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Fluctuations in irreversible quantum Otto engines
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We derive the general probability distribution function of stochastic work for quantum Otto engines in which
both the isochoric and driving processes are irreversible due to finite time duration. The time-dependent work
fluctuations, average work, and thermodynamic efficiency are explicitly obtained for a complete cycle operating
with an analytically solvable two-level system. The effects of the irreversibility originating from finite-time cycle
operation on the thermodynamic efficiency, work fluctuations, and relative power fluctuations are discussed.
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I. INTRODUCTION

The second law of thermodynamics tells us that any heat
engines working between a hot and a cold thermal bath of
constant inverse temperatures βh and βc (with β = 1/T and
kB ≡ 1) are not able to run more efficiently than a reversible
Carnot cycle with its efficiency ηC = 1 − βh/βc. When a
cyclic heat engine runs at the Carnot efficiency, its cycle
operation consisting of consecutive thermodynamic processes
must be reversible and thus the power output becomes null.
Practically, heat engines must proceed in a finite-time pe-
riod and produce finite power, and they do not attain the
maximum efficiency due to entropy production quantifying
irreversibility [1–13]. The performance in finite time was
intensively studied for both quantum [5,11–14] and classical
[2,3,7] engines. For an adequate description of heat engines,
the effects of the irreversibility on the machine performance
have to be considered by involving both heat-transfer and
thermodynamic adiabatic processes.

The irreversibility in the classical and quantum engines
basically comes from two important generic sources: finite-
rate heat transfer and friction. For an endoreversible (classical
[1] or quantum [5,6]) engine, which is modeled as being
internally reversible, the irreversibility is exclusively induced
by finite-rate heat transfer between the working substance and
a heat reservoir. In both classical and quantum thermodynam-
ics, the friction can be classified into external friction and
internal friction [3,15]. While the external friction is associ-
ated with the exchange of energy via an external mechanical
linkage to the surroundings, the internal friction is related
to the dissipation of energy due to the timescale disparity
between the internal dynamics and engine operation. A kind
of friction can be traced to a quantum phenomenon that the
driving Hamiltonian does not commutate with itself at dif-
ferent times [13]. Such friction is exclusively created by the
finite-time driving in a unitary evolution process (which is
thermodynamic adiabatic but not quantum adiabatic), and it
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is responsible for transitions among the instantaneous energy
eigenstates [16–19] and related to quantum coherence in the
energy basis [13]. The quantum engines operating in finite
time were proposed for studying the effects of the quantum
friction on the engine performance [4,5,18–23]. However, the
explicit expressions for the performance parameters with the
irreversibility existing in all four finite-time strokes have not
been obtained so far.

Unlike in macroscopic systems where both work and heat
are deterministic, the work [9,24–31] and heat [32–34] for
microscale systems are random due to thermal and quantum
fluctuations [14,19,24,35–37]. The statistics of either work
or efficiency for heat engines at microscale were examined
experimentally and theoretically [14,18,19,25,30,36,38–48],
but under the assumption that either adiabatic [14,36] or
isothermal strokes [19] are reversible. To our knowledge, the
fluctuations have not been examined so far for an irreversible
quantum heat engine where the isothermal and thermody-
namic adiabatic strokes are of finite time and thus both of them
are away from the reversible limit.

In this paper, we derive the general expressions for the
probability distribution functions of quantum work and heat in
quantum Otto engines [14,17–19,36,49,50] composed of two
irreversible finite-time isochoric and two irreversible driving
strokes. This distribution function allows us to obtain the
quantum work statistics explicitly depending on the time
evolution dynamics of the two isochoric and two driving pro-
cesses. We then analytically examine the work statistics of an
Otto cycle working with an exactly solvable two-level system.
The effects of irreversibility induced by finite-time duration of
either driving or isochoric strokes on machine performance
and fluctuations are discussed. We finally demonstrate that
irreversibility yields an increase in the work fluctuations and
relative power fluctuations, but a decrease in machine effi-
ciency.

