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Derivative expansion for computing critical exponents of O(N) symmetric models at
next-to-next-to-leading order
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We apply the derivative expansion of the effective action in the exact renormalization group equation up to
fourth order to the Z2 and O(N ) symmetric scalar models in d = 3 Euclidean dimensions. We compute the critical
exponents ν, η, and ω using polynomial expansion in the field. We obtain our predictions for the exponents
employing two regulators widely used in exact renormalization group computations. We apply Wynn’s epsilon
algorithm to improve the predictions for the critical exponents, extrapolating beyond the next-to-next-to-leading
order prediction of the derivative expansion.
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I. INTRODUCTION

In this work we compute the critical exponents ν, η, and
ω for the Z2 and O(N ) symmetric scalar models in d = 3 Eu-
clidean dimensions. We use the exact renormalization group
(ERG) equation for effective average action [1]. The ERG is
a highly versatile method for tackling problems in statistical
physics and quantum field theory. Its modern formulation has
sprouted from Wilson’s approach to renormalization [2].

There are a number of other ways in modern physics to
obtain critical exponents. Perhaps the first one to come to
mind is lattice simulation. The Monte Carlo (MC) simula-
tions provide one of the most precise determinations of the
exponents for the Ising [3] and XY [4] universality classes.
Generally, a larger lattice yields more precise predictions, but
also increases the computational effort. The most commonly
applied method in quantum field theory is the loop expansion,
which requires a smallness of the couplings in the Lagrangian.
In fixed d = 3 dimensions, the Ising exponents have been
computed up to six-loop order [5] and the β functions are
determined at seven loops [6]. Wilson’s d = 4 − ε expan-
sion has also been applied up to ε6 [7]. Presently, the most
precise computation for the Ising exponents comes from the
conformal bootstrap method (CB) [8] using conformal field
theory. This method also has a high computational cost (see
Table II. of [9], for instance). The last highlight on this list
is the large-N expansion. It is applicable on theories, where
the symmetry group corresponding to the symmetry of the
Lagrangian is O(N ), SO(N ), SU(N ), and so on.

The ERG is formulated in terms of functional equations,
which are in general very hard to solve. In order to tackle
this difficulty, a precise approximation scheme has to be ap-
plied, which is most often the so-called derivative expansion
(DE). The DE consists of expanding the action in terms of
the gradient of the field. This approximation scheme contains
no explicit small parameter, thus its convergence has been
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questioned. Recently, however, arguments have been put for-
ward that the DE is indeed convergent [10] at least for the
Z2 and O(N ) symmetric models. The corrections were shown
to be dampened by a factor of 1/4 – 1/9, depending on the
regulator function. The physical predictions depend on the
regulator function at fixed order in the DE. This is similar to
the renormalization scale dependence in perturbative quantum
field theory.

Here we compute the critical exponents at the next-to-
next-to-leading order (NNLO) of the DE on the Z2 symmetric
scalar model as a benchmark and then generalize the computa-
tions to the O(N ) symmetric models. Our results complement
those of Ref. [11], where the authors employ the DE at NNLO
as well, but there are key differences: (i) we do not use trun-
cation of momenta in the derivation of our β functions and
(ii) we employ Taylor expansion of the β functions in the
field. These β functions describe the scale dependence of dif-
ferent functions depending on the field. The Taylor expansion
reduces these to the β functions for coupling strengths cor-
responding to different vertices of the field. We compute the
exponents with the exponential regulator, which is applicable
at any order of the derivative expansion and (iii) also with a
�-type regulator [12], which is the simplest applicable reg-
ulator at NNLO. The critical exponents of the Z2 symmetric
model have already been computed in Ref. [13] using Taylor
expansion in the field, although with a more severe truncation
of the Taylor series.

By increasing the number of terms in the Taylor expansion
of the scale-dependent functions, the values of the critical ex-
ponents fluctuate and eventually stabilize around their limiting
values. Reassuringly, similar behavior has been observed in
Ref. [13]. Interestingly, we find that the exponents ν, η, and
ω of the O(N ) symmetric model are estimated remarkably
well even at the zeroth order of the Taylor expansion in the
field variable of the scale-dependent functions correspond-
ing to the NNLO of the DE. Furthermore, this fluctuation
of the exponents at the NNLO is much less pronounced
in the O(N ) symmetric case than in the the Z2 symmetric
one. This dampening of the fluctuation is likely the result of
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having more scale-dependent functions for the O(N ) sym-
metric models than for the Z2 symmetric one. These
scale-dependent functions have to interplay in such a way
that the predictions for the exponents are in good agreement
with other method’s predictions. This is true for at least large
values of N , where the higher order contributions from the DE
are expected to be very small as the leading order of the DE
becomes exact in the limit N → ∞ [14].

We introduce the ERG briefly in Sec. II. The procedure we
use to acquire the results is outlined in Sec. III. Our findings
for the Z2 symmetric model are detailed in Sec. V, while those
of the O(N ) symmetric one can be found in Sec. VI.

II. EXACT RENORMALIZATION GROUP

The ERG uses functional integrodifferential equations to
describe the dependence of a theory on the variation of the
characteristic energy scale. These equations can be used to
describe nonperturbative phenomena. A widely used form of
the ERG is the Wetterich equation [1], which describes the
scale dependence of the effective average action:

�̇k = 1
2 STr

[
Ṙk

(
�

(2)
k + Rk

)−1]
, (1)

where the dot is an abbreviation for the operation k∂k . The
functional �k is the Legendre transform of the generating
functional of the connected Green’s functions plus a scale-
dependent mass term, called the regulator function Rk , and
�

(2)
k is the inverse propagator containing the physical mass.

All the different formulations of the ERG equations require
some sort of regularization. The regulator vanishes in the
low-energy limit of the theory. The supertrace contracts all
momenta and group indices, therefore this equation can be
viewed as a one-loop expression with an operator insertion
(Ṙk) and no external legs. The functional �k possesses the
linear symmetries of the original Lagrangian if the regulator
also does. In order to solve Eq. (1), one has to make an ansatz
for �k comprised of a finite number of functions, consistent
with the symmetries of the original theory, and specify the
regulator function.

A widely used approach in terms of the ansatz is the deriva-
tive expansion. In this method, the leading order (or local
potential approximation, LPA) only has a scale-dependent
potential and a canonical kinetic term. An important feature
of the exact renormalization group is that even the irrele-
vant couplings acquire nontrivial scale dependence during
the renormalization group (RG) flow. This observation leads
one to believe that the LPA prediction can be improved by
including couplings, corresponding to scale-dependent func-
tions, which multiply all operators but the unit operator.
Consequently, the next-to-leading order (NLO) introduces
scale-dependent functions multiplying every independent op-
erator with two derivatives. Similarly, at the NNLO operators
with four derivatives appear. This expansion makes the func-
tional space of �k less and less truncated order by order
and at the same time increases the number of terms in the
truncated ansatz. One expects that including higher orders in
the derivative expansion improves the quality of the phys-
ical predictions. In fact, the convergence of this method
has been demonstrated in Ref. [10] up to N3LO for the Z2

universality class.

The dependence on the regulator is expected to vanish in
the low-energy limit, k → 0. As we study the critical theory,
which is scale independent, we expect our physical predic-
tions to be independent of the specific form of the regulator
Rk . This is strictly true only if we do not truncate the func-
tional space. The dependence of the physical predictions and
the magnitude of this spurious dependence on the regulator is
somewhat similar to the renormalization scale dependence in
the perturbative quantum field theory.

III. DERIVING THE β FUNCTIONS

The system is critical in the Wilson-Fisher fixed point,
which is the nontrivial solution of the fixed-point equation
of the β functions. We need to obtain the β functions and
the Wilson-Fisher fixed point to compute the critical expo-
nents. The derivation of these β functions is comprised of
four steps for a given ansatz: (i) splitting the field to homoge-
neous and fluctuating pieces, (ii) functional Taylor expansion
of Eq. (1) in powers of the fluctuating field, (iii) expansion
in the momenta corresponding to the fluctuating field, and
finally (iv) classification and sorting of the different types of
loop integrals, called threshold integrals. We automated these
steps in a Mathematica code attached in the Supplemental
Material [15].

