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The thermodynamic uncertainty relation, originally derived for classical Markov-jump processes, provides a
tradeoff relation between precision and dissipation, deepening our understanding of the performance of quantum
thermal machines. Here, we examine the interplay of quantum system coherences and heat current fluctuations on
the validity of the thermodynamics uncertainty relation in the quantum regime. To achieve the current statistics,
we perform a full counting statistics simulation of the Redfield quantum master equation. We focus on steady-
state quantum absorption refrigerators where nonzero coherence between eigenstates can either suppress or
enhance the cooling power, compared with the incoherent limit. In either scenario, we find enhanced relative
noise of the cooling power (standard deviation of the power over the mean) in the presence of system coherence,
thereby corroborating the thermodynamic uncertainty relation. Our results indicate that fluctuations necessitate
consideration when assessing the performance of quantum coherent thermal machines.
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I. INTRODUCTION

Quantum thermodynamics is an emerging research field
concerning the thermodynamics and nonequilibrium statis-
tical mechanics of open quantum nanoscale systems with
the full inclusion of quantum effects [1–11]. In the quan-
tum realm, basic notions such as heat and work of classical
thermodynamics need to be reexamined and refined (see, for
example, Refs. [12–14]), leading to, for instance, intriguing
microscopic unravelling of the second law of thermodynamics
[15,16].

A tantalizing prospect of the field of quantum thermody-
namics is to devise and realize quantum thermal machines
(QTMs) that transform heat to useful work or use work to
refrigerate [1,4,17–59]. Efficient QTMs, capable of exploiting
genuine quantum effects and outperforming their classical
counterparts are of paramount importance for future quan-
tum technologies. In this regard, the discussion of whether
quantum coherence can be an advantageous resource in the
operation of QTMs is an ongoing and vivid topic of this field
[32,45,60–82].

At the nanoscale, fluctuations become significant, imply-
ing that one should inspect nonequilibrium fluctuations of
thermodynamic quantities for characterizing the performance
of QTMs [4,44,65,83–95]. Recently, a conceptual advance,
termed thermodynamic uncertainty relation (TUR) [96–98],
is offering new insights into the characteristics of steady-state
QTMs in terms of a tradeoff relation between power fluctua-
tion and efficiency [99]. While the original TUR was derived
for systems described by classical Markov jump processes,
quantum generalizations of TURs have been conceived for
steady-state [100] and cyclic [101] QTMs. To assess the

performance of QTMs, it is necessary to explore how quantum
effects such as coherence contribute to the relative noise and
to the behavior of the TUR [102–106].

Here, we focus on models for a quantum absorption refrig-
erator (QAR), a steady-state QTM that continuously pumps
heat from a cold bath into a hot bath by consuming power
from a (very hot) “work” bath. The study of QAR developed
from early studies of a three-level maser, an engine [1]. With
rapid developments in quantum thermodynamics, recent years
have witnessed a great number of investigations on various
aspects of QARs [22,23,26,34,49,91,107–114]. Despite sig-
nificant progress on the subject, the interplay of coherence
and fluctuation in the performance of QARs remains largely
unexplored, although studies have revealed the pros and cons
of system coherence on cooling power [45,49,77].

Focusing on QARs in which the system coherence was
shown to have a nontrivial effect on the cooling power
[45,77,79], the objectives of the present study are twofold:
(i) We aim to identify the role of steady state system
coherence (between system energy eigenstates) on power
fluctuations. If system coherences are systematically linked
to reduced fluctuations, they become a useful resource for
QARs if the net power is at the same time enhanced.
Conversely, if fluctuations consistently increase when sys-
tem coherences exist (compared to the incoherent limit),
then power boost associated with coherences may not be
profitable.

(ii) We aim to test the behavior of the TUR ratio (relative
noise times entropy production) [96,97,100] in the presence
of system coherences. Can coherences improve this tradeoff
relation, i.e. allow the system to operate closer to the bound
relative to the incoherent scenario?
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To attain the heat current and its noise, we combine a full
counting statistics formalism [115,116] within the Redfield
master equation (RME) [117,118]. The method is perturba-
tive in the system-bath coupling, but allows arbitrarily strong
internal system’s coherences.

We confirm the thermodynamic consistency of the method
by validating the fluctuation symmetry for heat transfer
[15,16]. To demonstrate the nontrivial role of system coher-
ences on the cooling current and its fluctuations, we compare
results under the full Redfield calculations with those obtained
in the incoherent limit where coherences vanish. We find that
system coherences always enhance the relative noise of the
cooling power compared with the incoherent limit, despite
that it can either suppress or enhance the cooling power itself.
Particularly, considering a model for a QAR where system
coherences enhance the cooling power [77], we show that
power fluctuations get amplified as well, indicating that sys-
tem coherences are not helpful in terms of constancy [99].

As a result of the enhanced relative noise, the TUR is
always satisfied by the QARs under investigation here—
regardless of the presence of system coherences. Our results
thus call for more efforts for understanding the cause of vio-
lations of the standard TUR [96,97] as observed in coherent
QTMs at weak couplings [102–104].

The paper is organized as follows. In Sec. II, we first intro-
duce the general setup and the counting-field dressed Redfield
master equation. We then briefly mention how to get currents
and fluctuations from the cumulant generating function and
demonstrate the thermodynamic consistency of the Redfield
master equation by validating the fluctuation symmetry for
a V-shaped system and for a model QAR. In Sec. III, we
focus on two concrete examples of steady-state QARs and
provide detailed simulation results for the cooling current, its
fluctuations, and the TUR. We conclude in Sec. IV.

II. MODEL AND METHODOLOGY

In this section, we first introduce the general modeling of
QTMs as open quantum systems connected to multiple heat
baths. We then lay out the counting-field dressed Redfield
master equation (χ− RME) for the sake of completeness
and present expressions for currents and fluctuations from
the cumulant generating function. Finally, we systematically
check the thermodynamic consistency of the counting-field
dressed Redfield master equation by verifying the fluctuation
symmetry of heat exchange for a V-shaped system. In steady
state due to current conservation, only one counting parameter
is necessary in this two-bath model. The behavior of the heat
current and coherences in the V-shaped system closely relate
to the cooling characteristics of our model I [see Fig. 5(a)]
for a QAR [45]. As such, verifying the fluctuation symmetry
of heat exchange for the V-shaped system indicates on the
corresponding behavior for QARs. We further exemplify the
validity of the fluctuation symmetry in the three-bath QAR,
where two counting parameters are involved.