II. MODEL

The model of a quantum Otto engine is sketched in Fig. 1.
This machine consists of two isochoric branches, one with a
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FIG. 1. Schematic diagram of a two-level quantum Otto cy-
cle operating between a hot and a cold thermal bath of inverse
constant inverse temperatures (βh and βc) in the (ω, 〈n〉) plane.
The cycle consists of the two unitary strokes (connecting states
A and B, and C and D), where the system is isolated from the
two thermal baths but driven by the external field, and two iso-
choric strokes (connecting states B and C, and D and A), where
the system is kept in thermal contact with the hot and the cold
reservoir, respectively. The time durations along these four processes,
A → B, B → C, C → D, and D → A, are τch, τh, τhc, and τc, re-
spectively. The average populations at the four instants A, B,C, D
can be expressed as 〈nA〉 = 〈n(0)〉, 〈nB〉 = 〈n(τch )〉, 〈nC〉 = 〈n(τch +
τh )〉, 〈nD〉 = 〈n(τcyc − τc )〉. The mean population 〈nA〉(〈nC〉) at the
end of the cold (hot) isochoric stroke would approach its asymptotic
value 〈nc〉eq (〈nh〉eq), when and only when the thermalization is
completed.

hot and another with a cold thermal bath where the system
frequency is kept constant, and two driving strokes, where
the system is isolated from the two heat reservoirs and it
undergoes unitary evolution due to external driving. The four
branches can be described as follows.

During the adiabatic compression A → B, the system is
isolated from the two thermal baths but driven by the external
field from time t = 0 to t = τch, and its Hamiltonian changes
from H (0) = Hc to H (τch) = Hh. The driving time period
τch is much shorter than the timescale of typical decoher-
ence, implying that this irreversible expansion can still be
described by unitary evolution [18]. We introduce the inverse
temperature of the system at initial state (βA) to express the
thermal occupation probabilities at instant A in the canonical
form [4,5]

p0
n = e−βAEc

n

ZA
, (1)

where ZA = ∑
n e−βAEc

n is the canonical partition function and
Ec

n is the eigenenergy of the system Hamiltonian [H (0) = Hc]
at instant A. The transition probability from eigenstate |n〉 to
|m〉 is given by

pτch
n→m = |〈n|Ucom|m〉|2, (2)

where Ucom denotes the unitary time evolution operator
along the compression. For a quantum adiabatic process, the
timescale of the change in the state must be larger than that
of the dynamical one, ∼h̄/〈H〉, such that the generic quantum
adiabatic condition [51] is satisfied. A quantum adiabatic pro-
cess and a thermodynamic adiabatic process are “adiabatic”
in two different senses. Along a quantum adiabatic process,
the transitions among instantaneous eigenstates do not happen
and the transition probability becomes pτch

n→m = δnm, with the
Kronecker delta function δ, leading to no heat exchange. As
a thermodynamic adiabatic process merely indicates that the
system is isolated from the external heat reservoir and no
heat is exchanged between the system and the heat reser-
voir, it does not necessarily require the state transitions to be
forbidden, thereby indicating that a thermodynamic adiabatic
process includes a quantum adiabatic process [52]. Specifi-
cally, when the process A → B as a unitary evolution occurs
fast, the quantum adiabatic condition is not satisfied and the
internal excitations occur [15] (0 < pτch

n→m = |〈n|Ucom|m〉|2 <

1). In such a case, no heat is exchanged between the system
and the reservoir, but internal excitations related to inner
friction accounts for internal irreversibility and entropy pro-
duction. This irreversible process is not quantum adiabatic but
thermodynamic adiabatic.