A. Functional and momentum expansions

As an example, let us consider the ansatz for the Z2 sym-
metric scalar model at the NLO of the DE:

�k[φ] = 1

2

∫
x

Zk (ρx )(∂φx )2 +
∫

x
Uk (ρx ), (2)

where ρx = φ2
x /2 ≡ φ(x)2/2,

∫
x ≡ ∫

dd x (and similarly
∫

p =
(2π )−d

∫
dd p, to be used later), and (∂ f )2 ≡ (∂μ f )(∂μ f ) for

any f . The flow for Uk is obtained by setting the field φ to be
homogeneous φx =  (meaning ∂ = 0) and solving Eq (1).
In order to find Żk (ρ ≡ 2/2) however, we expand Eq. (1)
in terms a fluctuating field ηx around a constant background
φx =  + ηx and collect the terms proportional to O(η2). In
momentum space, this is given by∫

Q
(Żk (ρ)Q2 + U̇ ′

k (ρ) + 2ρU̇ ′′
k (ρ))ηQη−Q

=
∫

p,r
Ṙk (p2)G(p2)

(
η�(3)

)
p,−rG(r2)

(
η�(3)

)
r,−pG(p2)

− 1

2

∫
p

Ṙk (p2)G(p2)
(
η�(4)η

)
p,−pG(p2), (3)

with G(p2) being the regularized propagator [(�(2)
k + Rk )−1],

r = p ± Q, and

(
η�(3))

p,q = η−p−q
δ(3)�

δφpδφqδφ−p−q

∣∣∣∣
φx=

,

(
η�(4)η

)
p,q =

∫
Q

ηQ
δ(4)�

δφpδφqδφQδφ−Q

∣∣∣∣
φx=

η−Q. (4)

Generally, in order to find Ḟ , where F multiplies an operator
with n derivatives one has to collect terms proportional to
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O(ηn). We denote the momentum of the fluctuating field η

with Q for transparency. In case there are multiple η fields in
the same expression, their momenta are denoted with Q1, Q2,
and so on.

The left-hand side of Eq. (3) shows, that in order to obtain
Żk (ρ), we have to expand the right-hand side in Qμ up to
Q2 and finally, identify the terms proportional to Q2 as the β

function of Zk (ρ). The computations become naturally more
complicated at NNLO, since then there are multiple momenta
Qi. For the sake of concreteness, the complete ansatz for the
Z2 symmetric scalar model at the fourth order of the derivative
expansion reads as

�k[φ] = 1

2

∫
x

Zk (ρx )(∂φx )2 +
∫

x
Uk (ρ)

+ 1

2

∫
x

Wk (ρx )(∂μ∂νφx )2

+ 1

2

∫
x

Hk (ρx )φx(∂φx )2(∂2φx ) + 1

2

∫
x

Jk (ρx )(∂φx )4.

(5)

This form has been studied in great detail without and also
with expansion in the fields [10,13]. The scale-dependent
functions Wk , Hk , and Jk are obtained from �k via

Wk (ρ) = lim
Q1→0

(
∂

∂Q2
1

)2

�
(2)
Q1,Q2

, (6)

Hk (ρ) = − 1

2
lim

Q1,Q2→0

∂

∂Q2
1

∂

∂Q2
2

�
(3)
Q1,Q2,Q3

, (7)

Jk (ρ) = −1

4
lim

Q1,Q2,Q3→0

∂

∂Q2
1

∂

∂ (Q2Q3)
�

(4)
Q1,Q2,Q3,Q4

, (8)

as the coefficients of the integrands in the integrals∫
Q1,...,Qn

∏n
i=1 ηQiδ(

∑n
i=1 Qi ) for n = 2, 3, and 4. Note, that the

scale-dependent functions can be acquired by any permutation
of the momentum indices Qi in the differentiation.

The O(N ) symmetric models introduce an additional index
on the field corresponding to the symmetry group and can be
generalized from the Z2 symmetric models in a straightfor-
ward way. The complete ansatz used in this work is given in
Eq. (23). A slightly different, but equivalent ansatz is used in
Ref. [11].

B. Threshold integrals

After sorting the different types of
∫

p integrals that appear

in the formula of a general Ḟk in the Z2 symmetric model at
NNLO, one finds three such types:

Ld+a
m =

∫
p

pa Ṙk (p2)

G(p2)m
, (9)

Md+a,β

m,b =
∫

p
pa

[
∂

β

p2 G(p2)
]b Ṙk (p2)

G(p2)m
, (10)

Nd+a,β,γ

m,b,c =
∫

p
pa

[
∂

β

p2 G(p2)
]b[

∂
γ

p2 G(p2)
]c Ṙk (p2)

G(p2)m
, (11)

where m, b, c, β, and γ are positive integers and a is a
non-negative one. We have also introduced G(p2) as the
regularized inverse propagator [(�(2)

k + Rk )]. As we consider

the NNLO of the DE, derivatives of the inverse propagator
appear up to the fourth derivative. This yields the constraint
bβ + cγ � 4 for the threshold integral parameters.

In the O(N ) symmetric models two types of propagators
appear: one massive and one corresponding to the N − 1
Goldstone modes. This proliferates the types of threshold
integrals.

C. Regulator functions

The regulator itself is a function of the loop momentum
squared p2 and the running scale k. It is usually expressed as
the function of the dimensionless ratio y = p2/k2:

Rk (p2) = Zkk2y r(y), (12)

where the explicit form of the regulator is defined by the
function r(y), Zk = 1 at LPA and Zk ≡ Zk (ρ = ρ∗) at higher
orders of the DE with ρ∗ being a reference value, detailed in
Sec. III D. In general, the form of the regulator is very flexible,
yet it has to obey some requirements [1].

In order to obtain numerical results, one has to specify the
regulator function. In this work we use two different types.
The �2 regulator introduced in Ref. [12] reads as

r�(y) = α
(1 − y)2

y
�(1 − y), (13)

where �(x) is the Heaviside step function. The regulator
(13) is the simplest possible regulator which can be used in
∂4-order calculations. The caveat is that it is not applicable
beyond ∂4 order due to the appearance of undefined Dirac-
delta functionals [δ(0)] in the final equations. Generally, at ∂n

order the integral containing the highest G derivative is

Md,n
m,1 = �d

(2π )d
kd

∫
dy y−1+d/2

[
∂n

y G(y)
] Ṙk (y)

G(y)m
, (14)

where we have changed to the variable y = p2/k2. For the
regulator (13) and n = 4 this integral takes the form

Md,4
m,1 = −4α2 �d

(2π )d

(
Z2

k kd+2
)

×
∫

dy
y−1+d/2(y2 − 1)�(1 − y)

G(y)m
δ′(1 − y)

≡ 4α2
(
Z2

k kd+2
) �d

(2π )d

1

G(1)m
. (15)

This integral is ambiguous in the sense that the result is ob-
tained by integration by parts and then defining �(0) to be
1/2. This ambiguity is lifted when one considers (13) as the
limit of a C∞-type regulator function, such as (A1). The pro-
cess to do so is detailed in Appendix A. The integrals, which
contain ∂3

y Gk (y) = −2α(Zkk2)δ(1 − y) vanish, because the
distributional product xδ(x) is zero and every integral contains
(1 − y) through Ṙk (y).

The second regulator we use here is called the exponential
regulator

rexp(y) = α
e−y

y
, (16)

which is a C∞ function and has the advantage over the reg-
ulator containing the � function that it can be used at any
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orders of the derivative expansion. Both r� and rexp remain
unchanged in the Z2 and O(N ) symmetric scalar models.

