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We study random processes with nonlocal memory and obtain solutions of the Mori-Zwanzig equation
describing non-Markovian systems. We analyze the system dynamics depending on the amplitudes ν and μ0

of the local and nonlocal memory and pay attention to the line in the (ν, μ0) plane separating the regions
with asymptotically stationary and nonstationary behavior. We obtain general equations for such boundaries
and consider them for three examples of nonlocal memory functions. We show that there exist two types of
boundaries with fundamentally different system dynamics. On the boundaries of the first type, diffusion with
memory takes place, whereas on borderlines of the second type the phenomenon of noise-induced resonance
can be observed. A distinctive feature of noise-induced resonance in the systems under consideration is that it
occurs in the absence of an external regular periodic force. It takes place due to the presence of frequencies in the
noise spectrum, which are close to the self-frequency of the system. We analyze also the variance of the process
and compare its behavior for regions of asymptotic stationarity and nonstationarity, as well as for diffusive and
noise-induced-resonance borderlines between them.
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I. INTRODUCTION

The Markov processes are the simplest and the most pop-
ular models for describing random phenomena (see, e.g.,
Refs. [1–8]). A lot of systems in the real world are more
complex than the Markovian ones: they have non-Markovian
character of memory (see, e.g., Refs. [9–16]). Therefore, it
is necessary to go beyond the simple Markovian model. In
recent years, a lot of attention has been paid to studying
non-Markov processes, in particular, due to their role in de-
coherence phenomena in open quantum systems (see, e.g.,
Refs. [10,17,18]). Namely, non-Markovianity can serve as a
source for suppressing the exponential decay of coherence in
the interaction of a quantum system with a classical thermal
bath [19–21].

In the formulation of the Markov process, a very impor-
tant role is played by its exponential correlation function.
As was shown in Refs. [22,23], the replacement of the
exponential correlation function by another one leads to
the nonstationarity of the process. A particular class of
strongly non-Markovian stochastic processes with long-range
correlated noise appearing in the corresponding stochastic
differential equation (SDE) was studied in Refs. [24,25].
McCauley [26] considered nonstationary non-Markovian pro-
cesses with one-state memory where the SDE takes into
account the value of random variable V at fixed temporal point
t0 in the past.

The difficulties arising in attempts to introduce a correla-
tion function different from exponential are closely connected

with two facts: a desire to determine the conditional probabil-
ity distribution function (CPDF) for arbitrary time laps τ from
the last known value of a random variable and to determine a
group chain rule for the CPDF. To overcome these difficulties,
we have introduced in Ref. [27] an integral memory term
depending on the past of the process into the SDE and the
transition probability function. Thus, we refused to deal with
the CPDF for arbitrary value τ and considered the case of
infinitesimal τ = dt → 0 only.

Introduction of the integral memory term results in trans-
formation of the SDE into the stochastic integrodifferential
equation (SIDE):

dV (t ) = −νV (t )dt

−
∫ ∞

0
μ(t ′)V (t − t ′)dt ′dt + σ dW (t ). (1)

Here dW (t ) is the standard white noise, i.e., W (t ) is the con-
tinuous centered Wiener process with independent increments
with variance 〈[W (t + τ ) − W (t )]2〉 = |τ |, or, equivalently,
W (t ) = ∫

dW (t ) ⇒ 〈dW (t )dW (t ′)〉 = δ(t − t ′)dtdt ′, where
the symbol 〈...〉 denotes a statistical ensemble averaging. The
term −νV (t )dt in Eq. (1) describes a local-memory one-point
feature of the process. The positive value of the constant
ν provides an antipersistent character of the process with
attraction of V (t ) to the point V = 0. If we omit the mem-
ory term μ(t ′) in Eq. (1), then we obtain the well-known
equation for the Ornstein-Uhlenbeck process, which simulates
the Brownian motion of a microscopic particle in a liquid
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viscous suspension subjected to a random force with inten-
sity σ . Equation (1) is often named as the Mori-Zwanzig
one [28–30], or the external-regular-force-independent gen-
eralized Langevin equation [25]. The Mori-Zwanzig Eq. (1)
finds numerous applications (see, e.g., Ref. [31] and refer-
ences therein).

Such generalization of SDE has also been discussed by
many authors [24,32–34]. In most cases, the so-called internal
noise was considered, when, according to the fluctuation-
dissipation theorem [35], the function μ(t ) is uniquely
determined by the correlation function of the stochastic per-
turbation W (t ). Then the memory kernel μ(t ) describes the
so-called viscoelastic friction [25]. However, in the case of
external noise, the fluctuation and dissipation come from
different sources, i.e., the frictional kernel μ(t ) and the cor-
relation function of the noise are independent of each other
(see, e.g., Ref. [24]).

In this paper we consider an arbitrary memory kernel μ(t )
and a Gaussian external noise W (t ) independent of μ(t ). In
this case Eq. (1) could be a good physical model for the
systems where the external noise is much more intensive than
the thermal one.