The next step is the hot isochore B → C, where the system
(with constant frequency ω = ωh and constant Hamiltonian
H = Hh) is in contact with the hot thermal bath of constant
inverse temperature βh in a time duration τh. For the stochastic
heat qh absorbed by the hot reservoir, its probability distribu-
tion can be determined by the conditional probability to obtain

p(qh) =
∑
k,l

δ
[
qh − (

Eh
l − Eh

k

)]
pτh

k→l , (3)

where Eh
k and Eh

l are the respective eigenenergies of the
Hamiltonian H at the beginning and at the end of the hot
isochoric stroke. As the system occupies state l at end of
the isochore, pτh

k→l denotes the probability of the system be-
ing in state l . If the time duration τh satisfies the complete
thermalization condition τh � τh,relax, where τh,relax is the re-
laxation time for the system with the hot reservoir, the system
achieves a thermal equilibrium state at the ending instant C
after the complete thermalization, and then pτh

k→l = e−βhEh
l /Zh

with partition function Zh = ∑
l e−βhEh

l . For the engines under
consideration, the finite-time isochoric stroke implies that the
complete thermalization condition is not satisfied and thus the
working substance cannot achieve thermal equilibrium even at
the end of the stroke. For this incomplete thermalization, we
let βC be the effective temperature of the working substance
at instant C so that pτh

k→l = e−βC Eh
l /ZC with partition func-

tion ZC = ∑
l e−βC Eh

l . The temperature βC would approach the
value of the reservoir temperature βh when the thermalization
becomes complete.

During the expansion C → D, the system is isolated from
these two thermal baths in a time period τhc while its fre-
quency changes back to ωh from ωc. Like in the compression,
there is a transition probability from initial state i to final one
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j, which reads

pτhc
i→ j = |〈i|Uexp| j〉|2, (4)

where Uexp is the time evolution operator along the expan-
sion. This transition probability pτhc

i→ j = δi j if and only if the
quantum adiabatic condition is satisfied. Here pτhc

i→ j is situated
between 0 < pτhc

i→ j < 1 due to finite-time driving, indicating
that the finite-time unitary process is thermodynamic adia-
batic but not quantum adiabatic. Similar to driving stroke
A → B, the transitions among the eigenstates of the system,
which are related to inner friction, result in the irreversible
entropy production. At the initial instant C the occupation
probabilities take the form pτch+τh

i = δil pτh
k→l , where pτh

k→l was
defined below Eq. (3).

On the fourth branch D → A, the system with constant
frequency ω = ωc is coupled to a cold reservoir of inverse
temperature βc in a time period τc. After a cycle with the
total period τcyc = τch + τh + τhc + τc the system returns to its
initial state A, and we can easily determine the quantum heat
qc in a similar way to the quantum heat qh. As emphasized,
after the finite-time system-bath interaction interval, the sys-
tem cannot reach thermal equilibrium with the cold reservoir,
and the occupation probabilities satisfy the form (1) due to
incomplete thermalization. If the time duration τc � τc,relax,
where τc,relax is the relaxation time corresponding to the cold
isochore, the system achieves thermal equilibrium at instant
A and the occupation probabilities become p0,eq

n = e−βcEc
n /Zc,

with the partition function Zc = ∑
n e−βcEc

n .
In view of the fact that the work per cycle is produced only

in the two driving strokes A → B and C → D, the quantum
work output can be obtained by determining the total work
produced along these two microscopic trajectories to arrive at

w[n(0) → m(τch); i(τch + τh) → j(τcyc − τc)]

= (
Eh

i − Ec
j

) − (
Eh

m − Ec
n

)
, (5)

where Ec
n and Eh

m (Eh
i and Ec

j ) denote the respective energy
eigenvalues at the initial and final instants of the compression
(expansion). Here n(t ) are quantum numbers indicating the
states occupied by the system at time t . The work distribution
of a quantum heat engine can be derived by using the
quantum trajectory [46] or characteristic function [18,48]. The
characteristic function of the work probability distribution
along the compression can be given by [18] χcom(u) =
Tr[Ucome−iuHcρ(0)(e−iuHhUcom )†] = ∑

n,m p0
n pτch

n→meiu(Eh
m−Ec

n ),
where u is the conjugate variable to w and ρ(0) =∑

n p0
n|n〉〈n| is the density matrix at instant A. Analogously,

the expression of χexp(u) for the expansion can be written
as χexp(u) = Tr[Uexpe−iuHhρ(τhc + τh)(e−iuHcUexp)†] =∑