We vary the value of α and compute its effect on the critical
exponents. We consider the extrema of these functions as the
optimal values in our final predictions. This is the implemen-
tation of the principle of minimal sensitivity (PMS) [16,17].
In practice, we locate the Wilson-Fisher fixed point for a fixed
regulator for several values of α, which simultaneously yields
η(α) as the anomalous dimension is just a function of the
couplings in the model. In each case we applied the PMS, η(α)
is either an upside or downside facing paraboloid. The optimal
value of ηopt is the minimum or maximum of this paraboloid at
αopt and we accept ν(αopt) and ω(αopt) as νopt and ωopt. In this
sense, we only apply the PMS on the anomalous dimension.

D. Polynomial expansion and exponents

In order to compute the critical exponents one has to use
dimensionless quantities. The mass dimension of some are
given as

[φ] = (d − 2 + ηk )/2, [U ] = d, (17)

where ηk is the running anomalous dimension, which is de-
fined by

ηk = −k ∂k ln Zk (ρ∗). (18)

The running anomalous dimension becomes the critical ex-
ponent η in the fixed point. The Euclidean dimension d is a
continuous parameter in the β functions of the dimensionless
couplings. We set its value to d = 3 throughout this work. The
β functions for the dimensionless scale-dependent functions
are partial differential equations with the scale k and the
dimensionless field ρ̃ (we denote the dimensionless quanti-
ties with a tilde) as independent variables. One strategy to
solve these equations is to Taylor expand the dimensionless
scale-dependent functions in power of the dimensionless field
around a reference point ρ∗

F̃k (ρ̃) =
MF∑
n=0

f̃n(k)

n!
(ρ̃ − ρ∗)n. (19)

This reduces the coupled set of partial differential equations
to a coupled set of ordinary differential equations. This course
of action has been taken, for example, in Refs. [13,17]. There
are two well-known choices for ρ∗. It can either be zero
(ρ∗ = 0) or the running minimum ρ∗ = κk of the most basic
scale-dependent function, the local potential Uk . Through-
out this work we use ρ∗ = κk , because it provides a faster
convergence of the physical results with increasing MF than
expanding around the vanishing field [18,19]. We denote the
highest power in the Taylor series of a general scale-dependent
function Fk with MF ; if the subscript contains multiple capital
Latin letters such as MW HJ , it means that the scale-dependent
functions Wk , Hk , and Jk are truncated at identical powers
MW = MH = MJ ≡ MW HJ .

The Wilson-Fisher fixed point is the nontrivial fixed-point
solution of the β functions. Once it is located, the critical
value of the anomalous dimension η is determined. The crit-
ical exponent of the correlation length ν and its subleading
scaling corrections ω,ωi are obtained by linearizing the RG

flow in the vicinity of the fixed point. The eigenvalues of
the Jacobian matrix Ji j = ∂βg̃i/∂ g̃ j , with g̃i being a general
dimensionless coupling from the model, at the fixed point are
−ν−1 < ω < ω1 < . . . in increasing order.

The polynomial expansion gives very good predictions at
d = 3 as demonstrated in Ref. [13]. However, this might not
be the case for d < 3. As d is lowered, new couplings gn

corresponding to the vertex φ2n become marginal ([gn] = 0)
at n = d/(d − 2). If gn+1 is marginal, then gn is relevant. At
d = 4 only the mass squared is a relevant coupling ([g1] > 0)
and the quartic interaction is marginal ([g2] = 0). At d = 3
there are two relevant couplings ([g1] > 0 and [g2] > 0) and
thus a nontrivial fixed point, the Wilson-Fisher fixed point, ap-
pears. At d = 8/3 the coupling g3 also becomes relevant and
introduces a new nontrivial fixed point besides the Wilson-
Fisher one. This makes finding the Wilson-Fisher fixed point
much more difficult. In particular, in Ref. [20] it has been
found that the Euclidean action is not bounded from below
in the fixed point, which sets a bound on the applicability of
the polynomial expansion.

IV. WYNN’S EPSILON ALGORITHM

In many instances, the prediction of an exponent X at
successive orders of the DE, XLPA, XNLO, XNNLO, and so on,
form a convergent series alternating around the exact value
X . This has been discussed in great detail in Ref. [10]. In
Ref. [11] the authors use the small parameter 1/4 – 1/9 of the
DE to improve their predictions on the critical exponents of
the O(N ) symmetric scalar models at NNLO of the DE.

One may also turn to a similar, yet different approach
to improve exponent predictions in the derivative expan-
sion. Several series acceleration methods exist and are used
successfully to accurately compute the limit of a slowly con-
verging sequence. One of the most robust of these algorithms
is Wynn’s epsilon algorithm [21,22]. It is already applicable if
one only has the first three elements a1, a2, a3 of a sequence
(an). In that case, the third element is improved as

ã3 = a2 + 1

− 1
−a1+a2

+ 1
−a2+a3

= −a2
2 + a1a3

a1 − 2a2 + a3
. (20)

Given the critical exponent X , this means, that the improved
prediction of the DE is

X̃ = −X 2
NLO + XLPAXNNLO

XLPA − 2XNLO + XNNLO
. (21)

The formula is even simpler for the anomalous dimension as
the LPA prediction for it is zero. We employ Wynn’s algorithm
when it works the best, i.e., with alternating sequences. The
ERG predictions for the O(N ) critical exponents at different
orders of the DE show that while the predictions for ν and η do
show an alternating behavior, this is not always the case for ω.
Among the exponents we have computed this is the case for ω

corresponding to the O(2), O(3), and O(4) symmetric mod-
els. In those instances we did not apply Wynn’s ε algorithm,
and only cited our NNLO predictions as our final value for ω

for the O(2), O(3), and O(4) symmetric models.
We use this method to accurately extrapolate to higher

orders of the DE and thus obtain more precise predictions,

032135-4



DERIVATIVE EXPANSION FOR COMPUTING CRITICAL … PHYSICAL REVIEW E 103, 032135 (2021)

TABLE I. Our findings for the exponents of the Z2 symmetric
scalar model in d = 3 Euclidean dimensions (top four rows) for
different orders of the DE and the improved, final prediction. The
uncertainties are the sum of the uncertainties from the polynomial
expansion and the regulator dependence. We compared these to some
other methods: DE at NNLO (∂4) with field expansion [13], at N3LO
(∂6) without field expansion [11], MC [3], six-loop perturbation
theory at fixed d = 3 [5], d = 4 − ε expansion at ε6 [7], and the CB
method [8].

Method ν η ω

LPA 0.6504(7) 0 0.654(1)
NLO 0.629(5) 0.042(11) 0.84(4)
NNLO 0.6302(4) 0.0347(30) 0.820(10)
Improved 0.6301(4) 0.0358(30) 0.822(10)

∂4, field exp. 0.632 0.033
∂6, no field exp. 0.63012(16) 0.0362(12) 0.832(14)
MC 0.63002(10) 0.03627(10) 0.832(6)
Six-loop PT 0.6304(13) 0.0335(25) 0.799(11)
ε6, epsilon exp. 0.6292(5) 0.0362(6) 0.820(7)
CB 0.629971(4) 0.0362978(20) 0.82968(23)

since the functional space of �k is less truncated at higher
orders of the DE. Another systematic source of error is that of
the DE itself. If one insists on using Wynn’s epsilon algorithm,
then it is necessary to compute the N3LO prediction of the DE
in order to give a conservative estimate on this error. In order
to still give reliable predictions, we use the well-grounded
error estimate for the DE proposed in Ref. [11] detailed in
Appendix B.