Our general consideration of the Mori-Zwanzig equation
is accompanied by the model examples of the memory func-
tions. The first example is the local memory function defined
at the time moment (t − T ) remote at the depth T from the
instant time moment t :

μ(t ) = μ0

T
δ(t − T ). (2)

Here δ(.) denotes the Dirac delta, and μ0 is the memory
amplitude. To produce the random value of V (t + dt ) the
system “uses” the knowledge about its past in the points t and
t − T . This memory function is a good approximation for any
process with a pronounced maximum in the μ(t ) dependence
at t = T .

The second example is the stepwise memory func-
tion [36,37],

μ(t ) = μ0

T 2
θ (T − t ), (3)

where θ (.) is the Heaviside theta function. This function is a
good approximation for any process with a pronounced edge
in the μ(t ) dependence at t = T .

At last, we show that Eq. (1) has an exact analytical solu-
tion for the memory function of the exponential form:

μ(t ) = μ0

T 2
exp(−t/T ). (4)

Note that the exponential memory function can be used
to describe many real physical phenomena, e.g., the coupling
of a massive tracer with the surrounding granular fluid [11].
This model describes qualitatively any other processes with
smoothly decreasing memory function. Thus, the considered
here three examples of memory functions describe quali-
tatively the most typical kinds of the μ(t ) dependences,
regardless of their physical implementations.

The dynamics of the system described by Eq. (1) is
very sensitive to the region in which the parameters μ0 and
ν are located. In particular, it was shown in our previous
work [27] that the process with the delta-functional memory is

asymptotically stationary not for any values of μ0 and ν. It is
very interesting and nontrivial that, for example, for ν = 0,
there are two boundaries of asymptotic stationarity, μ0 = 0
and μ0 = μcrit = 2/π . Approaching the lower boundary, we
observe the ordinary Brownian diffusion. Approaching the
upper boundary, for μ0 → μcrit , the process goes into the
oscillation mode with a certain fixed frequency of oscillations.
The analysis of Eqs. (11), which are presented in the next
section, shows that similar two boundaries of stationarity exist
for any system with arbitrary memory function μ(t ).

In this paper, we study the system dynamics in various
regions of the parameters μ0 and ν with the main focus on the
boundaries of the region of asymptotic stationarity. We show
that there are two types of such boundaries with fundamen-
tally different system behavior. On the boundaries of the first
type, corresponding to smaller values of μ0, a diffusion with
nonlocal memory takes place, and we call these borderlines as
diffusive. On the boundaries of the second type, correspond-
ing to larger values of μ0, the phenomenon of noise-induced
resonance occurs.

The scope of the paper is as follows. In the next section, we
obtain general expressions for the boundaries of the region
of asymptotic stationarity in the (ν, μ0) plane, and present
these boundaries for the above mentioned three examples of
memory functions.

In Sec. III, we analyze the behavior of the system for
different prehistories in various areas in the (ν, μ0) plane in
the absence of random force. We show that, on the upper
borderline of the asymptotic stationarity region, the variable
V (t ) goes asymptotically into an oscillatory mode with some
given frequency. This means that we deal here with the system
with well-defined frequency of self-oscillations. On the lower
borderline, the variable V tends to a constant value at t → ∞.

Section IV is the main section in our paper. Here we show
that the switching on the random force in the Mori-Zwanzig
system leads to the diffusion on the lower boundary of asymp-
totic stationarity and to the noise-induced resonance at the
upper boundary. A distinctive feature of the noise-induced
resonance in the systems under consideration is that it occurs
in the absence of an external regular periodic force. It takes
place due to the presence of frequencies in the noise spectrum,
which are close to the self-frequency of the system. Then we
study the variance of the process and compare its behavior
for regions of asymptotic stationarity and nonstationarity, as
well as for diffusion and noise-induced-resonance boundaries
between them.

II. BOUNDARIES OF ASYMPTOTIC STATIONARITY

The random process under study is very sensitive to the
values of two memory parameters, ν and μ0. In this section,
we analyze the borderlines of the region in the (ν, μ0) plane
where the process is asymptotically stationary. In this region,
the two-point correlation function C(t1, t2),

C(t1, t2) = 〈V (t1)V (t2)〉 − 〈V (t1)〉〈V (t2)〉, (5)

is asymptotically dependent on the difference t2 − t1 ≡ t only,
i.e., C(t1, t2) ≈ C(t ) at t1, t2 → ∞:

C(t ) = lim
t ′→∞

C(t ′, t ′ + t ). (6)

Herein the time difference t can be arbitrary.
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As was shown in Ref. [27], the correlation function C(t )
of the process is governed by the continuous analog of the
Yule-Walker equation [38,39],

dC(t )

dt
+ νC(t ) +

∫ ∞

0
μ(t ′)C(t − t ′)dt ′ = 0, t > 0, (7)

with the boundary condition,

dC(t )

dt

∣∣∣
t=0+

= −σ 2

2
. (8)

The argument 0+ signifies that the derivative is taken at pos-
itive t close to zero. The simple method to obtain Eq. (7) is
presented in the Appendix.