n,m pτch+τh
n pτhc

n→meiu(Ec
m−Eh

n ). The states |n(0)〉 and |m(τch)〉
can be assumed to be independent of |m(τch + τh)〉 and
|n(τcyc − τc)〉, since the system would relax to thermal
equilibrium in an isochoric process if its time duration
is long enough. The characteristic function for the total
work produced can thus be written as the product of
characteristic functions for both of the two driving strokes:
χ (u) = χcom(u)χexp(u). Using the inverse Fourier transform
of χ (u), p(w) = ∫

du χ (u)eiuw, we can obtain the main
result of this paper, namely, the following expression for the

probability distribution of the work w:

p(w) =
∑

m,n,i, j

pτch
n→m p0

n pτhc
i→ j pτch+τh

i δ{w − w[n(0) → m(τch);

× i(τch + τh) → j(τcyc − τc)]}. (6)

This probability distribution function for the irreversible Otto
engines allows us to determine all moments of quantum
work: 〈wk〉 = ∫

wk p(w)dw (k = 1, 2, . . . ). For an endore-
versible model, where the two adiabatic strokes are isentropic
but two isochoric processes take finite time, we recover the
work fluctuations [14] by setting pτch

n→m = δnm and pτhc
i→ j = δi j ,

p(w) = ∑
n,i p0

n pτch+τh
i δ{w − w[n(0); i(τch + τh)]}. The result

further reduces to that previously obtained in a quasistatic [40]
Otto engine, where pτch+τh

i = e−βhEi/Zh and p0
n = e−βcEn/Zc

for complete isochoric thermalization (with τc � τc,relax and
τh � τh,relax). We present it here in a broader context by argu-
ing that irreversibility is unavoidable in a finite-time cyclic
engine where both the driving and system-bath interaction
steps are away from the quasistatic limit.

III. QUANTUM OTTO ENGINE WORKING
WITH A TWO-LEVEL SYSTEM

We now consider a quantum Otto engine that works with a
two-level system of the eigenenergies E+ = h̄ω/2 and E− =
−h̄ω/2. As the occupation probabilities at these two eigen-
states are p+ = e−β h̄ωc/2/ZA and p− = eβ h̄ωc/2/ZA, where the
partition function ZA = e−βAh̄ωc/2 + eβAh̄ωc/2 = 2 cosh ( βAh̄ωc

2 ),
the mean population at instant A (with time t = 0) can be
determined by using 〈n〉 = ∑

n npn to arrive at

〈n(0)〉 = −1

2
tanh

(
βAh̄ωc

2

)
. (7)

The mean population at final instant B can then be
determined according to 〈n(τch)〉 = ∑

n,m npτch
m→n p0

m, which
together with Eqs. (1) and (2) leads to

〈n(τch)〉 = (1 − 2ξ )〈n(0)〉, (8)

where ξ = |〈±|Ucom|∓〉|2. Using 〈n(τcyc − τc)〉 =∑
n,m npτhc

m→n pτch+τh
m , for the unitary expansion C → D there is

the relation

〈n(τcyc − τc)〉 = (1 − 2ξ )〈n(τch + τh)〉, (9)

where we have introduced the adiabaticity parameter which
reads ξ = |〈±|Uexp|∓〉|2 = |〈±|Ucom|∓〉|2. The parameter ξ

represents the probability of transition between states |+〉
and |−〉 during the compression or expansion, and the prob-
ability of no state transition is accordingly |〈±|Uexp|±〉|2 =
|〈±|Ucom|±〉|2 = 1 − ξ . Here ξ depends on the speed at which
the driving process is performed [11,17–19], and depends on
the form of the driving Hamiltonian that generates coherence
in the energy basis for finite-time operation. This adiabatic-
ity parameter ξ decreases with a larger time duration of the
driving stroke, although not monotonically [17,18], and it
must be vanishing in the quantum adiabatic case when the
time duration τch or τhc is long enough in order for quantum
adiabatic condition to be satisfied. For the finite-time driving
stroke, the rapid change in frequency ω leads to inner friction
and results in possible state transitions (ξ > 0) [16,17,19–21].