A. Hamiltonian for QTMs

QTMs can be modeled as open quantum systems consist-
ing of a central system (s) coupled to multiple (counted by

v) bosonic heat baths (b). The total system-bath Hamiltonian
reads (setting h̄ = 1 and kB = 1 hereafter)

Ĥ = Ĥs +
∑

v

Ĥv
b + Ĥsb, Ĥsb =

∑
v

Ŝv ⊗ B̂v. (1)

Here and in what follows, we imply the tensor product with
the identity so that Ĥs will be used instead of Ĥs ⊗ Ib with
Ib an identity matrix in the bath subspace and so on. The
working substance Ĥs constitutes a few-level quantum system.
The bosonic heat baths are assumed to be harmonic,

Ĥv
b =

∑
k

ωkv b̂†
kv

b̂kv, (2)

with b̂†
kv

(b̂kv) creating (annihilating) a harmonic mode k with
frequency ωkv in v bath. Here, we assume that each bath is
described by a thermal equilibrium state characterized by a
temperature Tv . Ŝv and B̂v are system and reservoir operators
that form the coupling between the system and v bath, respec-
tively. We consider bilinear system-bath interactions and take
B̂v to be the displacement operators,

B̂v =
∑

k

λkv (b̂†
kv

+ b̂kv ), (3)

with λkv characterizing the coupling strength between the
system and the v reservoir.

B. Counting-field dressed Redfield master equation

To study the thermodynamics of the generic QTMs de-
fined above, we combine the full counting statistic formalism
[115,116] with the Redfield master equation [117,118]. This
formalism was recently described in details in Ref. [44]. To
do so, we assign each bath a counting field χv . The moment
generating function is defined with the two-time measurement
protocol as [15]

Z ({χv}, t ) ≡ Tr
[
ei

∑
v χvĤv

b (0)e−i
∑

v χvĤv
b (t )ρ̂(0)

]
. (4)

Here, operators are written in the Heisenberg picture. ρ̂(0) de-
notes the initial factorized density matrix of the system (s) and
bath (b), ρ̂(0) = ρ̂s(0) ⊗ ρ̂b(0); ρ̂b(0) = ∏

v exp(−βvĤv )/Zv

with βv = T −1
v and Zv the inverse temperature and partition

function for the v bath, respectively. After some simple ma-
nipulations, we arrive at [44]

Z ({χv}, t ) = Tr[ρ̂χ (t )], (5)

where the counting-field dressed total density matrix reads

ρ̂χ (t ) ≡ Û −χ (t )ρ̂(0)Û χ,†(t ); Û −χ (t ) ≡ e−iĤ−χ t , (6)

with Ĥ−χ ≡ e−i
∑

v χvĤv
b /2Ĥei

∑
v χvĤv

b /2 denoting the counting-
field dressed total Hamiltonian. Notice that we have [ρ̂χ ]† =
ρ̂−χ . Equation (6) can be written as a differential equation,
generalizing the Liouville Equation for the density matrix (in
the Schrödinger picture),

d ρ̂χ

dt
= −iĤ−χ ρ̂χ (t ) + iρχ (t )Ĥχ . (7)

The moment generating function is obtained by solving this
equation of motion, then tracing ρ̂χ .

032138-2



COHERENCES AND THE THERMODYNAMIC UNCERTAINTY … PHYSICAL REVIEW E 103, 032138 (2021)

Using the explicit form given by Eq. (1), we get

Ĥ−χ = Ĥs +
∑

v

Ĥv
b +

∑
v

Ŝv ⊗ B̂−χv

v , (8)

where B̂−χv
v = e−iχvĤv

b /2B̂veiχvĤv
b /2 = ∑

k λkv (e−iχvωkv/2b̂†
kv

+
H.c.) with “‘H.c.” denoting Hermitian conjugate hereafter.
Proceeding from Eq. (7) in the interaction representation,
treating the counting-field dressed system-bath coupling as a
perturbation, and then transforming back to the Schrödinger
picture, the reduced density matrix dynamics ρχ

s (t ) ≡
Trb[ρχ (t )] can be described by the following χ -RME in the
energy basis {|n〉} of Ĥs (detailed derivation can be found in,
e.g., Ref. [44]):

∂

∂t
ρχ

s,nm(t ) = −i�nmρχ
s,nm(t ) −

∑
v

∑
jk

[
Rv,∗

mk,k j (� jk )ρχ
s,n j (t )

−Rχv

n j,km(� jn)ρχ

s, jk (t ) − R−χ∗
v ,∗

mk, jn (�km)ρχ

s, jk (t )

+Rv
n j, jk (�k j )ρ

χ

s,km(t )
]
. (9)

Here, ρχ
s,nm(t ) ≡ 〈n|ρχ

s (t )|m〉, �i j = Ei − Ej are energy gaps
with Ei eigenenergies of the subsystem in the global (eigenen-
ergy) basis. The superscript “∗” denotes complex conjugate.
The standard Redfield equation is recovered when counting
parameters are taken to zero, Rv

nm,lk (ω) = Rχv

nm,lk (ω)|
χv=0

.
The transition coefficients satisfy

Rχv

nm,lk (ω) ≡ Snm
v Slk

v

∫ ∞

0
dτeiωτ
v (χv + τ ), (10)

with 
v (τ ) ≡ 〈B̂v (τ )B̂v (0)〉b denoting the bath correlation
function evaluated using the state ρ̂b(0). Its explicit form reads


v (τ ) =
∫ ∞

0
dω

γv (ω)

2π

[
eiωτ nv

B(ω) + e−iωτ
(
1 + nv

B(ω)
)]

,

(11)

with γv (ω) = 2π
∑

k λ2
kvδ(ω − ωkv ) and nv

B(ω) the spectral
density and Bose-Einstein distribution of v bath, respectively.
For the purpose of demonstration, here we consider an Ohmic
function γv (ω) = αvωe−ω/ωc with αv and ωc the dimension-
less system-bath coupling strength and a cutoff frequency,
respectively. We remark that the method itself is not limited
to this specific choice. We assume all baths have the same
cutoff frequency ωc, which defines the largest energy scale in
the problem.