Two equations, (7) and (8), represent a very useful tool
for studying the statistical properties of random processes
with nonlocal memory. These properties are governed by the
constants ν, σ , and the memory function μ(t ). We assume
that the function μ(t ) has good properties at t → ∞. More
exactly, we suppose that the function μ(t ) has either a finite
characteristic scale T of decrease, or it abruptly vanishes at
t > T , μ(t > T ) = 0. In this case, the correlation function
can be presented as a sum of exponential terms,

C(t ) =
∑

i

Ci exp
(
− zit

T

)
, (9)

for t 
 T .
Equation (7) gives the following characteristic algebraic

equation for the complex decrements zi:

z

T
= ν +

∫ ∞

0
μ(t ) exp

( zt

T

)
dt . (10)

Solving it, we find a set of zi as functions of the parameters
ν and μ0. We are interested in the root z0 of Eq. (10) with
the lowest real part because specifically this root defines be-
havior of the correlation function Eq. (9) at t → ∞. From
Eq. (9), one can see that the imaginary part of z0 = ξ0 + iζ0

corresponds to the oscillations of C(t ), while the sign of its
real part, ξ0, defines the stationarity properties. The positive
ξ0 corresponds to the exponential decrease of the correlation
function C(t ), and the negative value of ξ0 corresponds to the
exponential increase.

Thus, to find the borderline of the stationary range in the
(ν, μ0) plane, we should solve Eq. (10) for the purely imagi-
nary z = iζ . In this case Eq. (10) gives

ν +
∫ ∞

0
μ(t ) cos

(
ζ t

T

)
dt = 0,

ζ

T
−

∫ ∞

0
μ(t ) sin

(
ζ t

T

)
dt = 0. (11)

Let us apply the set of Eqs. (11) for investigating the
stationarity borderlines in the frame of the above mentioned
three models of the nonlocal memory μ(t ).

A. Delta-functional memory

As the first example, we consider the memory function
μ(t ) = (μ0/T )δ(t − T ). Then, Eq. (11) transforms into

νT + μ0 cos ζ = 0, ζ − μ0 sin ζ = 0. (12)

FIG. 1. The stationarity borderlines for the delta-functional
memory μ(t ) = (μ0/T )δ(t − T ) with T = 1 in the plane (ν, μ0 ).
The red solid curve at μ0 > 1 corresponds to the oscillatory border-
line, and the black solid straight line corresponds to the diffusive one.

For 0 < ζ < π this set of equations describes the so-called
“oscillatory” borderline because the corresponding correla-
tion function C(t ), Eq. (9), oscillates without damping when
approaching this borderline. In the case ζ → 0, the C(t )
function tends very smoothly to zero without oscillations in
the vicinity of the stationarity borderline. Assuming ζ = 0 in
Eq. (12), we get for this borderline

νT + μ0 = 0. (13)

Figure 1 shows the oscillatory (upper red curve) and diffusive
(lower straight black line) stationarity borderlines.

Note that the general equation, valid for the arbitrary mem-
ory function, describing the diffusive borderline, can easily be
obtained if we put ζ = 0 in Eqs. (11):

ν +
∫ ∞

0
μ(t )dt = 0. (14)

If
∫ ∞

0 μ(t )dt �= 0, we can define the amplitude μ0 of the
memory function as

μ0 = T
∫ ∞

0
μ(t )dt . (15)

Then Eq. (13) for the diffusive borderline will be valid for any
memory function.

B. Stepwise memory function

As the second example, we consider the stepwise memory
function μ(t ) = (μ0/T 2)θ (T − t ). From the same considera-
tions as above, we obtain the following relations:

ν = − 1

T

ζ sin ζ

1 − cos ζ
, μ0 = ζ 2

1 − cos ζ
, 0 � ζ < 2π,

(16)
for the oscillatory borderline and Eq. (13) for the diffusive
one. These two borderlines are shown in Fig. 2.
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FIG. 2. The stationarity borderlines for the stepwise memory
function μ(t ) = (μ0/T 2)θ (T − t ) with T = 0.5 in the plane (ν, μ0 ).
The upper red solid curve is the oscillatory borderline, and the lower
black solid straight line at μ0 < 2 is the diffusive one.

C. Exponential memory function

As the third example, we consider the exponential memory
function μ(t ) = (μ0/T 2) exp(−t/T ) with the positive mem-
ory depth T . Then the condition for the diffusive borderline is
Eq. (13). For the oscillatory borderline we have

ν = − 1

T
, μ0 = 1 + ζ 2. (17)

These two borderlines are shown in Fig. 3.
Thus, the results obtained in this section are as follows:
(1) The correlation function C(t ) of the random process

with nonlocal memory can be presented as a sum of exponen-
tial functions with the complex decrements or increments zi

defined by Eq. (10).
(2) The stationarity of the process is defined by the root

z0 of Eq. (10) with the smallest real part. If ξ0 = Rez0 > 0,
then the function C(t → ∞) tends to zero, and the stochastic
process V (t ) is stationary. If ξ0 < 0, then the process V (t ) is
nonstationary.