032130-3



JIAO, ZHU, HE, MA, AND WANG PHYSICAL REVIEW E 103, 032130 (2021)

Such nonadiabatic internal dissipation accounts for irre-
versible entropy production and leads to an increase in mean
population 〈n〉 (see Fig. 1). Since the mean population 〈n〉
for the two-level system is bounded by −1/2 < 〈n〉 � 0, we
therefore have the relation: 0 � ξ < 1/2.

We are interested in the finite-time operation of the Otto
engine in which the isochoric processes are far away from

quasistatic limit, and thus complete thermalization cannot be
achieved for the system. Using the master equation of stochas-
tic thermodynamics, one can find that the mean populations
〈n(0)〉 and 〈n(τch + τh)〉 can be expressed in terms of the
corresponding asymptotic equilibrium values 〈nc〉eq and 〈nh〉eq

(see Appendix A),

〈n(0)〉 = 〈nc〉eq + [〈n(τcyc)〉 − 〈nc〉eq]e−γcτc , (10)

〈n(τch + τh)〉 = 〈nh〉eq + [〈n(τch)〉 − 〈nh〉eq]e−γhτh . (11)

Using Eqs. (8), (9), (10), and (11), 〈n(0)〉 and 〈n(τch + τh)〉 can be rewritten as

〈n(0)〉 = 〈nc〉eq + �c, 〈n(τch + τh)〉 = 〈nh〉eq + �h, (12)

where

�h = (2ξ − 1)[(2ξ − 1)〈nh〉eq + 〈nc〉eq] − xc[〈nh〉eq + (2ξ − 1)〈nc〉eq]

xhxc − (2ξ − 1)2 , (13)

�c = (2ξ − 1)[(2ξ − 1)〈nc〉eq + 〈nh〉eq] − xh[〈nc〉eq + (2ξ − 1)〈nh〉eq]

xhxc − (2ξ − 1)2 . (14)

Here xh ≡ eγhτh and xc ≡ eγcτc denote the effective time durations along the hot and cold isochoric branches, respectively. Here
〈nc〉eq and 〈nh〉eq are achieved in the reversible, quasistatic limit when xh, xc → ∞ leads to �h,c → 0, whether ξ is zero or not.
However, �c and �h are still positive for finite values of xc and xh even for two reversible driving processes with ξ → 0. These
corrections �c and �h indicate how far the heat-transfer processes deviate from the reversible limit, and imply that irreversibility
is exclusively caused by heat transferred between the system and the thermal bath. Such a deviation is quite natural in both
quantum heat engines and classical context when the heat-transfer processes are irreversible due to finite-time duration.

For this two-level engine, the probability distribution of quantum work Eq. (6) can be analytically obtained as

p(w) = [
1
2 + 2〈n(0)〉〈n(τch + τh)〉(1 − 2ξ ) − (1 − ξ )ξ

]
δ(w)

+ 1
2 [{1 − 2〈n(0)〉}(1 − ξ )ξ ]δ(w + h̄ωc)

+ 1
2 [{2〈n(τch + τh)〉 + 1}(1 − ξ )ξ ]δ(w − h̄ωh)

+ 1
4 [{2〈n(τch + τh)〉 − 1}{2〈n(0)〉 − 1}ξ 2]δ(w + h̄ωh + h̄ωc)

+ 1
4 [1 − {2〈n(τch + τh)〉}{2〈n(0)〉 + 1}(1 − ξ )2]δ(w + h̄ωh − h̄ωc)

+ 1
4 [{2〈n(τch + τh)〉 + 1}{1 − 2〈n(0)〉}(1 − ξ )2]δ(w + h̄ωc − h̄ωh)

+ 1
2 [{2〈n(0)〉 + 1}(1 − ξ )ξ ]δ(w − h̄ωc)

+ 1
4 [{2〈n(0)〉 + 1}{2〈n(τch + τh)〉 + 1}ξ 2]δ(w − h̄ωc − h̄ωh)