V. PREDICTIONS FOR THE Z2 SYMMETRIC
SCALAR MODEL

We derived the β functions for the dimensionless scale-
dependent functions (Uk, Zk,Wk, Hk, Jk) in the ansatz (5)
using a Mathematica code. We verified the correctness of
U̇k and Żk (at ∂2 order) to be the same as in the literature
[17,23]. We expanded these functions in the powers of the
field yielding the β functions for the dimensionless couplings
f̃n(k) in Eq. (19). We have calculated the effect of increasing
MF on the exponents. We start with the LPA, where the only
scale-dependent function is Uk and locate the Wilson-Fisher
fixed point with truncation threshold MU = 4. In the next step,
we locate the fixed point for MU = 5 using the previous fixed-
point solution with ũ5 = 1 as initial value. After this, we move
on to MU = 6 using the previous fixed-point solution with
ũ6 = 1 as initial value. In this iterative manner, we find the
Wilson-Fisher fixed point for up to MU = 8. At the NLO, we
have an additional scale-dependent function Zk and nonzero
anomalous dimension. We start with locating the fixed point
at MU = 8 and MZ = 0, but including the effect of anomalous
dimension and simply use the LPA values for MU = 8 as
initial value. Next, we apply to MZ the iterative procedure
used to find the fixed point for MU = 8 at the LPA. We find
the Wilson-Fisher fixed point for up to MU = 8 and MZ = 8.
At NNLO, we have three scale-dependent functions Wk , Hk ,
and Jk . We start looking for the Wilson-Fisher fixed point
at MU = MZ = 8 with MW = MH = MJ = 0, and setting the

FIG. 1. The effect of the polynomial truncation in the Z2 sym-
metric scalar model at NLO (left) and NNLO (right) on the critical
exponents ν, η, and ω at MU = 8. The continuous line with disks
corresponds to the regulator r� with α = 1/2, the dashed line with
squares to the regulator rexp with α = 1. The CB values are shown
for reference with the dotted horizontal line.

initial values to be w̃0 = h̃0 = j̃0 = 1 for the new couplings.
Finally, we also apply here the previously described iterative
algorithm but we increase simultaneously MW , MH , and MJ

and denote this value with MW HJ . The upper limit where we
have located the Wilson-Fisher fixed point is MW HJ = 7.

We have computed the fixed points with the two regulators
discussed in Sec. III. Using (13) with α = 1/2 reduces the
integrals (9) to linear combinations of the 2F1 hypergeometric
function, which greatly increases the speed of computations
compared to (16) with any value of α.

The effect of the gradual inclusion of the new couplings
can be seen in the left column of Fig. 1, which agrees with
[13]. The most important conclusion is that while at ∂2 order
the contributions of the Taylor expansion in field variable
become small for MZ > 4, this threshold power value at ∂4

order is somewhat larger, MW HJ = 6. The magnitude of these
contributions start to decrease monotonically for MZ > 3 at
NLO and MW HJ > 4 at NNLO. Next, we apply the principle
of minimal sensitivity to MW HJ � 4, which corresponds to the
last four data points in each row of Fig. 1. We have found
that the optimal values αopt for the regulators (13) and (16)
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FIG. 2. A decaying function fit on the PMS optimized values
of the exponents of the Z2 symmetric scalar model at truncation
MW HJ = 4 and above. The disks correspond to the values obtained
with r�, and the squares to the values obtained with rexp. The dashed
horizontal line shows the CB values.

exhibit only small fluctuations around αopt = 0.35 and 0.8 for
MW HJ = 0, . . . , 7. The only instance for which we have not
found a PMS solution is for the truncation MW HJ = 0. The
explicit values for the optimal parameter value αopt corre-
sponding to MW HJ = 7 are found to be αopt = 0.30 for the
regulator (13) and αopt = 0.76 for (16). Once we acquire the
optimized results in this asymptotic regime, where each suc-
cessive contribution from the Taylor expansion is smaller than
the previous one, we fit a decaying and alternating function
to these data points in an attempt to capture the behavior of

the Taylor series and resum the corrections from the Taylor
expansion. The model function in every instance is

X (M ) = a + be−cM sin(dM + e), (22)

with the independent variable being M the degree of polyno-
mial truncation and the fitted parameters are a, b, d, e, and
c > 0. This step is shown in Fig. 2. We consider our findings
to be the MW HJ → ∞ limit of these fitted functions; that is,
we identify the exponent as X (M → ∞) = a from the model
function (22). We do not apply Wynn’s epsilon algorithm here,
because the corrections from increasing MW HJ is not a simple
alternating series. In the asymptotic regime, however, shown
with the PMS optimized exponent in Fig. 2, these corrections
alternate around their limiting value with periodicity of at
least two. For instance, we expect that the correction from
MW HJ = 8 increases the value of νopt compared to MW HJ = 7
and the higher corrections to have a smaller effect than this.
The model function (22) takes this into account correctly.

Every β function contains terms proportional to η through
Ṙk . Considering only the exponents ν and η, the inclusion
of these terms in ˙̃Uk gives a 1% and 5% correction, while
in ˙̃Zk they give a 0.1% and 0.5% correction compared to
not including those. We have also inspected the inclusion of
these terms into ˙̃Wk,

˙̃Hk , and ˙̃Jk for the truncation MU = 8 and
MZ = 8 with MW HJ � 4 and found that this characteristically
gives a 0.02% and 0.008% correction to the exponents. We
have neglected this correction in ˙̃Wk,

˙̃Hk , and ˙̃Jk for MW HJ � 5
and considered it as one source of uncertainty. The other
source comes from the truncation of Ũk and Z̃k . As a double
check, we have computed the fixed point for truncation MU =
9, MZ = 8 and MU = 9, MZ = 9 at NLO. We have found that
the inclusion of the coupling ũ9 has negligible effect compared
to the inclusion of z̃9. Our final predictions for the critical
exponents of the Z2 symmetric model are shown in Table I.
The method to obtain the predictions and their corresponding
uncertainty are detailed in Appendix B.

VI. NNLO FOR THE O(N) SYMMETRIC SCALAR MODELS

A. Modifications compared to the Z2 symmetric case

There are more scale-dependent functions in the O(N )
symmetric scalar model beyond the LPA than in the Z2 sym-
metric one, due to an additional group index. At NLO, there
are two instead of the one Zk , but at NNLO the number of
independent scale-dependent functions increases to ten, com-
pared to the three Wk, Hk , and Jk . The complete ∂4-order
ansatz is

�k[ �φ] =
∫

x

{
Uk + 1

2
Zk (∂φa

x )2 + 1

4
Yk (∂ρx )2 + 1

2
W1,k

(
∂μ∂νφ

a
x

)2 + 1

4
W2,k

(
φa

x ∂μ∂νφ
a
x

)2 + 1

2
H1,k

(
∂φa

x

)2(
φb

x∂
2φb

x

)

+ H2,k (∂μρx )
(
∂μφb

x

)(
∂2φb

x

) + 1

4
H3,k

(
∂ρx

)2(
φa

x ∂
2φa

x

) + 1

8
J5,k

(
∂ρx

)4 + 1

2
J1,k

(
∂φa

x

)2(
∂φb

x

)2

+ 1

2
J2,k

(
∂μφa

x

)(
∂νφ

a
x

)(
∂μφb

x

)(
∂νφb

x

) + 1

4
J3,k

(
∂ρx

)2(
∂φa

x

)2 + 1

4
J4,k

(
∂μρx

)(
∂νρx

)(
∂μφb

x

)(
∂νφb

x

)}
, (23)
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where �φ is the N component scalar field and ρx = φa
x φ

a
x /2 is

the invariant under the O(N ) symmetry transformation. We
have suppressed the field dependence of the scale-dependent
functions in (23) to be more transparent. Due to the appear-
ance of the Goldstone modes in addition to the one massive
mode in the Z2 symmetric model, we have two anomalous
dimensions corresponding to these modes:

η = −k∂k ln Zk (ρ∗), (24)

η̃ = −k∂k ln(Zk (ρ∗) + ρ∗Yk (ρ∗)) ≡ −k∂k ln Z̃k (ρ∗). (25)

These anomalous dimensions are equal in the critical point. In
our numerical check, we use this fact to ensure the correctness
of our equations. Besides the field, the regulator function also
receives O(N ) indices. We choose