(3) The condition ξ0 = 0 defines the borderlines between
the stationary and nonstationary regions in the (ν, μ0) plane.
There exist two types of borderlines, diffusive and oscillatory
ones. The diffusive borderline corresponds to the case when
the imaginary part of z0 equals zero, ζ0 = Imz0 = 0. This
borderline is described by Eq. (14) (see black solid straight
lines in Figs. 1–3 for the examples considered above). The
oscillatory borderline corresponds to ζ0 �= 0 and is described
by Eq. (11) (see red solid curves in Figs. 1–3 for the examples
considered above).

(4) When approaching the diffusive borderline, the random
process goes to the diffusion with memory and the decrement
of C(t ) tends to zero. Approaching the oscillatory borderline,
the correlation function goes into the oscillation mode with a
certain frequency of oscillations.

(5) The conditions of stationarity for the process are inde-
pendent of the random-force intensity σ .

FIG. 3. The stationarity borderlines for the exponential mem-
ory function μ(t ) = (μ0/T 2) exp(−t/T ) with T = 1 in the plane
(ν, μ0 ). The region of stationarity lies to the right of the solid line;
the region of nonstationarity lies to the left of this line. The vertical
red and oblique black solid lines correspond to the oscillatory and
diffusive borderlines, respectively. A dashed parabola separates the
areas where the correlation function decays exponentially without
oscillations (below the parabola) and with oscillations (above this
curve).

III. MOVEMENT IN THE ABSENCE OF RANDOM FORCE

In this section, we analyze the system dynamics for differ-
ent prehistories, i.e., for different V (t ) dependences at t � 0,
in various areas of the (ν, μ0) plane in the absence of random
force. We show that, on the diffusive borderline, the variable
V (t → ∞) reaches the constant value. On the oscillatory bor-
derline, the variable V (t → ∞) goes into oscillatory mode
with some given frequency. This means that in the latter case
we deal with the specific linear oscillatory system.

A. Exact fundamental solution

The exact fundamental solution of the deterministic [with-
out external random force dW (t )] version of Eq. (1),

dV (t )

dt
= −νV (t ) −

∫ ∞

0
μ(t ′)V (t − t ′)dt ′, (18)

with the fundamental prehistory,

V (t � 0) =
{

0, t < 0,

1, t = 0,
(19)

can be found by the method of Laplace transformation (see,
e.g., Ref. [24]). Denoting this solution by h(t ) and performing
the Laplace transformation of Eq. (18), we obtain the image
h̃(p) in the form

h̃(p) =
∫ ∞

0
h(t ) exp(−pt )dt = 1

p + ν + μ̃(p)
, (20)

where μ̃(p) is the Laplace image of the memory function
μ(t ). The function h(t ) is determined by the inverse Laplace
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transformation:

h(t ) = 1

2π i

∫ λ+i∞

λ−i∞
h̃(p) exp(pt )d p, λ > 0. (21)

In our following calculations, the function h(t ) plays the
role similar to the role of fundamental solutions (the Green
functions) in the theory of differential equations. Therefore,
we call it as the fundamental one.

It is important to emphasize that the poles p = pi of the
function h̃(p) coincide with the roots z = zi of the character-
istic Eq. (10) up to the multiplier −1/T . This means that the
fundamental solution h(t ) is represented as a sum of the same
exponential terms as the correlation function C(t ). This re-
mark applies to the stationarity region of parameters ν and μ0

only, where the correlation function C(t ) exists. In particular,
the behaviors of functions h(t ) and C(t ) at t → ∞ are the
same, h(t ) ∝ C(t ) ∝ exp(−z0t/T ). Recall that z0 is the root
of Eq. (10) with the minimal real part.

B. Solution for the case of arbitrary prehistory

In this subsection we find the solution of the homoge-
neous deterministic Eq. (18) for the general prehistory of the
process:

V (t � 0) =
{

V<(t ), t < 0,

V (0), t = 0.
(22)

The integral
∫ ∞

0 dt ′μ(t ′)V (t − t ′) in Eq. (18) can be
presented as a sum of two terms,

∫ t
0 dt ′μ(t ′)V (t − t ′) and∫ 0

−∞ dt ′′μ(t − t ′′)V<(t ′′). The first one is the ordinary memory
term containing integration from the “beginning t ′ = 0 of the
process history” to the instant moment of time t ′ = t . The
second integral,

∫ 0

−∞
dt ′′μ(t − t ′′)V<(t ′′) ≡ Z (t ), (23)

contains integration over the prehistory. It should be consid-
ered as the known function Z (t ).