+ 1
2 [{1 − 2〈n(τch + τh)〉}(1 − ξ )ξ ]δ(w + h̄ωh). (15)

The stochastic work can take nine different discrete values as shown Fig. 2. The following should be noted regarding the
stochastic work per cycle: (i) w = 0 indicates that the stochastic work by the system along the expansion is fully counterbalanced
by that during the compression. (ii) w = h̄ωc − h̄ωh (w = h̄ωh − h̄ωc) corresponds to the case when the system jumps down
(up) from a high energy (low energy) state to a low energy (high energy) one along the driving stroke, namely, n = m = 1/2 but
i = j = −1/2 (n = m = −1/2 and i = j = 1/2) in Eq. (6). These values exist in the adiabatic or nonadiabatic driving. Unlike
the average work done by the system which must be positive work in an expansion, the quantum work can be negative even
in an expansion due to quantum fluctuations. (iii) There are more values of stochastic work in the nonadiabatic driving than in
the adiabatic case due to nonadiabatic transitions. (iv) Finally the distribution p(w) is expected to be normalized to 1 for either
adiabatic or nonadiabatic driving.

Using Eq. (3), the average heat injection, 〈qh〉 = ∫
qh p(qh)dqh, can be obtained as

〈qh〉 = h̄ωh[〈n(τch + τh)〉 − (1 − 2ξ )〈n(0)〉]. (16)

By using simple algebra (see Appendix B for details), the average work (〈w〉) and the work fluctuations (δw2 = 〈w2〉 − 〈w〉2)
can be obtained as

〈w〉 = h̄[ωc − (1 − 2ξ )ωh]〈n(0)〉 + h̄[ωh − (1 − 2ξ )ωc]〈n(τch + τh)〉, (17)
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FIG. 2. The probability distribution p(w) of the quantum work for the adiabatic (with ξ = 0, black squares) and nonadiabatic (with
ξ = 0.3, red dots) steps. The parameters are xc = xh = 8, ωc = 0.4ωh = 0.4, βh = 0.2βc = 0.2, and h̄ = 2.

〈w〉 = h̄(ωh − ωc)[〈n(τch + τh)〉 − 〈n(0)〉] + 2h̄ξ [ωh〈n(0)〉 + ωc〈n(τch + τh)〉], (18)

and

δw2 = h̄2ω2
h

[
1
2 − 〈n(0)〉2(1 − 2ξ )2 − 〈n(τch + τh)〉2

]
+ h̄2ω2

c

[
1
2 − 〈n(0)〉2 − (1 − 2ξ )2〈n(τch + τh)〉2]

− h̄2ωcωh(1 − 2ξ )[1 − 2〈n(0)〉2 − 2〈n(τch + τh)〉2].
(19)

Taking into account Eq. (18) for 〈w〉 > 0, we find that the
positive work condition can be given by

ξ < ξ+ ≡ 1

2

(ωc − ωh)[〈n(τch + τh)〉 − 〈n(0)〉]
ωc〈n(0)〉 + ωh〈n(τch + τh)〉 , (20)

which must be satisfied in order for the work to be extracted
from the heat engines.

From Eqs. (16) and (18), the machine efficiency defined by
η = 〈w〉/〈qh〉 can be expressed as

η = 1 − ωc

ωh

〈n(0)〉 − (1 − 2ξ )〈n(τch + τh)〉
(1 − 2ξ )〈n(0)〉 − 〈n(τch + τh)〉 . (21)

In case both isochoric and driving processes proceed in finite
time, internal dissipation and uncomplete thermalization oc-
cur in the system, resulting in the thermodynamic efficiency
(21) that depends on the time evolution along each cycle,
except if these four processes are infinitely long, making the
efficiency reduce to the one for cycles with complete thermal-
ization, η = 1 − ωc

ωh

(1−2ξ )〈nh〉eq−〈nc〉eq

〈nh〉eq−(1−2ξ )〈nc〉eq [11,17,18], or the one for
models without internal dissipation [4,5,17], η = 1 − ωc

ωh
.

