

B. Heat transfer due to thermodynamic force

For the widely used heat transfer law of Eq. (7), Eq. (21)
leads to a quadratic equation for Tf j with two solutions. Only
that one with Tf j > 0 and with Tf j → Tj for κt j → ∞ has to
be chosen, i.e., valid for the limit to the ideal reversible engine:

Tf j = t jκt j

±2�STj

(−1 +
√

1 ± 4�ST 2
j /(t jκt j )

)
, j = h, c.

FIG. 1. Entropy functions Sh(th) for low-dissipation model
(5) (short dashed line), Newtonian model Eqs. (15) and (23)
(middle solid line), thermodynamic force model Eq. (26) (low-
est dashed line). Functions are adapted to the same leading
term c(h)

−1/th. (�S) = 10 W s/K, κh = 1 W/K, κth = κhT 2
h , c(h)

−1 =
�S2/κh = �S2T 2

h /κth = 100 W s2/K.

Here again, the lower sign has to be used for j = c
and the higher one for j = h. For j = c, the condition tc �
4�ST 2

c /κtc has to be observed, in comparison to tc > �S/κc

above for Newton’s law. Tf j inserted into Eq. (22) yields

S j (t j )= ±2�S

x

(
1 + x

2
− √

1 + x
)
, x= ±4�ST 2

j /(t jκt j ).

(26)
This result is identical to Eqs. (15) and (18) in Ref. [8]

and written here in a different form in order to establish the
power series expansion in x, i.e., in 1/t j for large t j . The term
in brackets is of order x2/8 + O(x3) and the full expression
of order O(x) with leading term c( j)

−1/t as first order low-

dissipation limit. Here c( j)
−1 = �S2T 2

j /κt j is to be compared
with Eq. (23). The limit of Eq. (26) for t j → 0 is ±�S. For
j = h, this coincides with the previous (Newtonian) result �S.
In the case of j = c, it is required that tc � 4�ST 2

c /κtc =
ttc0, i.e., 0 > x � −1 and the maximum Sc(ttc0) = + �S is

FIG. 2. Analog of Fig. 1 for entropy functions Sc(tc). Order now
reversed: Model (5) lowest (short dashed line), thermodynamic force
model Eq. (26) highest (dashed line), all with the same leading order
term c(c)

−1/tc. κc = 1 W/K, κtc = κcT 2
c , c(c)

−1 = �S2T 2
c /κtc.
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obtained for the x = −1 limit corresponding to tc = ttc0. Sc(tc)
is displayed as a dashed line in Fig. 2. For the transition time
ttc0, the maximum fluid temperature Tf c = 2Tc is achieved.

It is more difficult to explain the physical meaning of the
Sc(ttc0) limit (finite maximum) and the restriction of Sc(tc)
to the region tc > ttc0, than for the Newtonian heat transfer.
In the Newtonian case, the rate of entropy released from the
fluid on the cold side is −qc/Tf c = κc(1 − Tc/Tf c) with max-
imum equal to κc for Tf c → ∞. The maximum entropy rate
corresponds to the shortest possible transition time tc0, since
according to Eqs. (19) and (21) �S = −tcqc/Tf c is a con-
stant engine parameter. Thus for the shortest tc,�S = κctc0.
For heat transfer according to Eq. (7), the entropy rate is
−qc/Tf c = (κtc/TcTf c)(1 − Tc/Tf c) with limit equal to zero
for Tf c → ∞. A local maximum equal to κtc/4T 2

c exists,
for Tf c → 2Tc, again for the shortest possible transition time
tt c0 with maximum fluid temperature 2Tc, as noted above.
Then �S = ttc0κtc/4T 2

c , which is equivalent to the previous
definition of ttc0. For transit times tc < ttc0, Eqs. (19) and (21)
for �S cannot be fulfilled.

In order to solve the power maximization problem, the
method described at the end of Sec. II is useful. P(Sh, η) can
be expressed by the independent variables η and Sh for the
entropy model in Eq. (26). A procedure along similar lines
was used in Ref. [4], also with heat transfer due to Eq. (7), by
expressing P(Tf h, η) as a function of fluid temperature Tf h as
variable, which is associated with Sh.

Solving Eq. (26) for t j(S j) and using Eq. (9) for η with
independent variables Sh, Sc solved for Sc leads to

t j (S j ) = (S j ∓ �S)2T 2
j /(κt jS j ), j = h, c,

Sc(Sh, η) = (1 − η)(�S − Sh)Th/Tc − �S.