After such a representation of the integral in Eq. (18), the
deterministic version of the SIDE takes the form

dV (t )

dt
= −νV (t ) −

∫ ∞

0
dt ′μ(t ′)V (t − t ′) − Z (t ). (24)

This equation is supplemented by the specific prehistory,

V (t � 0) =
{

0, t < 0,

V (0), t = 0.
(25)

Now the actual prehistory V<(t ) is taken into account by the
additional regular force −Z (t ) in Eq. (24).

Applying the Laplace transformation to Eq. (24), we get

Ṽ (p) = V (0) − Z̃ (p)

p + ν + μ̃(p)
= h̃(p)[V (0) − Z̃ (p)]. (26)

Thus, accounting for the prehistory of the process leads to the
only change of the fundamental solution, namely, to the ap-
pearance of additional term Z (p) in the numerator of Eq. (26).
As expected, the expression for Ṽ (p) contains all the poles pi

which define the fundamental solution.

C. Solution for the case of the exponential memory function

In this subsection, we present in the explicit form an
analytical solution of Eq. (18) with the exponential mem-
ory function, Eq. (4). The Laplace image of this memory
function is

μ̃(p) = μ0

T

1

1 + p T
, (27)

which gives only two poles for h̃(p) in Eq. (20). These poles
are p1,2 = −z1,2/T with

z1,2 = 1 + νT

2
±

√
(1 − νT )2

4
− μ0. (28)

For the sake of simplicity we consider here the prehistory
Eq. (25). Using the inverse Laplace transformation, Eq. (21),
we find the solution

V (t )

V (0)
= A1 exp (−z1t/T ) + A2 exp (−z2t/T ), (29)

with

A1 = 1 − z1

z2 − z1
, A2 = 1 − z2

z1 − z2
. (30)

The analysis of poles, Eq. (28), shows that, if the parameters
ν and μ0 satisfy the condition

μ0 = (1 − νT )2

4
, (31)

the poles z1 and z2 coincide, i.e., the degeneration takes place.
In this case, the solution has the form

V (t ) = V (0)

(
1 − 1 − νT

2T
t

)
exp (−zt/T ), (32)

where z = (1 + νT )/2. The parabola, Eq. (31), is shown by
the dashed line in Fig. 3. At μ0 > (1 − νT )2/4, above the
parabola, the exponential decrease of V (t ) is accompanied by
oscillations. These oscillations are absent below the parabola.

Comparing Eqs. (28) and (29) with Eq. (9), one can see
that the solution V (t ) decreases exponentially in the same
region where the random process is stationary and the cor-
relation function exists, wherein the asymptotic behaviors of
the functions V (t → ∞) and C(t → ∞) coincide. This is not
surprising. Indeed, the equations for these functions are the
same; the only difference consists in the initial conditions
[see Eqs. (8) and (19)]. The memory about these conditions
is asymptotically lost at t → ∞ and, thus, the asymptotic
solutions for V (t → ∞) and C(t → ∞) coincide.

In the region of parameters ν and μ0 located to the left
of the solid lines in Fig. 3, the solution V (t ) exponentially
increases. We are most interested in the V (t ) behavior on
the borderlines between the stationary and nonstationary re-
gions. On the diffusive borderline, μ0 + νT = 0, the pole z2

in Eq. (28) vanishes, and the solution Eq. (29) for V (t ) goes
asymptotically to the constant value A2. For the oscillatory
borderline, νT = −1, μ0 > 1, Eqs. (28)–(30) give the har-
monic solution for V (t ):

V (t ) = V (0)

[
cos(ωt ) + 1

ωT
sin(ωt )

]
, ω = 1

T

√
μ0 − 1.

(33)
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Another method, presented in Refs. [16,40], to solve
Eq. (18) with the exponential memory function consists in in-
troducing an auxiliary variable U (t ) = ∫ t

−∞ V (t ′) exp[−(t −
t ′)/T ]dt ′. This procedure maps the system under consider-
ation onto a Markov process, which is described by two
ordinary differential equations. In the absence of random
force, these equations have the form

dV (t )

dt
= −νV (t ) − μ0

T 2
U (t ),

dU (t )

dt
= V (t ) − 1

T
U (t ).

(34)
In the case of prehistory Eq. (25), the set of Eqs. (34) is
supplemented by the initial conditions, V (t = 0) = V (0) and
U (t = 0) = 0. Solving Eqs. (34) with these initial conditions
one can easily obtain results Eq. (28)–(33). Additionally, the
analysis of the stability region and oscillatory or simple decay
of the correlation functions in this region, provided in this
paper for the case of the exponential memory function, is
equivalent to the study of the eigenvalues of the coupling
matrix between the variables V (t ) and U (t ).

A similar asymptotic behavior of V (t ) in the different re-
gions of the (ν, μ0) plane takes place not only for the system
with exponential memory function but for other systems with
arbitrary μ(t ) having a well-defined memory depth T .