The efficiency η and work fluctuations δw2 as a function
of the inverse temperature βc of the cold bath is shown in
Figs. 3(a) and 3(b). When decreasing temperature, the effi-
ciency η increases but the work fluctuations δw2 decrease.
The efficiency at low temperatures is larger than that at high
temperatures, showing that the quantum effects which are of
significance in the low temperature regime can improve the

machine efficiency. Because the quantum fluctuations char-
acterizing the low temperature domain are smaller than the
thermal fluctuations dominating the high temperature region,
the work fluctuations δw2 increase while the temperature is
increased and vice versa. Now let us consider fixed inverse
bath temperatures (βc and βh). In this case, the efficiency
and work fluctuations behave as a monotonic function of the
adiabacity parameter ξ as displayed in Figs. 3(c) and 3(d).
We note from Fig. 3(c) that the efficiency is nonpositive if
the positive work condition (20) is violated. The increase
in the adiabacity parameter ξ yields a decrease (an increase)
in the machine efficiency (work fluctuations) as it should.

As no specific form of the driving Hamiltonian is employed
throughout our engine model, we do not obtain the adiabatic-
ity parameter ξ in terms of the expansion and compression
Hamiltonian driving times τch and τhc. We do not determine
the power and power fluctuations; instead we analyze the
relative power fluctuations that are independent of the specific
driving Hamiltonians. Since the stochastic power is the work
divided by the cycle period τcyc, namely, ẇ[|n(0)〉; |n(τch +
τh)〉] = w[|n(0)〉; |n(τch + τh)〉]/τcyc, the relative fluctuations
of the power fẇ are equivalent to the corresponding ones of
work fw, namely, fẇ = fw =

√
δw2/〈w〉. For nonadiabatic

driving branches (with constant ξ ), the relative power fluctu-
ations are increasing with decreasing effective time durations
xc and xh; see Figs. 4(a) and 4(b). That is, when speeding up
the isochoric branches, both the average power and relative
power fluctuations are increasing. Figure 5 shows the relative
fluctuations fẇ as a function of the adiabaticity parameter ξ .
Our calculation shows that the relative fluctuations always
take positive values if the positive work condition (20) (i.e.,
ξ < ξ+) is satisfied. In contrast, if this condition is violated,
these relative fluctuations are negative (or divergent) due to
nonpositive power. In the physical regime in which the model
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FIG. 3. Efficiency and work fluctuations. (a), (b) The efficiency η and the work fluctuations δw2 as a function of the inverse temperature
of the cold bath, βc = 5βh, for ξ = 0.01 and ξ = 0.03, respectively. (c), (d) The efficiency η and the work fluctuations δw2 as a function of
the adiabaticity parameter ξ for βc = 1 and βc = 0.8 (with βh = 0.2βc ), respectively. In all figures, the efficiency and work fluctuations are
indicated by blue solid lines and red dashed lines, respectively. The parameters are xc = xh = 8, ωh = 2ωc = 1, and h̄ = 2.

FIG. 4. Contour plot of the relative fluctuations of the power fẇ in the effective time duration (xh, xc ) plane for a nonadiabatic driving, with
ξ = 0.01 (a) and ξ = 0.03 (b). The parameters are are βh = 0.2βc = 0.2, ωh = 2ωc = 1, and h̄ = 2.
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FIG. 5. Relative power fluctuations fẇ as a function of the adi-
abaticity parameter ξ for xh = xc = 8 (blue solid lines) and xh =
xc = 20 (red dashed lines). The parameters are βc = 10βh = 1, ωh =
2.5ωc = 1, and h̄ = 2.

operates as a heat engine by producing positive work, the
relative power fluctuations are increasing with increasing ξ .
We note that the upper limit of the adiabaticity parameter, ξ+,
increases as time durations (τc and τh) of isochoric strokes in-
crease. Figure 5, together with Figs. 4(a) and 4(b), shows that
the irreversibility either induced by finite heat flux between
the system and the bath or caused by internal irreversible
dissipation yields larger power fluctuations than those in the
reversible cycle operation.