Rab
k (y) = δabZk (ρ∗)k2y r(y), (26)

where δab is the Kronecker-delta matrix, such that the regu-
lator mass matrix is already diagonalized in the O(N ) space.
In order to facilitate the bookkeeping of the O(N ) indices, we
introduce projectors Pab

A with (A =‖,⊥) to the radial (Pab
‖ =

eaeb) and perpendicular (Goldstone) (Pab
⊥ = δab − eaeb) di-

rections in the O(N ) space, with ea being the unit vector.
The scale-dependent functions Yk , Wi,k , Hi,k , and Ji,k are ob-
tained by the same momentum derivatives [Eq. (6)] as Zk , Wk ,
Hk , and Jk in the Z2 symmetric model as coefficients of the
integrands in

∫
Q1,...,Qn

∏n
i=1 η

Ai
Qi

δ(
∑n

i=1 Qi ). The capital Latin
letters correspond to either ‖ or (⊥, a). Using the projectors
defined above one has

Pab
‖ ηa

x = η‖
x and Pab

⊥ ηa
x = η⊥,a

x . (27)

In this method, every O(N ) index is contracted in the final
result, so that η⊥,a

Q may occur only in pairs, such as η⊥,a
Q η⊥,a

−Q .
For instance, the left-hand side of the Wetterich equation for
O(η2) Eq. (3) modifies to∫

Q
η⊥,a

Q η⊥,a
−Q (ŻkQ2 + Ẇ1,kQ4 + U̇ ′)

+
∫

Q
η

‖
Qη

‖
−Q((Żk + Ẏk )Q2 + (Ẇ1,k + Ẇ2,k )Q4 + U̇ ′ + 2ρU̇ ′′)

(28)

with the ansatz in Eq. (23).
We have followed the same steps of numerical analysis as

we did for the Z2 symmetric model. The system of β functions
is generated by a Mathematica code, which is then verified
to reproduce the ∂2-order results [24]. We applied the same
iterative algorithm to find the Wilson-Fisher fixed point for
high values of truncation M as for the Z2 symmetric model. At
the LPA, we have computed the exponents for up to MU = 8.
In the NLO we have increased simultaneously the truncation
MZ of Zk and MY of Yk for up to MZ = MY = 5 and denote this
with MZY . At NNLO, we have ten scale-dependent functions.
In order to make it easier to find the Wilson-Fisher fixed point,
we further divide the iterative algorithm into three parts. First,
we locate the fixed point for the truncation MU = 8, MZY = 5,
MW1 = MW2 = 0 with the initial values w̃1,0 = w̃2,0 = 1. In
the next step, we use this fixed point as initial value with
h̃1,0 = h̃2,0 = h̃3,0 = 1 for the truncation MU = 8, MZY = 5,

FIG. 3. The dependence of the critical exponents ν, η, and ω on
the order of polynomial truncation for the O(0) symmetric model at
MU = 8. The vertical line separates our NLO results (left) from the
NNLO ones (right). The dotted horizontal line shows the correspond-
ing MC result. The continuous curve with disk markers belongs to
the �-type regulator (13) with α = 1/2, while the dashed curve with
rectangle markers belongs to the exponential-type regulator (16) with
α = 1. At the points, where ω is not shown, it is a complex number.

MW1 = MW2 = 0, and MH1 = MH2 = MH3 = 0. In the last step
we locate the fixed point with MJi = 0 (i = 1, . . . , 5) also
included. We denote this truncation with MW HJ = 0 when all
the NNLO level scale-dependent functions are included with
zeroth-order truncation in their Taylor expansion. We have
computed the exponents for up to MU = 8, MZY = 5, and
MW HJ = 4.

B. Numerical findings

We have computed the critical exponents for the regulators
(13) and (16). The former one with α = 1/2 reduces a large
number of the threshold integrals to 2F1-type hypergeometric
functions. This yields a significant speed boost in the compu-
tations compared to (16) with any value of α.

The effect of the gradual inclusion of the new couplings
for the O(N ) symmetric scalar model is shown in Figs. 3–7
for N = 0–4. We have also computed the exponents for the
N = 10 and N = 100 cases but omitted to show their field
dependence, as it is very small. The leading order of the DE,
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FIG. 4. The dependence of the critical exponents ν, η, and ω on
the order of polynomial truncation for the O(1) symmetric model
at MU = 8. The vertical line separates our NLO results (left) from
the NNLO ones (right). The dotted horizontal line shows the corre-
sponding CB result. The continuous curve with disk markers belongs
to the �-type regulator (13) with α = 1/2, while the dashed curve
with rectangle markers belongs to the exponential-type regulator (16)
with α = 1.

the LPA is exact for O(N → ∞). The anomalous dimension
decreases monotonically at large N values with increasing N
and vanishes completely in the limit N → ∞. This means that
the derivative expansion has to yield very precise predictions
for the exponents for large N values. This is reflected in the
fact that the field dependence is very small at N = 10 and
at N = 100. We have chosen N = 10 and 100 as benchmark
points to compare our predictions with those of the large-N
expansion. We also show the field dependence of the O(1)
symmetric model, which should give the critical exponents for
the Z2 universality class. This feature is nicely shown in Fig. 4.
Going back to Figs. 3–7, we can clearly see that the field
expansion is very stable at NNLO even when one considers
the correction of MW HJ = 1 compared to MW HJ = 0. Due
to this smoothness of predictions from the field expansion
at NNLO, we apply the principle of minimal sensitivity for
MW HJ � 0. In order to reduce the amount of computation,
we have only looked for a PMS solution for the anomalous
dimension and accepted the corresponding parameter value as
the optimal αopt. We have found that αopt depends weakly both
on the truncation MW HJ and on the O(N ) model considered.

FIG. 5. The dependence of the critical exponents ν, η, and ω on
the order of polynomial truncation for the O(2) symmetric model
at MU = 8. The vertical line separates our NLO results (left) from
the NNLO ones (right). The dotted horizontal line shows the corre-
sponding CB result. The continuous curve with disk markers belongs
to the �-type regulator (13) with α = 1/2, while the dashed curve
with rectangle markers belongs to the exponential-type regulator (16)
with α = 1.

We have found at NNLO with truncation MW HJ = 4 for the
regulator (13) that αopt = 0.340(10) while for (16) we have
obtained αopt = 0.87(1). The uncertainty corresponds to the
dependence of αopt on the specific O(N ) model considered.
For instance, we obtained αopt = 0.337 for the regulator (13)
in the case of the O(0) model with truncation MW HJ = 4
and αopt = 0.344 in the case of the O(3) model in the same
setting. We attempt to find the limiting value of the opti-
mized exponents corresponding to MW HJ = 0, . . . , 4 in the
range N = 0–4 for MW HJ → ∞ in the same fashion as we
did for the Z2 symmetric model (see Fig. 2). We have also
checked the stability of the predictions from (22). We have
computed the extrapolated values of the critical exponents
from (22) by fitting those to the PMS optimized exponents
corresponding to MW HJ = 0, . . . , 4 and MW HJ = 0, . . . , 3. In
the latter case we also incorporated an assumption for the fit.
Namely, whether we expect (from the trend of the polyno-
mial expansion) X (MW HJ = 4) to be greater or smaller than
X (MW HJ = 3). As a result we obtained that the difference
between the predictions obtained from the fits are two to three
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FIG. 6. The dependence of the critical exponents ν, η, and ω on
the order of polynomial truncation for the O(3) symmetric model
at MU = 8. The vertical line separates our NLO results (left) from
the NNLO ones (right). The dotted horizontal line shows the corre-
sponding MC result. The continuous curve with disk markers belongs
to the �-type regulator (13) with α = 1/2, while the dashed curve
with rectangle markers belongs to the exponential-type regulator (16)
with α = 1.

times smaller than the difference between the raw values cor-
responding to MW HJ = 4 and MW HJ = 3. This is the method
to obtain the uncertainty �polyX

(4)
detailed in Appendix B.