IV. MOVEMENT UNDER THE
ACTION OF RANDOM FORCE

At the beginning of this section, we show by numerical
simulations that, taking into account the random force in the
Mori-Zwanzig equation, one can observe the diffusion with
memory on the lower borderline of stationarity and the noise-
induced resonance on the upper borderline. Then we analyze
the variance D(t ) which characterizes conveniently the corre-
lation properties of the stochastic systems and compare the
behavior of this function in various domains in the (ν, μ0)
plane.

A. Numerical simulations

The account of the σdW (t ) term in Eq. (1) allows one
to describe the stochastic features of the process under con-
sideration. It does not change the location of stationarity
borderlines; they can still be defined by analyzing the cor-
respondent deterministic dynamical equation. This is the
consequence of the fact that the Gaussian noise can neither
limit an exponentially increasing solution in the nonsta-
tionarity region, nor overcome the attraction effects in the
stationarity zone. However, the stochastic force changes the
system dynamics, especially on the stationarity borderlines.

Irregular thin black solid lines in Fig. 4 show several
realizations of the diffusion motion for the Mori-Zwanzig
equation with exponential memory function and zero prehis-
tory V (t � 0) = 0. The parameters ν, T , and μ0 are chosen
to satisfy the condition νT + μ0 = 0. At first glance, this
memory-dependent diffusion does not differ from the usual
Brownian motion. However, there exists an essential dif-
ference. To demonstrate this difference, we carried out the
ensemble averaging of V 2(t ) over 103 realizations. The ob-
tained dependence ±√

D(t ) = ±
√

〈V 2(t )〉 is plotted by the
red symbols on the green solid line. In addition, we present

FIG. 4. The memory-dependent diffusion for the exponential
memory function and zero prehistory V (t � 0) = 0. The irregular
black solid lines are the trajectories for different realizations of the
stochastic process V (t ) on the diffusive borderline of stationarity.
The green solid line is the analytical result for ±√

D(t ) where D(t )
is the variance, Eq. (42). The red symbols on this curve are the
results of numerical simulation obtained by the ensemble averaging
over 103 realizations for each symbol. The dashed red line presents
the ±√

D B(t ) = ±σ
√

t dependence for the Brownian diffusion. The
dash-dotted curve is the dependence ±σ

√
t/(1 + νT ) which serves

as the asymptote for ±√
D(t ) at t 
 T [see Eqs. (42) and (43)]. The

parameters are ν = −0.4, μ0 = 0.4, T = 1, and σ = 1.

a similar plot for the Brownian diffusion by the red dashed
curve. The comparison of these two curves shows that the
memory-dependent diffusion follows the usual Brownian mo-
tion at small time scale t � T only. This coincidence at short
times is not surprising. It is due to the chosen zero prehistory.
However, at t � T the memory begins to play the important
role in the diffusion. Therefore, the green solid curve in Fig. 4
deviates from the Brownian red dashed line and tends to
another asymptote with a greater diffusion coefficient.

Figure 5 demonstrates the oscillatory motion with increas-
ing amplitude for the Mori-Zwanzig system under the action
of random force. This motion occurs with the frequency close
to the frequency of self-oscillations, Eq. (33). The Fourier
analysis made for a 6000-length realization of the process
gives an estimate �ω/ω ∼ 0.04 for the relative width of fre-
quency domain of these oscillations. This means that we deal
with a kind of noise-induced resonance.

One of the most frequently discussed types of amplification
of oscillations due to external noise is stochastic resonance
(see, e.g., Refs. [41–43] and references therein). Usually,
stochastic resonance is considered for the nonlinear systems
with double-well potentials in the presence of an external reg-
ular periodic force, and resonance occurs when the frequency
of the external force is comparable with half the character-
istic frequency of the noise-induced interwell transitions. In
the system we are considering, there are neither double-well
potentials nor an external periodic force. In our case, the noise
does “double duty.” The inclusion of noise leads, first, to the
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FIG. 5. The noise-induced resonance in the V (t ) process with the
exponential memory function and zero prehistory. The thin black
solid line shows a realization of the stochastic process V (t ) on the
oscillatory borderline of stationarity. The green solid line presents
the analytical result for ±√

D(t ), Eq. (45). The parameters are
ν = −1/T , μ0 = 1.01, T = 1, and σ = 1.

resonant excitation of oscillations at the self-frequency ω,
Eq. (33). This takes place due to the presence of frequencies in
the noise spectrum, which are close to ω. Secondly, the noise
leads to a subsequent increase in the amplitude of oscillations
over time. The discussed here phenomenon resembles the
well-known coherence resonance which is also observed in
the absence of an external regular periodic force [44]. How-
ever, contrary to the coherence resonance, we consider here
the linear systems where the noise-induced resonance occurs
due to their memory of the prehistory.