Both equations are inserted into Eq. (8) for P(th, tc) to
obtain P(Sh, η). Then the system ∂P/∂Sh = 0 = ∂P/∂η can
be solved for (Sh, η) by setting only the numerators of the
derivatives equal to zero. The resulting solution is surprisingly
simple with only two nontrivial solutions, one of which is
excluded because of Sh < 0. The physical solution is

ηP max = (1 − r)(1 + √
σ )

2 + √
σ (1 + r)

,

Pmax = κth

4Tc

(1 − r)2

(1 + r)
√

σ + 1 + rσ
,

where σ = κth/κtc and r = Tc/Th. These results are equivalent
to Eqs. (31) and (32) in Ref. [4] up to a sign error in Pmax.
The boundaries for asymmetric dissipation are the same as
for the low-dissipation equation (11), however, with opposite
limits. η− = ηC/2 is obtained for σ → 0, and η+ = ηC/(2 −
ηC ) for σ → ∞. In Eq. (11) those limits were obtained for
σ → ∞ and σ → 0, respectively. In Ref. [4] it was shown by
numerical calculation that for heat transfers κn j[T n

f j (t ) − T n
j ]

in endoreversible models for n > 1, ηP max(σ = κnh/κnc) is a
decreasing function of σ and for n < 0 an increasing function.

The various functions S j(t j) are shown in Figs. 1 and
2 for the entropies of models (5), (23), and (26), with the
functions for the thermodynamic force problem (n = −1) as
dashed lines. To be comparable, all functions are adjusted

to have the same leading power term 1/t j with coefficient
c( j)
−1 = �S2/κ j = 100 W s2/K. For the Sh(th) functions in the

semilogarithmic plot of Fig. 1, the highest curve is given
by the low-dissipation graph (5), whereas the entropies for
endoreversible cases n = 1 (Newtonian) and n = −1 (thermo-
dynamic force) are below with maximum at �S = 10 W s/K.
In the double logarithmic plot of Fig. 2 for Sc(tc), the order is
reversed with the low-dissipation model as the lowest curve
and the Newtonian model approaching infinity for tc → tc0 =
�S/κc = 10 s. The higher Sc(tc) curve for the thermodynamic
force case (n = −1) is restricted to tc � 4�ST 2

c /κtc = 40 s
with κtc = κc T 2

c with maximum Sc(tc0) = �S = 10 W s/K.
Thus, for short cycling times with short tc, the lower New-
tonian curve can be more suitable.

IV. CONCLUSION

The general theory of heat engines performing finite time
Carnot cycles can be described by addition or subtraction of
positive irreversible entropy functions to the ideal reversible
entropy part �S. Those irreversibilities correspond to the
isothermal process times t j in the cycle. The model applies
for macroscopic engines as well as for microscopic quantum
mechanical engines.

The mathematical and physical conditions for the solution
of the power maximization problem with associated effi-
ciencies have been discussed for general entropy functions
S j(t j). It is shown following Eq. (14) that for irreversible
entropy models, which have no reversible limit, the usual
"linear response regime" is not mathematically feasible; i.e.,
the efficiency ηPmax cannot be expanded in a power series of
the Carnot efficiency ηC . Instead, a physically less intuitive
expansion around ηC = 1 (i.e., in powers of r = Tc/Th) is valid
under the stated conditions.

The power maximization problem has been solved exactly
analytically for different entropy models [Eqs. (13), (15), (23),
and (26)], and results are compared with the standard low-
dissipation limit, Eqs. (5) and (11). A special class of models
are the endoreversible entropy models, where the irreversibil-
ities are entirely caused by heat conductances connecting the
engine’s working medium with the external heat reservoirs.
Then the entropy production not only depends on the engine’s
contact times with the heat reservoirs, but additionally on
the detailed time dependence of engine parameters (detailed
protocol) during the contact times. It is proved rigorously in
Eqs. (18)–(20) that the detailed protocol that minimizes the
irreversible entropy production is one, for which the tem-
perature of the working substance remains constant in the
isothermal processes. This result is valid for all heat trans-
fer laws with arbitrary temperature dependence of the heat
conductances in Eq. (6). A further major result is the general
endoreversible entropy production of Eq. (22) in the form
S j (t j ) = �S2/[t j f (t j ) ± �S] for contact times t j , which is
unequal to � j/t j of the low-dissipation limit (5). For shorter
times t j both models are incompatible as shown in Figs. 1 and
2, because of the constant term ± �S in the denominator. The
endoreversible cold side entropy functions Sc(tc) inevitably
experience singularities for tc > 0 as shown in Fig. 2. The
entropy model (15) with five independent model parame-
ters comprises the endoreversible model for constant heat
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conductances with three independent parameters, Eq. (23).
Only in that reduced unique case, the Curzon-Ahlborn effi-
ciency ηCA is exactly confirmed. By its independence from hot
and cold side dissipation ratios, "universality" is obtained with
coinciding lower and upper efficiency bounds for opposite
dissipation ratios. Since Newtonian heat transfer is a first
(and often sufficient) approximation in many practical cases,
ηCA thus can provide a good description under those circum-
stances. Exact results for an extended theory with inclusion
of independent values for adiabatic transition times ta > 0 are
presented in Eq. (25). The derivations presented here are not
restricted to linear irreversible thermodynamics or the linear
response regime.
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APPENDIX: EXACT SOLUTION FOR THE
ENDOREVERSIBLE IDEAL GAS HEAT ENGINE