With Eq. (11), we can evaluate the above transition coeffi-
cients as Rχv

nm,lk (ω) = Snm
v Slk

v �χv
(ω), with

�χv
(ω) ≡

{
γv (ω)e−iωχv [1 + nv

B(ω)]/2 for ω > 0,

γv (|ω|)ei|ω|χv nv
B(|ω|)/2 for ω < 0.

(12)

Here, “|A|” takes the absolute value of A. We neglected the
imaginary parts of the rate constants, after verifying in sim-
ulations that their magnitudes were negligibly small in the
weak system-bath coupling limit. To assess the role of nonzero
system coherences, we contrast the full χ -RME given by
Eq. (9) against its incoherent counterpart in which coherences

between energy eigenstates vanish [44],

∂

∂t
ρχ

s,nn(t ) = −
∑

v

∑
k

[
2Re

(
Rv

nk,kn(�nk )
)
ρχ

s,nn(t )

−Rχv

nk,kn(�kn)ρχ

s,kk (t )

−R−χ∗
v ,∗

nk,kn (�kn)ρχ

s,kk (t )
]
. (13)

Hereafter, we refer to Eq. (13) as the incoherent χ -RME.
To obtain the current and its higher-order cumulants, we

recast the χ -RME in the Liouville space as

∂

∂t

∣∣ρχ
s (t )

〉〉 = −Lχ

∣∣ρχ
s (t )

〉〉
, (14)

where |ρχ
s 〉〉 ≡ (ρχ

s,11, ρ
χ

s,12, · · · , ρχ
s,nm, · · · , ρ

χ
s,NN )T denotes

an N2 × 1 vector with N the dimension of the system
Hilbert space. Lχ is an N2 × N2 matrix representing the χ -
dependent Liouvillian superoperator (noting that Lχ reduces
to an N × N matrix in the incoherent limit). In the steady
state limit, the cumulant generating function (CGF) G(χ ) =
limt→∞ lnZ (χ, t )/t is given by [15]

G(χ ) = −E0(χ ), (15)

where E0(χ ) is the ground-state energy (or the eigenvalue of
the smallest real part) of the superoperator Lχ . In scenarios
with multiple bath, χ should be understood as a collection of
counting fields, namely, χ = {χv}.

We note that E0(0) = 0, that is, without counting the
smallest eigenstate is zero, corresponding to the steady state
solution. The CGF supplies all cumulants, specifically the
steady state heat current 〈Jv〉 out of the vth reservoir and its
fluctuation 〈〈J2

v 〉〉 ≡ 〈J2
v 〉 − 〈Jv〉2,

〈Jv〉 = − ∂E0(χ )

∂ (iχv )

∣∣∣∣
{χv}=0

= − E0(χv ) − E0(−χv )

2(iχv )

∣∣∣∣
χv→0,{χv′ 
=v}=0

,

〈〈
J2
v

〉〉 = − ∂2E0(χ )

∂ (iχv )2

∣∣∣∣
{χv}=0

= E0(χv ) + E0(−χv )

χ2
v

∣∣∣∣
χv→0,{χv′ 
=v}=0

. (16)

Here, E0(−χ ) is the ground-state energy of L−χ . In numer-
ical simulations presented below, we adopt a real value of
χv = 0.001 − 0.005 to calculate 〈Jv〉 and 〈〈J2

v 〉〉 according to
the second lines of the above definitions. We verified that the
final results of 〈Jv〉 and 〈〈J2

v 〉〉 were independent of the value
of χv we set. We confirmed in simulations that the steady state
heat current calculated from the cumulant generating function
was identical within machine accuracy to the standard weak-
coupling definition based on heat exchange between a system
and the attached bath, 〈Jv〉 = −d〈Hv〉/dt = Tr[HsDv[ρs]],
with Dv[ρs] as the dissipator of the vth bath, obtained from
Eq. (9) when χ = 0, ρ̇s(t ) = −i[Hs, ρs] + ∑

v Dv[ρs] [44].
We further confirmed current conservation in steady state,∑

v〈Jv〉 = 0.
With the ability to calculate currents and fluctuations, we

further study the validity of the thermodynamic uncertainty
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relation (TUR) [96,97], 〈〈
J2
v

〉〉
〈Jv〉2

〈σ 〉 � 2, (17)

with 〈σ 〉 = −∑
v〈Jv〉βv the total entropy production rate.

Here we adopt the convention that 〈Jv〉 > 0 when flowing
into the system. In what follows, we refer to the quantity

“ 〈〈J2
v 〉〉

〈Jv〉2 〈σ 〉” as the TUR ratio. Note that below we find that
our models for QAR always satisfy the original TUR (17).
As such, we obviously satisfy the generalized—and less tight
bounds as discussed in Refs. [98,100].

In sum, in our procedure we construct the Liouvillians Lχ

for both the full Redfield and the incoherent Redfield equa-
tions and find their smallest eigenvalues, the CGF. We obtain
the steady state heat current from bath v and the current noise
by numerically calculating the first and second derivatives
of the CGF, respectively, taken with respect to the counting
parameter of bath v.

C. Verifying the fluctuation symmetry with the χ-RME

Numerous studies in past years had examined the regime
of validity and accuracy of second-order Markovian quantum
master equations, specifically comparing the Redfield mas-
ter equation to the local Lindblad master equation (LLME),
which is performed in the site basis, and the eigenbasis Lind-
blad master equation (ELME) [119–125], which is performed
in the global basis. The Redfield equation reduces to the
ELME after making the secular approximation. The LLME
is derived in the site basis, and it is known to miss proper
thermalization further showing incorrect transport properties
[120]. Comparing the predictions of the RME to exact re-
sults (when available), it has been generally concluded that
the RME is superior over both the ELME and the LLME
[119,121,123,126].