As for N = 10 and N = 100, the fluctuation of the expo-
nents is very small with varying MW HJ . In these instances
we consider our final predictions corresponding to MW HJ =
3 and MW HJ = 2, respectively, with PMS optimization
applied.

Considering the above discussed details, our predictions
for O(N ) critical exponents at fixed orders of the DE are
summarized in Table II. Our findings at the level of LPA
correspond to the exponents computed at MU = 8 with the
method detailed at the end of Sec. III C. We obtain that the
optimal value α

opt
LPA of the parameter α is 0.9 for (13) and 5 for

(16) at LPA. Going further, our NLO findings are computed at
MU = 8 and MZY = 5 with α

opt
NLO = 0.4 and 1.4 for (13) and

(16), respectively. The results for the NNLO level results are
discussed above. The method we used to compute the central
values and the uncertainties is detailed in Appendix B.

FIG. 7. The dependence of the critical exponents ν, η, and ω on
the order of polynomial truncation for the O(4) symmetric model
at MU = 8. The vertical line separates our NLO results (left) from
the NNLO ones (right). The dotted horizontal line shows the MC
bootstrap result. The continuous curve with disk markers belongs
to the �-type regulator (13) with α = 1/2, while the dashed curve
with rectangle markers belongs to the exponential-type regulator (16)
with α = 1.

VII. BRIEF SUMMARY OF THE O(N) CRITICAL
EXPONENTS FROM VARIOUS METHODS

The O(N ) symmetric scalar model was first introduced as
the n-vector model as a generalization of some physically rel-
evant models [38] in d Euclidean dimensions. The N = 0 case
describes the self-avoiding walk [39,40]. It is also noteworthy
that the O(0) model probably does not have a Minkowskian
counterpart, because in the case in which the Euclidean di-
mension d and N are not positive integers the unitarity of the
corresponding Minkowskian model is lost or at least highly
nontrivial. At the level of the n-vector model, the O(1) model
describes the Ising universality class. In the ERG, however,
the Z2 and O(N ) symmetric models at N = 1 seem to be
different because of the different content of scale-dependent
functions and the appearance of an additional, massless ex-
citation in the O(N ) model. The two models are equivalent,
however. The flow equations for the O(N ) model in the limit
of N → 1 are regular. Furthermore the contribution of the
Goldstone modes in the flow equations vanish for N = 1,
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TABLE II. The main findings of this work. Our predictions for
the critical exponents ν, η, and ω at the LPA, NLO, and NNLO
of the DE for the O(N ) symmetric models in d = 3 Euclidean
dimensions. These values are the average of the PMS optimized
predictions, computed from the � regulator (13) and the exponential
regulator (16) and the deviation from the average is one source of
the uncertainties. The other source of uncertainty corresponds to the
polynomial truncation of the scale-dependent functions.

N Order of DE ν η ω

0 LPA 0.5924(3) 0 0.656(2)
NLO 0.588(1) 0.038(9) 0.95(8)

NNLO 0.5876(1) 0.030(3) 0.894(16)

1 LPA 0.6504(7) 0 0.654(1)
NLO 0.628(6) 0.045(11) 0.85(5)

NNLO 0.630(1) 0.035(3) 0.829(6)

2 LPA 0.7098(10) 0 0.672(1)
NLO 0.667(10) 0.047(13) 0.79(3)

NNLO 0.673(2) 0.036(3) 0.784(8)

3 LPA 0.7629(12) 0 0.702(1)
NLO 0.705(15) 0.047(13) 0.75(3)

NNLO 0.713(3) 0.036(3) 0.765(3)

4 LPA 0.8060(12) 0 0.737(2)
NLO 0.741(20) 0.045(13) 0.73(3)

NNLO 0.749(3) 0.034(3) 0.763(9)

10 LPA 0.9193(5) 0 0.874(2)
NLO 0.878(10) 0.027(7) 0.79(2)

NNLO 0.877(1) 0.022(2) 0.810(7)
100 LPA 0.9925(1) 0 0.9881(2)

NLO 0.989(1) 0.0030(7) 0.978(3)
NNLO 0.9888(3) 0.00264(8) 0.9780(6)

and the extra flow equations decouple from those which have
direct interpretation in terms of the Z2 symmetric model. The
O(2) model is more commonly known as the XY model,
which is used to describe the phase transition in the superfluid
helium-4. The O(3) model is also known as the Heisenberg
model for ferromagnetism. Last but not the least, the O(4)
model can be considered as a toy model for the standard
model’s Higgs sector, but also applicable to chiral phase tran-
sitions.

Some of the most precise computations of the O(N ) critical
exponents in d = 3 Euclidean dimensions are summarized in
Table III. Comparing these with our findings, “This work”
entry in the same table, one can see that the central values are
in excellent agreement. The improved results of Ref. [11] take
advantage of the convergence of the DE as well as the alter-
nating behavior of the corrections from the successive orders
of the DE. In contrast, our improvement, the Wynn epsilon
algorithm detailed in Sec. IV, is a robust series acceleration
method applicable to any alternating sequence.

VIII. CONCLUSION

We have computed the critical exponents for the Z2 and
O(N ) symmetric scalar models in d = 3 Euclidean dimen-
sions. We have employed the exact renormalization group
equation for the effective average action. We have used the
derivative expansion at NNLO (or ∂4 order) and calculated

TABLE III. Critical exponents of the O(N ) symmetric scalar
model in d = 3 Euclidean dimensions for several N values with
different methods: our improved predictions using Wynn’s epsilon
algorithm, the DE at NNLO (∂4) without field expansion with raw
(computed with the exponential regulator) and improved values [11],
Monte Carlo simulations, six-loop perturbation theory at fixed d = 3
[5], d = 4 − ε expansion at ε6 [7], the conformal bootstrap method,
and the large-N expansion [35–37].

N Method ν η ω

0 This work 0.5875(1) 0.031(3) 0.903(16)
∂4, raw 0.5875 0.0292 0.901

∂4, improved 0.5876(2) 0.0312(9) 0.901(24)
MC [25,26] 0.58759700(40) 0.0310434(30) 0.899(14)
Six-loop PT 0.5882(11) 0.0284(25) 0.812(16)
ε6, ε-exp. 0.5874(3) 0.0310(7) 0.841(13)
CB [27] 0.5876(12) 0.0282(4)

2 This work 0.672(2) 0.038(3) 0.784(8)
∂4, raw 0.6732 0.0350 0.793

∂4, improved 0.6716(6) 0.0380(13) 0.791(8)
MC [4] 0.67169(7) 0.03810(8) 0.789(4)

Six-loop PT 0.6703(15) 0.0354(25) 0.789(11)
ε6, ε-exp. 0.6690(10) 0.0380(6) 0.804(3)
CB [28] 0.6718(1) 0.03818(4) 0.794(8)

3 This work 0.712(3) 0.038(3) 0.765(3)
∂4, raw 0.7136 0.0347 0.773

∂4, improved 0.7114(9) 0.0376(13) 0.769(11)
MC [29,30] 0.7116(10) 0.0378(3) 0.773
Six-loop PT 0.7073(35) 0.0355(25) 0.782(13)
ε6, ε-exp. 0.7059(20) 0.0378(5) 0.795(7)

CB [31,32] 0.7120(23) 0.0385(13) 0.791(22)
4 This work 0.748(3) 0.036(3) 0.763(9)

∂4, raw 0.7500 0.0332 0.765
∂4, improved 0.7478(9) 0.0360(12) 0.761(12)
MC [30,33] 0.7477(8) 0.0360(4) 0.765
Six-loop PT 0.741(6) 0.0350(45) 0.774(20)
ε6, ε-exp. 0.7397(35) 0.0366(4) 0.794(9)

CB [32,34] 0.7472(87) 0.0378(32) 0.817(30)
10 This work 0.877(1) 0.023(2) 0.805(7)