In Sec. III, the relation between the engine’s external
control parameters V(t) and the temperature of the working
fluid Tf j(t) was mentioned. In the case of an ideal gas with
prescribed volume evolution V(t) as control parameter, this
relation can be given exactly analytically. For an ideal gas,
its internal energy U is proportional to its temperature. By
energy conservation the condition dU = cvdTf j = dQ−dW
holds for the time increments of absorbed heat dQ and work
delivered by the fluid’s expansion dW = pdV with gas pressure
p(t ) = mRTf j (t )/V (t ). Here R is the ideal gas constant and m
the mole fraction of the enclosed gas. With the help of Eq. (6),
the following differential equation,

cv

dTf j

dt
= κ j[Tj − Tf j (t )] − mR

V̇ (t )

V (t )
Tf j (t ), j = h, c,

(A1)
yields the relation between V(t) and Tf j(t). For temperature-
independent κ j , Eq. (A1) is linear in Tf j and amenable to exact
analytical solution:

Tf j (t ) =
[

Tf j (0)V (0)mR/cv + (κ jTj/cv )
∫ t

0
g(t ′) dt ′

]/
g(t ),

g(t ) = exp(κ jt/cv )V (t )mR/cv. (A2)

With this, the V(t) evolution for constant Tf j(t) can be
determined, which is necessary for minimized irreversible
entropy generation, as was inferred following Eq. (20). Mul-
tiplying Eq. (A2) by g(t) and differentiating both sides for
constant Tf j yields ġ(t )/g(t ) = (κ j/cv )Tj/Tf j and, finally,

V (t ) = V (0) exp

[
κ jt

mR

(
Tj

Tf j
− 1

)]
. (A3)

Depending on the ratio Tj /Tf j , the volume has to be expanded
or compressed exponentially to keep Tf j constant.

Equation (A1) gives the fluid temperature evolution Tf (t)
along the full cycle by setting κ j = 0 in the adiabatic branches
of the endoreversible model. Thus irreversible entropy pro-
duction cannot occur in those parts, because heat flow q f (t) to
the working fluid only exists during contact times t j with the
heat reservoirs. Division of (A1) by Tf (t) and integration over
time intervals (t0, t1) of interest with q f (t) from Eq. (6) leads
to

cv log
Tf (t1)

Tf (t0)
= S f (t )

∣∣t1
t0 − mR log

V (t1)

V (t0)
,

S f (t )
∣∣t1
t0 =

∫ t1

t0

q f (t )

Tf (t )
dt . (A4)

This equation and the following discussion also apply
in the case of general temperature-dependent heat conduc-
tances κ j(Tj, Tf ). For t1 = τ equal to the full cycle time
and t0 = 0, the conditions for a closed cycle hold, Tf (0) =
Tf (τ ),V (0) = V (τ ), and then necessarily, the total entropy
absorbed by the fluid is S f (τ ) − S f (0) = 0. Thus, the entropy
absorbed during th is �Sh = S f (th) − S f (0) and is equal to
−�Sc = −[S f (tc + t0c) − S f (t0c)], the entropy released from
the fluid during tc. Moreover, for Tf j (t j + t0 j ) = Tf j (t0 j ), but
Tf j(t) not necessarily constant within (t0 j, t j + t0 j ), �Sh =
−�Sc = �S = mR log(V (h)

max/V (h)
min ) with �S the reversible en-

tropy part of the ideal Carnot engine. Then also the maximum
and minimum volume ratios at the hot and cold sides are
equal and are the same for the reversible and endoreversible
engine: V (h)

max/V (h)
min = V (c)

max/V (c)
min. Thus, Eqs. (3) and (4) for

Qj are exactly valid with the same �S for both irreversible
entropy production S j(t j), Eq. (18) [cf. Eq. (19)] turned on,
and for S j(t j) turned off. In general, for the less interesting
case Tf j (t j + t0 j ) �= Tf j (t0 j ), the reversible �S in Eqs. (3)
and (4) is only approximately valid and could be replaced by
�Sh = −�Sc as defined above:

�S j = mR log
V ( j)(t j + t0 j )

V ( j)(t0 j )
+ cv log

Tf j (t j + t0 j )

Tf j (t0 j )
,

j = h, c. (A5)

If the volume values V ( j)(t0 j ), V ( j)(t j + t0 j ) are consid-
ered to be fixed by the engine’s mechanics for all cases, the
Tf j (t0 j ), Tf j (t j + t0 j ) adapt themselves so that (A5) is valid
with �S = ±�S j independently for j = h, c. However, this
�S in Eqs. (3) and (4) is not completely independent from the
irreversibilities Sj , because of their common dependence on
Tf j .
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