On the other hand, the Redfield dissipator does not nec-
essarily satisfy the condition of complete positivity (unlike
the Lindblad dissipator). How does this deficiency impact
thermodynamical properties? To the best of our knowledge,
there are no reports on the impact of deviations from complete
positivity on steady state behavior. However, for a driven
system it was shown in Ref. [127] that the departure from
complete positivity lead to the violation of the second law
of thermodynamics, with a negative entropy production at
intermediate times.

For a system coupled to three baths (h,w, c) with no
internal leaks, the cumulant generating function satisfies
the steady state exchange fluctuation symmetry (SSFS)
[15,16,91,128,129],

G(χc, χw ) = G(i(βh − βc) − χc, i(βh − βw ) − χw ). (18)

A fundamental question that is still not settled is whether
the full χ -RME satisfies this relation, thus is consistent with
nonequilibrium thermodynamics. The incoherent limit of the
χ -RME, that is the eigenbasis Lindblad master equation,
satisfies the SSFS for QAR [91]. On the other hand, if the
fluctuations symmetry is not satisfied in the full χ -RME, it is
important to find out what is the impact of this deviation on the
accuracy of calculated cumulants of transport. In other words,
whether this deviation influences the small χ behavior. This

point is critical to our analysis since we are using the χ -RME
to calculate the current and its fluctuations under the influence
of quantum coherences.

To address this issue we point out the following: (i) We
are only interested in autonomous (nondriven) systems, and
in their steady state properties. We are not aware of examples
showing that the RME breaks the laws of thermodynamics
in this case (unlike the transient regime). (ii) Energy eigen-
state degeneracy should be avoided to maintain the validity
of RME. (iii) Across all parameters regimes that we had
analyzed here, we found that levels population were positive
(physical). (iv) The V-shaped model [see Eq. (20)] captures
the behavior of coherences in the four-level QAR, as discussed
in Ref. [45]. Below, we systematically test the fluctuation
symmetry in this (two-bath) model and show that it is obeyed
with a small numerical error. While it is intriguing to prove
that the χ -RME satisfies the SSFS, our numerical simulations
provide a strong support for this assertion, backing up our
calculations of the current and its noise with Eq. (16). (v)
We tested the entropy production rate in our simulations, and
found that for results presented below it was always positive.

In fact, in all the tests that we carried out in this study,
which were steady state calculations, we observed that the
RME lead to positive level population, positive entropy pro-
duction rate, and the validity of the SSFT. Our simulations
provide a strong numerical support for the thermodynamical
consistency of the RME in steady state, even when coherences
play a critical role, calling for analytic investigations.

Several studies aimed to improve the RME—without go-
ing to the next order in perturbation theory—for example,
by modifying the structure of the Redfield kernel [130,131].
While these type of approaches provide more accurate so-
lution for the reduced density matrix in nonequilibrium
steady-state, it is not obvious how to generalize them and
rigorously derive the corresponding counting-field dependent
equation, as was done for the original RME in [15,44].
Overall, obviously the RME does not provide exact results
given the built-in assumptions on Markovianity and weak-
coupling. In this respect, the status of the field of quantum
heat transport is somewhat parallel to earlier studies of full-
counting statistics in charge transport, originally performed
at weak coupling [132]. Developing more accurate full-
counting statistics methods remain a topic of great interest
with recent studies employing the noninteracting blip approx-
imation [44,133,134], numerically exact methods [135–137]
and mixed quantum-classical principles [129].

For simplicity, we first consider a model involving just
two heat baths (v = c, h). In steady state, the input heat at
the terminal v = h is equal to the heat output at v = c. As
such, it is sufficient to look at the fluctuation symmetry of
heat exchange with a single counting parameter. The exchange
fluctuation symmetry states the following relation for the cu-
mulant generating function [15,16],

G(χc) = G(i�β − χc), (19)

with �β = 1/Th − 1/Tc.
We simulate the V-shaped system coupled to two heat baths

as an example, given that its behavior closely resembles that
of Model I below [see Fig. 5(a)] for the QAR [45]. The system
Hamiltonian involves a ground (g) state |g〉 and two excited (e)
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FIG. 1. Verifying the steady state exchange fluctuation symme-
try, Eq. (19), for the V-shaped system using the incoherent χ -RME
Eq. (13). (a) Real (Re) and (b) imaginary (Im) parts of G(χc ). (c) Real
and (d) imaginary part of G(i�β − χc ). Other parameters are εg = 0,
εe = 0.4, αh,c = 0.002, ωc = 50, Th = 0.15 and Tc = 0.1.

states {|e1〉, |e2〉}, which are coherently coupled,

Ĥs = εg|g〉〈g| + εe(|e1〉〈e1| + |e2〉〈e2|)
+μ(|e1〉〈e2| + |e2〉〈e1|). (20)

Here εg(e) are the ground-state (excited-state) energy. μ is the
coupling strength between the two excited states and its mag-
nitude can be made arbitrarily large. The transitions between
ground and excited states are driven by the cold (c) and hot
(h) heat baths with the following system operators associated
with Ĥsb:

Ŝh = |g〉〈e1| + |e1〉〈g|, Ŝc = |g〉〈e2| + |e2〉〈g|. (21)

A physical context of the V-type model along with study of
the ensuing intriguing long time dynamics was presented in
Ref. [138].

First, we verify Eq. (19) in the incoherent limit using
Eq. (13) for which analytic treatments exist (see, for instance,
Ref. [91]). In simulations, we determine the cumulant gener-
ating function by calculating numerically the eigenvalue with
the smallest real part, Eq. (15). The dependence of G(χc) and
G(�β − χc) on the counting field χc and inter-state coupling
strength μ is depicted in Fig. 1. By comparing the upper
and lower panels of Fig. 1, it is evident that our simulations
preserve the fluctuation symmetry Eq. (19) in the incoherent
limit. Deviations between G(χc) and G(�β − χc) were 11
orders of magnitude smaller than their value, for both real
and imaginary parts (an analysis is included in Fig. 3). Since
we know that the SSFS is obeyed in the incoherent limit, we
reason that these deviations arise from numerical errors from
the various stages involved in the procedure, such as matrix
diagonalization. Particularly, we find that the real (imaginary)

FIG. 2. Verifying the steady state exchange fluctuation symmetry
Eq. (19) for the V-shaped system using the full χ -RME, Eq. (9).
(a) Real (Re) and (b) imaginary (Im) parts of G(χc ). (c) Real and
(d) imaginary part of G(i�β − χc ). Parameters are the same as
described in the caption of Fig. 1.

part of the cumulant generating function is an even (odd)
function of the counting field χc, hence Eq. (16) allows us
to get real values for the current and its noise.