B. Analytical study of the V (t ) variance

One of the valuable characteristics of the stationary and
nonstationary random process V (t ) is the variance:

D(t ) = 〈V 2(t )〉 − 〈V (t )〉2. (35)

The function D(t ) can be easily obtained by means of the
exact solution of the Mori-Zwanzig Eq. (1):

V (t ) = V (0)h(t ) + σ

∫ t

0
h(t − τ )dW (τ ) (36)

(see, e.g., Ref. [24]). This formula is valid for the specific
prehistory, Eq. (25).

Using the definition Eq. (35) and the property of the white
noise 〈dW (t )dW (t ′)〉 = δ(t − t ′)dtdt ′, we express the vari-
ance D(t ) in terms of the fundamental solution h(t ):

D(t ) = σ 2
∫ t

0
h2(τ )dτ + V 2(0)[h(t ) − 1]2. (37)

We analyze Eq. (37) considering different regions of pa-
rameters ν and μ0, specifically, the regions of stationarity,
nonstationarity, and the borderlines between them. As far as
the main properties of solutions of the Mori-Zwanzig equation
do not depend essentially on the initial value V (0) = 〈V (t )〉,

we set it to be zero, V (0) = 0, for simplicity. We carry out our
analysis for the systems with exponential memory function.

1. Stationarity region

In this region, the variance Eq. (37) increases with t but
remains finite even at t → ∞:

D(∞) = σ 2
∫ ∞

0
h2(τ )dτ. (38)

Indeed, the fundamental solution h(t ) exponentially decreases
when increasing t , therefore the integral in Eq. (38) exists.

For the process with exponential memory function, we can
carry out an analysis of the variance D(t ) in more detail and
obtain analytical expressions in explicit form. Substituting the
function h(t ) from Eq. (29) into Eq. (37), after integration
we get

D(t ) = σ 2T
∑

i,k=1,2

AiAk

zi + zk

{
1 − exp

[
−(zi + zk )

t

T

]}
. (39)

At t → ∞, the exponential function in this equation goes to
zero and we obtain for D(∞)

D(∞) = 1

2
σ 2T

1 + μ0 + νT

(μ0 + νT )(1 + νT )
. (40)

As expected, the variance D(∞) diverges (tends to infinity) if
the point (ν, μ0) approaches the diffusive borderline [due to
the first factor in the denominator of Eq. (40)] or the oscilla-
tory borderline (due to the second factor in the denominator).

2. Nonstationarity region

In the region of nonstationarity, at least one of the roots, z1

or z2, in Eq. (28) has the negative real part, say −r. Therefore,
the main contribution to Eq. (39) gives the term proportional
to exp (2rt/T ). So, one should observe the exponential in-
crease (possibly with oscillations) of the variance at t → ∞.

3. Solution on the diffusive borderline

On the line νT + μ0 = 0, one root in Eq. (28), say z1, is
real and positive, z1 = 1 + νT = r > 0, and the other root is
zero, z2 = 0. Using A1,2 in Eq. (30), we get the fundamental
solution,

h(t ) = νT

1 + νT
exp(−rt/T ) + 1

1 + νT
, (41)

and the variance,

D(t ) = a t + b[1 − exp(−rt/T )] + c[1 − exp(−2rt/T )],

(42)

where

a = σ 2

(1 + νT )2
, b = 2σ 2νT 2

(1 + νT )3
, c = σ 2ν2T 3

2(1 + νT )3
.

(43)

The D(t ) dependence on the diffusive borderline νT + μ0 =
0 is shown in Fig. 6 for different values of μ0. One can see that
all curves follow the same straight line D(t ) = σ 2t at t � T .
This is explained by the above mentioned circumstance: the
memory does not play an essential role in the diffusion at
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FIG. 6. The variance D(t ) on the diffusive borderline for the ex-
ponential memory function and zero prehistory at different values of
μ0: μ0 = 0.4 (the upper green solid curve), μ0 = 0 (the red straight
dashed line), and μ0 = −0.4 (the lower black dash-dotted curve).
The black filled circles on these curves are the results of numerical
simulations obtained by the ensemble averaging over 103 realizations
for each symbol. Other parameters: ν = −μ0/T , T = 1, and σ = 1.

short time scales due to the chosen zero prehistory. Then,
at t � T , the D(t ) curves for μ(t ) �= 0 leave the “Brownian”
asymptote D(t ) = σ 2t and go to the other asymptotes D(t ) =
σ 2t/(1 + νT ). In the case of positive memory function μ(t ),
the curves D(t ) deviate upward, which corresponds to the
persistent diffusion, and for negative μ(t ) the curves deviate
downward, which corresponds to the antipersistence.