∂4, raw 0.8771 0.0218 0.808
∂4, improved 0.8776(10) 0.0231(6) 0.807(7)

Large-N 0.87(2) 0.023(2) 0.77(1)
100 This work 0.9887(3) 0.00267(8) 0.9780(6)

∂4, raw 0.98877 0.00260 0.977
∂4, improved 0.9888(2) 0.00268(4) 0.9770(8)

Large-N 0.9890(2) 0.002681(1) 0.9782(2)

the β functions for the scale-dependent functions, shown in
(5) for the Z2 and in (23) for the O(N ) symmetric models.
In order to locate the Wilson-Fisher fixed point which is the
nontrivial fixed-point solution of the β functions, we have
expanded the scale-dependent functions in powers of the field.
We interpret the scale-dependent coefficients fn(k) from the
Taylor expansion as effective coupling strengths for the in-
teraction vertices of the field they multiply. We have located
the fixed point in the theory space spanned by the (canonical
mass) dimensionless couplings, with truncated Taylor series
of the scale-dependent functions. Our main findings for the
Z2 symmetric model shown in Table I are in agreement with
predictions obtained using other methods. We have used the
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Z2 symmetric model as a testing ground for the correctness
of our Mathematica code. We then generalized this code for
the O(N ) symmetric model and computed the critical expo-
nents for some relevant N values. We have tested the O(N )
Mathematica code for the N = 1, 10, and 100 cases. The
first benchmark point N = 1 is chosen, because it should
reproduce the Ising critical exponents as the O(1) and Z2

symmetric models are equivalent as discussed in Sec. VII. We
chose N = 10, 100 to be second and third benchmark points,
because the effect of the derivative expansion is diminished
with N → ∞, hence it can give very accurate results for large
N values. Our main findings are summarized in Table II. A
great advantage of the computations employed in this work
is that they require noticeably less computer time than most
of the other methods. For our highest employed polynomial
truncation both for the Z2 and O(N ) symmetric models, the
location of the Wilson-Fisher fixed point roughly takes 1–2 h,
while computing the Jacobian matrix at the fixed point takes
an additional hour on a single desktop PC.

In a recent paper [11] the authors have performed similar
computations with the ERG. The differences are that (i) we
have not truncated our formulas in the momenta (denoted
here with Qi); (ii) we have employed Taylor expansion for
the scale-dependent functions in powers of the field instead
of shooting for a solution for the complete scale-dependent
functions; and (iii) we have computed the exponents with
the regulator (13), which is the simplest regulator at NNLO.
Although this � regulator is argued to perform poorly in
[10], we have found that it yields excellent predictions for
the exponents in the models studied here. We also provide
improved predictions using Wynn’s espilon algorithm on our
predictions of the DE, yielding central values which are in ex-
cellent agreement with other precise methods used to compute
critical exponents.

We also produce the subleading scaling corrections ωi

(from the eigenvalue spectrum −1/ν < ω < ω1 < ω2 < . . .

of the Jacobian of the β functions) as a by-product of
computing the exponents ν and ω. The expansion of the scale-
dependent functions in powers of the field is also applicable to
explore the phase structure of a model and the RG running of
its couplings. The derivative expansion can also be improved
to N3LO (or ∂6 order) with some effort for the O(N ) sym-

metric models, which would provide more precise exponent
values for many cases of N .
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APPENDIX A: THE THETA REGULATOR AS A LIMIT OF
A CONTINUOUS REGULATOR

Regulators, which are not C∞ functions, are not applicable
beyond a certain order in the DE. Some threshold integrals
at the NNLO of the DE evaluated with (13) are ambiguous,
or even undefined [41] when δ(0) appears after performing
the integration of the threshold functions. The purpose of
this Appendix is to prove that the ambiguity of the threshold
integrals is lifted when one considers (13) as the limit of a
C∞-type regulator. We consider

rβ (y) = α
(1 − y)2

y

1

1 + e−2β(1−y)
, (A1)

with the property

lim
β→∞

rβ (y) = r�(y). (A2)

Actually, the only ambiguous integral with (13) is of type
Md,4

m,1. Thus we are going to compute this integral with (A1)
and prove that in the β → ∞ limit we unambiguously re-
cover the result in Eq. (15). It is convenient to introduce the
integration variable ε = y − 1 and to compute explicitly the
derivatives of (A1), resulting in

Md,4
m,1 = −128α2

(
Z2

k kd+2
) �d

(2π )d
Iβ, (A3)

where

Iβ =
∫ ∞

−1
dε

(1 + ε)−1+d/2[
ω + (1 + ε)Z + (1 + ε)2W + α ε2

1+e2βε )

]m

× εI.

(A4)

Here we organized all the derivatives of the regulator into the
function I:

I = β2 e6βε

(1 + e2βε )7
{βε(ε + 1) sinh(βε) + [ε(βε + β − 1) − 2] cosh(βε)} (

[3 sinh(βε) + sinh(3βε)]

+ βε{βε[sinh(3βε) − 11 sinh(βε)] + 12 cosh(βε) − 4 cosh(3βε)}). (A5)

We have also written the inverse propagator G explicitly and
ω, Z , and W correspond to the scale-dependent functions
2ρU ′′

k (ρ), Zk (ρ), and Wk (ρ). If one considers the integral Iβ
as the sum of three integration regions∫ −a

−1
+

∫ a

−a
+

∫ ∞

a
(A6)

with 0 < a 
 1, then in the limit β → ∞, the integrands of
the integrals over the regions [−1,−a] and [a,∞) vanish.

Hence, in our computations we need the limit

lim
β→∞

Iβ = lim
β→∞

Iβ (a), (A7)

where

Iβ (a) =
∫ a

−a
dε

(1 + ε)−1+d/2[
ω + (1 + ε)Z + (1 + ε)2W + α ε2

1+e2βε )

]m

× εI, (A8)
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FIG. 8. The threshold function Md,4
m,1 evaluated by numerical in-

tegration of the integral (A4) (open circles) at different values of
β versus the analytical result (corresponding to β → ∞) shown in
Eq. (15) (straight line). We considered dimensionless variables and
set d = 3, α = ω̃ = Z̃ = W̃ = 1 for the sake of example.

with a being a small positive integer, so we can expand the
dimension-dependent and inverse propagator part of Iβ (a) in
Taylor series. At leading order (LO), this Taylor expansion
leads to

ILO
β (a) = 1

(ω + Z + W )m

∫ a

−a
dε εI ≡ 1

G(1)m

∫ a

−a
dε εI.

(A9)

This integral can be computed analytically and results in a
very long combination of polynomials of β, ε, and polylog-
arithms; we do not show the explicit result here as it can be
verified with the integrator of Mathematica, for instance. Now,
we are in the position to take the limit β → ∞ of the integral,
which is independent of a,

ILO
β→∞ = − 1

32

1

(ω + Z + W )m
. (A10)

One can, of course, take into account higher-order terms in
the Taylor expansion of the dimension-dependent and inverse
propagator part of (A8) so that the nth-order term in this
expansion will be proportional to∫ a

−a
dε1+nεI. (A11)

Such higher-order terms vanish in the limit β → ∞, which
we show here for the NLO approximation—also independent
of a—to (A8),

INLO
β = − 1

32

1

G(1)m

[
1 +

(
1

β

7π4 − 360

1200

)

×
(

d

2
− 1 − m

1 + 2W

G(1)

)
+ O

(
1

β3

)]
. (A12)

As the final result in the β → ∞ limit we obtain

Md,4
m,1 = 4α2

(
Z2

k kd+2
) �d

(2π )d

1

G(1)m
, (A13)

which coincides with (15). We conclude that the regulator is
unambiguous at the NNLO of the DE once considered as the
limit of a C∞-type regulator. A numerical example is also
shown in Fig. 8. We have claimed in the main text, that with

the regulator (13)

Md,3
m,1 = 0, (A14)

due to the properties of the Dirac delta. Here we show that
this integral with the regulator (A1) indeed vanishes in the
limit β → ∞. Using an identical derivation as used for Md,4

m,1
above, it is straightforward to show that

Md,3
m,1 = lim

β→∞

(
−α2

(
Z2

k kd+2
) �d

(2π )d

1

G(1)m

)

×
[(

7π4 − 360

450β

)
+ O

(
1

β3

)]
. (A15)

As a check, one can compute numerically the integral Md,3
m,1

for arbitrary values of β using the regulator (A1) and compare
it to the analytical result in Eq. (A15). Using the numeri-
cal integrations similar to those used for Fig. 8, we obtain
−1.5100 × 10−5 from the direct numerical integration and
−1.5098 × 10−5 from the analytical result (A15) at β = 200.
The integrands of Md,2

m,1 and Md,1
m,1 using the regulator (A1) un-

ambiguously reduce to those corresponding to the � regulator
(13) in the limit β → ∞. This is also the case for the threshold
integrals Nd+a,β,γ

m,b,c , when β and γ are 1 or 2. If either β or γ

is 3, then the integral behaves as Md,3
m,1, which we have already

discussed.