Next, we turn to simulations with the full χ -RME Eq. (9).
The comparison between G(χc) and G(i�β − χc) is shown in
Fig. 2. We observe that the fluctuation symmetry Eq. (19) is
preserved by the full χ -RME, thereby suggesting the thermo-
dynamic consistency of the method for evaluating the currents
and fluctuations from the cumulant generating function ac-
cording to Eq. (16). Interestingly, we find that the magnitude
of the cumulant generating function obtained using the full
Redfield dynamics is suppressed in the weak coupling regime
of μ compared with the incoherent limit, as illustrated in
Fig. 1. We note that Ref. [45] demonstrated current suppres-
sion in the same model arising due to the presence of finite
system coherence for weak μ. Our results further imply that
the so-observed suppression occurs at the level of cumulant
generating function and persists for finite χc.

We interrogate the SSFS in a quantitative way in Fig. 3 by
looking at the deviation of the ratio G(χc)/G(i�β − χc) from
unity, separately for the real and imaginary parts. We highlight
the following points:

(i) In Fig. 2, we depict the absolute magnitude of cumulant
generating function, while in Fig. 3, we present the relative
magnitude. Therefore, taking Fig. 3(b1) for instance, we have

1 − Re[G(χc )]
Re[G(i�β−χc )] ∼ 10−6, yielding a difference (Re[G(i�β −

χc)] − Re[G(χc)]) ∼ 10−13 by noting Re[G(i�β − χc)] ∼
10−7 from Fig. 2.

(ii) The errors in the incoherent χ -RME are certainly nu-
merical at the level of machine precision, since the SSFS is
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FIG. 3. Analysis of the SSFS in the V-shaped system using the
(a) incoherent and (b) full Redfield equation. We separately depict
the real part of the CGF (top panels) and the imaginary part (bottom
panels). Parameters are the same as described in the caption of Fig. 1.

obeyed in this case, e.g., in Fig. 3(a1) Re[G(i�β − χc)] −
Re[G(χc)] ∼ 10−16.

(iii) The full χ -RME has higher deviations from unity
(Fig. 3) for both real and imaginary parts compared to the
incoherent case. However, deviations from perfect symmetry
do not depend on the intersite coupling μ or the counting
parameter χ . Particularly for μ, coherence effects show up
in this model for log μ � −3.5 [45]. The fact that the agree-
ment between G(χc) and G(i�β − χc) does not depend on μ

suggests that the error is accumulated by numerical operations
rather than reflecting a fundamental violation. It is also ben-
eficial to test more sophisticated routines for complex matrix
diagonalization.

(iv) The incoherent χ -RME calculation on the V-shaped
model is performed by studying the eigenvalue of a 3 × 3
matrix. In contrast, the full χ -RME calculation is performed
by diagonalizing a 9 × 9 matrix. However, the increase in
complexity in the latter calculation compared to the incoher-
ent case does not trivially emerge from the size increase of the
matrix. The full-χ -RME is more complex that the incoherent
χ -RME given the presence of coherences in the system. As
such, the computational effort, and thus the error accumulated
in these two cases is quite different and cannot be simply
traced down to the size of the matrix.

To the best of our knowledge, simulations in Figs. 2 and
3 are the first strong numerical indication of the validity
of the SSFS in the full Redfield formalism for multi-level
systems, We highlight that in fact we found that all eigen-
values of Lχ obey the SSFS symmetry. Finally, predictions
from the χ -RME are obviously not exact given the pertur-
bation approximation involved. In validating the SSFS for
the χ -RME we point out that though inaccurate, calculations

FIG. 4. Verifying the steady state exchange fluctuation symmetry
Eq. (18) for Model I QAR (see Fig. 5 below) using the full χ -RME,
Eq. (9). (a) Real and (b) imaginary parts of [G(χc, χw ) − G(i(βh −
βc ) − χc, i(βh − βw ) − χw )]. Parameters are αw,h,c = 0.002, ωc =
50, Tw = 0.2, Th = 0.15, Tc = 0.1, εe = 1, εI = 0.3, μ = 2 × 10−5.

of high order cumulants are physical (thermodynamically
consistent).

Finally, we tested the fluctuation symmetry, Eq. (18), with
two counting parameters for Model I of the QAR at many
points in parameter space, and verified that it was valid with
small numerical errors—comparable to what we observed for
the V model in Fig. 3. A representative example is displayed
in Fig. 4.

III. QUANTUM ABSORPTION REFRIGERATORS:
RESULTS

In Sec. II C, we established the validity of the full χ -RME,
Eq. (9). Equipped with this method, we now study the steady-
state behavior of QARs and contrast it to the incoherent limit,
Eq. (13). We consider two distinct four-level QARs, with their
level diagrams depicted in Fig. 5. To operate as a QAR, three
heat baths, v = h, c,w are included; the QAR continuously
pumps heat from the cold (c) bath to the hot (h) bath consum-
ing power from the work (w) bath.

We follow the standard setting, that QARs are composed of
several subsystems that are spatially separated [49]. This al-
lows us to consider a selective coupling scheme, namely, each

FIG. 5. Level schemes of the working medium of two quantum
absorption refrigerators considered in this study. Transitions marked
by arrows in green, red and blue are triggered by hot (H), work (W),
and cold (C) heat baths, respectively. g, e, and I denote the ground,
excited, and intermediate states in the local site basis, respectively.
μ denotes the coupling strength between degenerate states (in the
local basis). Model I was recently studied in Ref. [45]. Model II with
μ = 0 was investigated in Ref. [77].
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FIG. 6. Current, noise, and coherences in Model I. (a) Cooling power 〈Jc〉FR obtained from the full χ -RME [Eq. (9)]. (b) Cooling power
〈Jc〉in obtained (b) from the incoherent χ -RME [Eq. (13)]. The deep blue background in (a) and (b) marks the no-cooling region with 〈Jc〉 < 0
(not shown). (c) Power difference 〈Jc〉in − 〈Jc〉FR in the cooling region. (e) Current fluctuations 〈〈J2

c 〉〉FR in the full χ -RME [Eq. (9)]. (f) Current
fluctuations 〈〈J2

c 〉〉in in the incoherent χ -RME [Eq. (13)]. (g) Difference in fluctuations between the incoherent and full-Redfield calculations.
(d) and (h) show the real (Re) and imaginary (Im) parts of the off-diagonal element of the reduced steady state density matrix, ρs,23, obtained
from the full Redfield master equation. Parameters are αw,h,c = 0.002, ωc = 50, Tw = 0.2, Th = 0.15, Tc = 0.1, εe = 1.