4. Solution on the noise-induced-resonance borderline

For the exponential memory function, on the oscillatory
borderline (the vertical line in Fig. 3, ν = −1/T , μ0 > 1 ),
both roots, z1 and z2 = −z1, in Eq. (28) are imaginary, z1 = ir,
z2 = −ir, where r = √

μ0 − 1. Using the coefficients in the
fundamental solution Eq. (30),

A1 = r + i

2r
, A2 = r − i

2r
, (44)

and Eqs. (39) and (33), we get

D(t ) = σ 2

2ω2T

[
μ0

t

T
+ (μ0 − 2)

sin(2ωt )

2ωT

+ 1 − cos(2ωt )
]
,

ω = 1

T

√
μ0 − 1. (45)

The dependence ±√
D(t ) for the noise-induced resonance

occurring on the oscillatory borderline is shown by the green
solid line in Fig. 5. One can see that, in accordance with
Eq. (45), the oscillations of D(t ) occur at the frequency 2ω.

V. CONCLUSION

We have studied the continuous random non-Markovian
processes with nonlocal memory and obtained solutions of the
Mori-Zwanzig equation describing them. We have analyzed
the system dynamics depending on the amplitudes ν and μ0

of the local and nonlocal memories and payed attention to the
line in the (ν, μ0) plane separating the regions with asymptoti-
cally stationary and nonstationary behavior. We have obtained
general equations for such borderlines and considered them
for three examples of the nonlocal memory functions. The
first example is the local, but remote from the instant time
moment t , memory function; the second example is the step-
wise memory function; at last, we have indicated that Eq. (1)
has an exact analytical solution for the memory function of
the exponential form.

In this paper, we have focused mainly on the system
dynamics on the borderlines of asymptotic stationarity. We
have shown that there exist two types of such borderlines
with fundamentally different system dynamics. On bound-
aries of the first type, corresponding to the smaller values
of μ0, a diffusion with memory takes place, and on the
boundaries of the second type, corresponding to the larger
values of μ0, the phenomenon of noise-induced resonance
occurs.

We have analyzed the dynamics of the system for differ-
ent prehistories in various areas on the (ν, μ0) plane in the
absence of random force. We have shown that, on the lower
borderline of the asymptotic stationarity region, the variable V
tends to a constant value at t → ∞. On the upper borderline,
the variable V (t → ∞) goes asymptotically into oscillatory
mode with some given frequency. This means that we deal
here with the classical oscillatory motion.

Then, we have considered the system behavior under the
action of random force. We have shown that on border-
lines of the first type, corresponding to smaller values of
the amplitude μ0 of nonlocal memory, the diffusion with
memory takes place, whereas on borderlines of the second
type, corresponding to larger values of μ0, the phenomenon
of noise-induced resonance occurs. A distinctive feature of
noise-induced resonance in the systems under consideration
is that it occurs in the absence of an external regular periodic
force. It takes place due to the presence of frequencies in the
noise spectrum, which are close to the self-frequency of the
system.

We have analyzed also the variance of the process and
compared its behavior for regions of asymptotic stationarity
and nonstationarity, as well as for diffusive and noise-induced-
resonance borderlines between them.

The main results of this paper are valid for the processes
with arbitrary memory kernel μ(t ), which is restricted by
the condition limT→∞

∫ T
μ(t )dt < ∞. This means that our

theory fails for the polynomial memory functions (μ(t ) ∝
t−α at t → ∞ with α < 1) for which the integral does not
converge. It would be interesting to generalize our consid-
eration to the non-Markovian systems with infinite memory
lengths.

We have studied the memory-dependent diffusion and
noise-induced resonance for the case of delta-correlated exter-
nal noise. It seems reasonable, in future, to study the discussed
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phenomena for a more general case of internal noise and
long-range correlated noise (see, e.g., Refs. [24,25]). We
believe that, in such systems, the noise-induced resonance will
not only continue to take place, but will also acquire new
interesting features.

APPENDIX: CONTINUOUS YULE-WALKER EQUATION

Here we present a simple derivation of Eq. (7) for the
correlation function C(t ) of the continuous stationary process.

The exact solution Eq. (36) of the Mori-Zwanzig equation
allows us to find all statistical characteristics of the system
including its correlation function. Using the definition Eq. (6)
and the property of the white noise 〈dW (t )dW (t ′)〉 = δ(t −
t ′)dtdt ′, we obtain after simple calculations the following

result:

C(t ) = lim
t ′→∞

C(t ′, t ′ + t ) = σ 2
∫ ∞

0
h(τ )h(τ + t )dτ. (A1)

Recall that the function h(t ) [with the fundamental prehistory,
Eq. (19)] is the solution of the deterministic version of the
Mori-Zwanzig equation:

ḣ(t ) + νh(t ) +
∫ t

0
h(t − τ )μ(τ )dτ = 0. (A2)

Using the prehistory h(t < 0) = 0 of the fundamental solu-
tion, we can replace the upper limit of integration in Eq. (A2)
by ∞. Differentiating Eq. (A1) with respect to t and substitut-
ing ḣ(τ + t ) from Eq. (A2), we get the continuous analog of
the Yule-Walker equation, Eq. (7).
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