APPENDIX B: THE ERROR ESTIMATES AND CENTRAL
VALUES

In this work we follow the instructions of Ref. [11] for
appropriate error bars. However, due to the polynomial expan-
sion an additional source of error appears. We summarize here
the steps we take in this work to obtain the final prediction for
the exponent X and also to obtain its uncertainty. First, at a
given order (∂s) of the DE we compute the PMS optimized
value for various order M of the polynomial truncation of
the scale-dependent functions (where M belongs to the least
truncated case) for the regulators (13) and (16). This way we
obtain the set of raw data {X (s),opt

M,� , X (s),opt
M,exp }. Let us now discuss

the computation of the final values and the different sources of
uncertainties considered in this work point by point.

(i) One can choose for the final result X
(s)

at a given
order of the DE the central value X

(s) ≡ X
(s)
M = (X (s),opt

M,� +
X (s),opt

M,exp )/2, which is indeed our choice at LPA and NLO ap-
proximations. However, we apply further improvement to the
NNLO result. Namely, we first apply the ansatz (22) on the
NNLO dataset to extrapolate to the exponents corresponding
to MW HJ → ∞, and after this step we compute the central
value of the result from the regulators. We consider the values
obtained this way to be our NNLO prediction, with the poly-
nomial truncation improvement. Furthermore, we extrapolate
our predictions at NNLO employing Wynn’s epsilon algo-
rithm whenever it is applicable, i.e., when the predictions at
successive orders of the DE show an alternating behavior. We
cited those extrapolated predictions in Table III.

(ii) One source of uncertainty originates from the choice of
regulators, which we denote by �regX

(s)
corresponding to the

prediction X
(s)

. We define it to be half of the largest difference
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�regX
(s)
M = |X (s),opt

M,� − X (s),opt
M,exp |/2 between the two predictions

obtained with different regulators. Considering empirical data,
such as in Ref. [11], we see that the �n-type regulator, with
the smallest possible n at the given order in the DE yields
predictions closest to the most precise ones, obtained from
other methods. The exponential regulator (16), on the other
hand, seems to produce predictions farthest from the most
precise ones. This is true at least up to NNLO, which supports
our choice for �regX

(s)
at least up to NNLO of the DE.

(iii) Next, we compute the uncertainty of the DE according
to Ref. [11], exploiting the hidden small parameter 1/4 – 1/9
of the DE. Calling this source of error �DEX

(s)
, we have

�DEX
(s) = |X (s) − X

(s−2)|/4, where X
(s−2)

corresponds to the
result from the previous order (∂s−2) of the DE. Of course, this
implies that we are unable to estimate the error from the DE
at the LPA this way.

(iv) In addition to �regX
(s)

and �DEX
(s)

, the finite trun-
cation M of the scale-dependent functions also introduces
another source of systematic uncertainty �polyX

(s)
. Every or-

der of the DE introduces new scale-dependent functions F and
thus additional sources of uncertainty if we truncate them.
Thus we have �polyX

(s) = ∑
{F } �F X

(s)
where we sum over

all scale-dependent functions F available at the ∂s order of the
DE. We define these independent contributions as �F X

(s) =
|X (s)

MF
− X

(s)
MF −1|. We do this because we go so far in the poly-

nomial expansion that �F X
(s)

decreases monotonically for
higher values of MF . To estimate �polyX

(4)
at NNLO, we take

the absolute difference between the data improved by (22).
We have already elaborated in the main text that we apply
the same degree of truncation to all scale-dependent functions
corresponding to a given order of the DE. For instance, in
the Z2 symmetric models at NNLO, we have �polyX

(4) =
�U X

(4) + �ZX
(4) + �W HJX

(4)
. With the truncation used in

this work, we have �U X
(4)

< �ZX
(4) 
 �W HJX

(4)
, so that

�polyX
(4) ≈ �W HJX

(4)
.

(v) Finally, we have to combine the different sources of
uncertainties in order to obtain the total uncertainties �X

(s)

quoted in the tables of the main text. There is no straightfor-
ward way to prove that the discussed sources are uncorrelated,
so we decided to use a simple sum,

�X
(s) = �DEX

(s) + �regX
(s) + �polyX

(s)
(B1)

as a conservative estimate. As mentioned in point (ii) �DEX
(0)

is unavailable. Furthermore, �regX
(0) � �polyX

(0)
. Thus in

practice we have �X
(0) = �regX

(0)
at LPA. At the NLO

�DEX
(2)

is the dominant source of uncertainty.

APPENDIX C: TECHNICAL DETAILS OF NUMERICAL
COMPUTATIONS

We locate the Wilson-Fisher fixed point corresponding to
the complete set of β functions ({βg̃i = 0}) for the dimension-

TABLE IV. The first two subleading scaling corrections ω1 and
ω2 at the LPA, NLO, and NNLO of the DE for the O(N ) symmetric
models in d = 3 Euclidean dimensions. We have only kept the first
few significant digits, which coincide for the predictions computed
from the � regulator (13) and the exponential regulator (16).

N Order of DE ω1 ω2

0 LPA 3.3
NLO 1.4 4.0

NNLO 1.4 3.3
1 LPA 3.2

NLO 1.7 3.9
NNLO 1.7 3.2

2 LPA 3.1
NLO 1.9 ± 0.1i 3.6

NNLO 1.8 3.3
3 LPA 3.0

NLO 2.0 ± 0.5i 3.5
NNLO 1.9 3.4

4 LPA 2.94
NLO 1.9 3.4

NNLO 1.9 3.3
10 LPA 2.90

NLO 1.96 2.8
NNLO 1.96 2.9

100 LPA 2.99
NLO 2.00 2.97

NNLO 1.99 2.97

less couplings g̃i. In order to find the nontrivial root of this
system of equations we have used the affine covariant Newton
method with the iterative algorithm detailed in Secs. V and
VI B. In the rare case it did not converge in 100 iterations we
further applied the secant method. This requires two initial
values; to obtain those we simply multiply the output from
the affine covariant Newton method with 0.9 and 1.1.

The numerical integration of the threshold integrals L, M,
and N (from Sec. III B) are computed with the optimized
NIntegrate command of Mathematica, which selects the
Gauss-Kronrod quadrature formula as the most efficient nu-
merical integration method.

In every instance we have worked with 12 or more digits
of precision in our numerical computations.

APPENDIX D: SUBLEADING SCALING CORRECTIONS

We also provide the scaling corrections ω < ω1 < ω2 <

. . . to the correlation length as discussed in Sec. III D. The
smallest one ω is shown in Table II for the O(N ) model at
various N values. The larger scaling corrections ω1, ω2 are
summarized in Table IV. Generally ωn becomes more suscep-
tible to the polynomial truncation with increasing n; ω1, ω2

are only stable in the first two or three significant digits with
our employed truncation, detailed in Sec. VI B.
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