transition is triggered by an individual heat bath. With this
prerequisite, Ref. [45] has shown that system coherences have
deleterious effects on the cooling power of Model I [Fig. 5(a)].
On the contrary, Ref. [77] found that system coherences can
boost the cooling power of QARs in Model II [Fig. 5(b)] with
μ = 0. Nevertheless, both studies (cf. Refs. [45,77]) were fo-
cused on the cooling power without examining its fluctuation
behaviors. A recent study [79] had addressed the fluctuation
behavior of Model II with μ = 0, that is, with an eigenenergy
degeneracy. Close to maximum cooling current, this model
displays a special behavior, with a nonunique steady state.
Here, we consider the nondegenerate scenario with μ 
= 0,
which is very different, always resulting in a unique steady
state solution.

Below, we perform a thorough investigation of Models I
and II with a focus on the interplay of system coherences and
power fluctuations. In what follows, we use the subscript “FR”
to denote results from the full χ -RME Eq. (9) and “in” for
results from the incoherent χ -RME Eq. (13).

A. Model I

In the local site basis, the working medium of Model I [see
Fig. 5(a)] is described by a Hamiltonian

Ĥ I
s = εg|g〉〈g| + εe|e〉〈e|

+ εI (|I1〉〈I1| + |I2〉〈I2|) + μ(|I1〉〈I2| + |I2〉〈I1|). (22)

The system includes a ground (g) state |g〉, an excited (e)
state |e〉, and two degenerate intermediate (I) levels (|I1〉, |I2〉)
connected by a coherent hoping rate μ. Note that the levels are

degenerate in the local basis, and nondegenerate in the global
basis. We set the reference energy at εg = 0. The system’s
operators involved in the system-bath interaction Ĥsb have the
forms

Ŝc = |g〉〈I2| + |I2〉〈g|,
Ŝh = |g〉〈e| + |e〉〈g|,
Ŝw = |I1〉〈e| + |e〉〈I1|. (23)

After ordering the labels of eigenstates of Ĥs such that Ĥs =∑4
i=1 Ei|i〉〈i| with Ei < Ei+1, we rewrite the above system

operators in the energy basis

Ŝc = 1√
2

(|1〉〈3| − |1〉〈2| + H.c.),

Ŝh = |1〉〈4| + |4〉〈1|,
Ŝw = 1√

2
(|2〉〈4| + |3〉〈4| + H.c.). (24)

In Fig. 6 we display simulation results for the current
〈Jc〉 (when referring to as cooling power we implicitly imply
〈Jc〉 > 0) and its noise 〈〈J2

c 〉〉. From Figs. 6(c) and 6(d) or 6(h)
it is evident that finite system coherences, as quantified by
the real or imaginary part of the steady state density matrix
element ρs,23 is responsible for the suppression of the cooling
power in the weak μ regime relative to the incoherent case
[45]. Note that the deep blue background in Figs. 6(a) and 6(b)
marks the no-cooling region, with 〈Jc〉 < 0. In other words,
for presentation purposes we present the no-cooling region
as zero cooling currents. The cooling region is marked in
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FIG. 7. Relative noise and the TUR in Model I. (a) Relative noise 〈〈J2
c 〉〉/〈Jc〉2 for different log μ using the full χ -RME [Eq. (9)]. The

incoherent behavior [Eq. (13)] does not depend on μ. (b) Corresponding TUR ratio 〈〈J2
c 〉〉〈σ 〉/(〈Jc〉2). The TUR bound (at two) is highlighted

by a horizontal black dotted line. The shaded region marks the cooling region. Other parameters are the same as described in the caption of
Fig. 6.

Fig. 7, where it appears when εI � 0.332. Note that for the
incoherent case, results in all figures here and below were
independent of μ for the small μ considered log μ < −2.

In Figs. 6(e) and 6(f), we further show the current fluc-
tuations. We find from Figs. 6(e) and 6(f) that fluctuations
become pronounced in the noncooling region. Interestingly,
the system coherence suppresses the current fluctuation but in
the noncooling region, as can be seen from the comparison
between Figs. 6(e) and 6(f). Noting that the signs of system
coherence in the cooling and noncooling regions are opposite
[see Figs. 6(d) and 6(h)], it is then clear that in Model I
negative coherence in the cooling region induces power sup-
pression, while positive coherence in the noncooling region is
responsible for the suppression of current fluctuations. Nev-
ertheless, as we are interested in the cooling region, such a
fluctuation suppression is of no practical use. Intriguingly, the
marginal regions between finite coherences in Figs. 6(d) and
6(h) marks the boundary of cooling and noncooling regions,
namely, the transition from cooling to noncooling regions is
associated with a sign change of system coherence.

We now look at the relative noise, 〈〈J2
c 〉〉/〈Jc〉2 and the

TUR ratio 〈〈J2
c 〉〉〈σ 〉/〈Jc〉2; see Fig. 7. In Fig. 7(a) we observe

that the relative noise obtained from the full χ -QME is greatly
enhanced due to the presence of coherences in both the cool-
ing and noncooling regions, compared to the incoherent case.
Ideally, the relative noise tends to infinity at the exact bound-
ary of cooling and noncooling regions as 〈Jc〉 = 0, however,
we can only see finite peak structures centered around the
boundary from Fig. 7(a) since we utilize discretized values
for εI in simulations and may not be able to reach the exact
boundary.

The TUR ratio is plotted in Fig. 7(b). We observe that: (i)
The TUR ratio is always above the classical bound set by the
TUR Eq. (17). (ii) The TUR ratio saturates to the bound at the
point when the entropy production is exactly zero and the re-
frigerator crosses into the no-cooling region. (iii) Coherences
slightly reduce the TUR ratio, relative to the incoherent case,
yet the behavior is nonmonotonic. Nevertheless, coherences
only mildly reduce the TUR ratio from the incoherent behav-
ior. The calculation of the TUR ratio at the cooling-no-cooling
boundary region is nontrivial numerically. This is due to the

nontrivial cancellation between entropy production and the
relative noise taking place when approaching the boundary.
As such, very close to the boundary region the TUR ratio was
not evaluated.

Back to the fundamental question as to whether the full
Redfield equation is suitable (thermodynamically consistent)
for studying current noise. In Fig. 8 we verify that the entropy
production rate is always positive with our parameters. In fact,
we have not observed negative entropy production rates in any
of our simulations. As such, we hypothesize that the Redfield
equation is thermodynamically consistent in the steady state
limit with 〈σ 〉 > 0, beyond our case study. This result does not
exclude the possibility of observing fundamental deficiencies
with the Redfield equation in the transient regime.

Concluding this Section: The TUR, Eq. (17), is satisfied
by Model I in the presence of system coherences. Notably,
the TUR ratio of Model I is almost independent of the inter-
site coupling strength μ, and it almost coincides with that
of the incoherent case, thereby implying that the coherence-
induced enhancement of the relative noise is compensated by
the coherence-induced reduction of entropy production rate,
which is proportional to the heat currents.

FIG. 8. Verification of the positivity of the entropy production
rate for Model I for the (a) full Redfield case, (b) incoherent case.
Parameters are the same as described in the caption of Fig. 6.
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FIG. 9. Current, fluctuations and coherence in Model II. (a) Cooling power 〈Jc〉FR obtained from the full χ -RME [Eq. (9)]. (b) Cooling
power 〈Jc〉in from the incoherent χ -RME [Eq. (13)]. The deep blue backgrounds in panels (a) and (b) mark the no-cooling region with 〈Jc〉 < 0
(not shown). (c) The difference in the cooling current, 〈Jc〉FR − 〈Jc〉in in the whole region. (e) Current fluctuations 〈〈J2

c 〉〉FR from the full χ -RME
[Eq. (9)]. (f) Current fluctuations 〈〈J2

c 〉〉in in the incoherent χ -RME [Eq. (13)]. (g) The difference 〈〈J2
c 〉〉FR − 〈〈J2

c 〉〉in in the whole region. Panels
(d) and (h) show the real (Re) and imaginary (Im) parts of the off-diagonal element of the reduced steady state density matrix, ρs,34, obtained
from the full Redfield master equation. Parameters are αc = 0.002, αh1 = 0.8αc, αh2 = αc, αw1 = αc, αw2 = αc, ωc = 50, Tw = 2, Th = 0.6,
Tc = 0.25, εe = 1.

B. Model II

We turn to Model II for a QAR, as illustrated in Fig. 5(b).
Previously, Refs. [77,79] demonstrated that this model can
have a coherence-induced enhancement of the cooling power;
below we confirm this scenario and further show in the Ap-
pendix that this model also permits an adverse effect of system
coherence on the cooling power, when varying the system-
bath coupling strengths.

The working medium of Model II is described by a four
level Hamiltonian in the local basis

Ĥ II
s = εe(|e1〉〈e1| + |e2〉〈e2|) + μ(|e1〉〈e2| + |e2〉〈e1|)

+ εg|g〉〈g| + εI |I〉〈I|. (25)

The system involves a ground (g) state |g〉, an intermediate (I)
state |I〉, and two degenerate excited (e) states (|e1〉, |e2〉) that
are connected by a coherent hoping rate, μ. We set the refer-
ence energy at εg = 0. After ordering the labels of eigenstates
of Ĥs such that Ĥs = ∑4

i=1 Ei|i〉〈i| with Ei < Ei+1, we get
the following system operators, involved in the system-bath
interaction Ĥsb, in the energy basis [77]

Ŝc = |1〉〈2| + |2〉〈1|,
Ŝh = √

αh2|1〉〈4| + √
αh1|1〉〈3| + H.c.,

Ŝw = √
αw2|2〉〈4| + √

αw1|2〉〈3| + H.c. (26)

The real-valued parameters αvk are dimensionless; they are
taken from the spectral density function γv (ω) in Eq. (12);
recall that we model the spectral density function as γv =

αvωe−ω/ωc . Here for convenience we absorbed αvk into the
definitions of Ŝh,w to allow scenarios where different tran-
sitions induced by the same bath are enhanced by different
coupling strengths.

Figure 9 depicts an example where system coherences
boost the cooling power, as predicted in Refs. [77,79]. This is
highlighted in Fig. 9(c), where we show the current difference
〈Jc〉FR − 〈Jc〉in in both the cooling and no-cooling regions. As
can be seen, the cooling power 〈Jc〉FR in the cooling region is
slightly enhanced compared with 〈Jc〉in when μ is relatively
small. We attribute this cooling power enhancement to the
finite positive system coherence in that region as indicated in
Figs. 9(d) and 9(h). However, Fig. 9(g) shows that this cooling
power enhancement comes at the price of an enhanced power
fluctuation.

Similar to Model I, here we also find that the marginal re-
gion between nonzero coherences [Figs. 9(d) and 9(h)] marks
the boundary between the cooling and the no-cooling regions.

While in Fig. 9 system coherences enhance the cool-
ing current, in the Appendix we show the opposite effect
within the same model, but using a different value for αh1.
This coherence-induced suppression of the cooling power
(similarly to Model I) becomes evident by combining the
information of Figs. 11(c) and 11(d) or 11(h).

Even though system coherences can either suppress or
enhance the cooling power in Model II (depending on the
system-bath coupling strengths), in Fig. 10(a) we again ob-
serve that the relative noise obtained from the full χ -RME
is larger than that obtained from the incoherent χ -RME.
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FIG. 10. Relative noise and the TUR in Model II. (a) Relative noise 〈〈J2
c 〉〉/〈Jc〉2 for different log μ. using the full χ -RME [Eq. (9)]. The

incoherent behavior [Eq. (13)] does not depend on μ. (b) Corresponding TUR ratio 〈〈J2
c 〉〉〈σ 〉/(〈Jc〉2). The TUR bound (at two) is highlighted

by a horizontal black dotted line. The shaded region marks the cooling region. Other parameters are the same as described in the caption of
Fig. 9.

Furthermore, the relative noise approaches the incoherent
limit near the boundary between the cooling and no-
cooling regions. Nevertheless, from Fig. 10(b) (together with
Fig. 12(b) in the Appendix) we find that the TUR holds as
well in Model II. Interestingly, the TUR ratio is enhanced by
coherences relative to the incoherent case: In Fig. 10(b), we
see that the TUR ratio in the incoherent case is very close to
the bound within the whole range of εI , while it is factor of 3
greater in the coherent case.

Overall, we found that in model II the effect of coherences
on the cooling current was very mild; we did not perform
detailed simulations to identify region of more substantial
cooling effect as this was not the objective of this work. Our
main conclusion, which holds for all cases examined here
is that while coherences may boost or suppress the cooling
current, their effect on relative fluctuations is adverse, thus
validating the standard TUR.

IV. SUMMARY

In summary, we addressed the interplay of system co-
herences and fluctuations of the cooling current in the
performance of steady-state QARs. Using a Redfield mas-
ter equation with a full counting statistics information, we
obtained the behaviors of the cooling power and its fluctua-
tions for steady-state QAR models with (or without) system
coherences. Remarkably, we found in our models that the
relative noise of the cooling power was always enhanced in
the presence of system coherence, even though the cooling
power itself was either suppressed or enhanced, depending on
the model and its parameters. As a result, we confirmed that
the TUR derived for classical Markov-jump processes holds
in our steady-state QARs in the presence of system coherence;
the performance of the steady-state QARs is still constrained
by the classical tradeoff relation.

Our results apply to scenarios where the Redfield master
equation can be justified. Although a general proof within the
framework of the Redfield master equation is still missing,
we expect that our results are general: System’s coherences
corroborates the classical TUR. After all, system coherences
correspond to additional quantum fluctuations, on top of ther-
mal ones to the QTMs. In fact, a recent study on steady-state

quantum heat engines [105] reached a similar conclusion on
the role of system coherences in validating the TUR. However,
if cyclic instead of steady-state QTMs are concerned, our con-
clusions need to be revisited as a recent study [106] suggested
that system coherences can help to violate a TUR specific for
periodic-driven systems.

Our observations were based on numerical simulations
since we cannot obtain analytically the eigenvalues of the
counting-field dependent RME in few-level models with co-
herences. To complement our study, it might be useful to
analyze the corresponding local Lindblad equation under the
assumption of small intersite couplings, and investigate, e.g.,
the relationship between coherences and the cooling power as
observed in Figs. 6 and 9, panels (d) and (h). However, local
Lindblad equation has been shown to violate the second law
of thermodynamics [120]. Therefore, one should refrain from
using it to study full-counting statistics and specifically the
behavior of the current noise, which was our focus here.

Is there a “quantum” advantage for thermal machines,
compared to their classical counterparts? While the power
output may be enhanced due to coherences—depending on the
model employed, here we point out to what seems to be a more
general adverse effect of quantum coherences: According to
our examples, QTMs suffer more pronounced thermodynamic
fluctuations arising due to finite system coherence, compared
to the incoherent analog. Our findings further imply that fluc-
tuations should be considered when assessing whether the
system coherence is a useful resource to the operation of
QTMs.

Altogether, our contributions are: (i) We verified with
simulations that the counting-field dressed Redfield mas-
ter equation satisfies the SSFS for heat transfer. (ii) We
demonstrated that system coherences intensify relative current
fluctuations, irrespective of the impact on the cooling power.
(iii) We showed that the classical TUR holds in the presence
of system coherences.

As a final remark, our study indicates that the standard
(classical) TUR for steady state transport is valid in the weak
system-bath coupling regime (see also Ref. [139]). To observe
violations—thus circumvent the classical tradeoff relation
for thermal machines—one should turn to the nonperturba-
tive system-bath coupling regime [140], where system-bath
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FIG. 11. Current, fluctuations and coherence in Model II with αh1 = 0.1αc; other parameters are the same as in Fig. 9. (a) Cooling power
〈Jc〉FR obtained from the full χ -RME [Eq. (9)]. (b) Cooling power 〈Jc〉in from the incoherent χ -RME [Eq. (13)]. The deep blue backgrounds
in (a) and (b) mark the no-cooling region with 〈Jc〉 < 0 (not shown). (c) Difference in cooling current 〈Jc〉in − 〈Jc〉FR in the whole region. (e)
Current fluctuations 〈〈J2

c 〉〉FR from the full χ -RME [Eq. (9)]. (f) Current fluctuations 〈〈J2
c 〉〉in in the incoherent χ -RME [Eq. (13)]. (g) The

difference 〈〈J2
c 〉〉in − 〈〈J2

c 〉〉FR in the whole region. (d) and (h) show the real (Re) and imaginary (Im) parts of the off-diagonal element of the
reduced steady state density matrix, ρs,34, obtained from the full Redfield master equation.

entanglement and nonmarkovianity play a decisive role in
breaking the TUR [139].
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APPENDIX: ADDITIONAL SIMULATIONS FOR MODEL II

In this Appendix, we show that Model II can also allow
for a coherence-induced suppression of the cooling power
when varying the system-bath coupling strength, say, αh1. A
representative set of results with αh1 = 0.1αc is depicted in
Figs. 11 and 12. The cooling power suppression becomes
evident by inspecting Fig. 11(c) and 11(d) or 11(h).

FIG. 12. Relative noise and the TUR in Model II with αh1 = 0.1αc; other parameters are the same with Fig. 9. (a) Relative noise 〈〈J2
c 〉〉/〈Jc〉2

for different log μ. using the full χ -RME [Eq. (9)]. The incoherent limit [Eq. (13)] does not depend on μ. (b) Corresponding TUR ratio
〈〈J2

c 〉〉〈σ 〉/〈Jc〉2. The TUR bound (at two) is highlighted by a horizontal black dotted line. The shaded region marks the cooling region.
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