IV. DISCUSSIONS AND CONCLUSIONS

Previous studies [14,18,40] assumed complete thermal-
ization that excludes the irreversibility occurring in the
finite-time heat-transfer process studied in our work. Quan-
tum heat engines in which both thermodynamic adiabatic
branches and heat-transfer branches proceed in finite time are
an interesting issue that requires further work. We made the
simplifying assumption that the system would thermalize to
a temperature different from one of the heat reservoir due
to finite-time operation. When removing this assumption, the
independent state approximation for the two driving strokes
must break down. A natural extension of our work would be
inclusion of correlation between probability distributions of
work in two driving processes due to finite-time incomplete
thermalization. Moreover, for systems far way from equi-
librium, the fluctuations originating from isochoric branches
through quantum coherence due to incomplete thermalization
must be included, and a generalization of our calculation to
such kind of fluctuations makes this an interesting line of
future study.

In summary, we derived the probability distribution of
stochastic work of quantum Otto engines working within
a cycle period of finite time that leads to irreversibility in
both the two isochoric and two driving processes. Employ-
ing a two-level system as the working substance of these
engines, we find that, although the average work is positive,
the quantum work may be negative due to quantum fluctua-
tions. Afterwards, we derived the analytical expressions for

work and efficiency, all of which are dependent on the time
allocations to the four thermodynamic processes. We finally
determined statistics of work as well as power at any finite
temperatures, and revealed the effects of irreversibility in-
duced by finite-time cycle operation on these work and power
statistics.
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APPENDIX A: TIME EVOLUTION OF POPULATION
ALONG AN ISOCHORIC PROCESS

The dynamics of the system with energy quantization
along the system-bath interaction interval can be described
by changes in the occupation probabilities pn at states n =
0, 1, 2, . . . . In this reduced description, the dynamical re-
sponse of the heat reservoir is cast in kinetic terms. The master
equation is given by [35,53]

ṗn =
∑

n′
Wn,n′ pn′ , (A1)

where the transition rate matrix Wn,n′ must satisfy
∑

n Wn,n′ =
0. For the system in contact with a heat bath of constant tem-
perature β, we assume that the transition rates from state n′ to
n, Wnn′ , fulfill the detailed balance Wnn′e−βEn′ = Wn′ne−βEn , en-
suring that the system can achieve asymptotically the thermal
state after an infinitely long system-bath interaction duration.
At thermal state, the occupation probabilities pn achieve their
asymptotic stationary values peq

n . These peq
n can be deter-

mined from the steady-state solution of Eq. (A1) and given
by the Boltzmann distribution: peq

n (β ) = e−βEn/Z, where Z =∑
n e−βEn is the canonical partition function.
For the two-level system where the energy spectrum reads

E+ = 1
2 h̄ω and E− = − 1

2 h̄ω, the master equation Eq. (A1)
becomes (

ṗ+
ṗ−

)
=

(−W−+ W+−
W−+ −W+−

)(
p+
p−

)
, (A2)

where these two transition rates W−+ and W+− obey the
detailed balance, W−+/W+− = e−β h̄ω. From Eq. (A2), the mo-
tion for the average population can be obtained as

〈ṅ〉 = −γ (〈n〉 − 〈n〉eq ), (A3)

where γ = W−+ + W+− and

〈n〉eq = −1

2

W−+ − W+−
W−+ + W+−

= −1

2
tanh

(
1

2
β h̄ω

)
. (A4)

From Eq. (A3), we find that instantaneous population 〈n(t )〉
along the thermalization process (staring at initial time t = 0)
can be written in terms of the population 〈n(0)〉,

〈n(t )〉 = 〈n〉eq + [〈n(0)〉 − 〈n〉eq]e−γ t . (A5)
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APPENDIX B: RELATION BETWEEN POPULATIONS AT THE BEGINNING
AND THE END OF A UNITARY DRIVING PROCESS

We consider the unitary time evolution along the driving compression A → B from t = 0 to t = τch to determine 〈n2(0)〉 and
〈n2(τch)〉 at A and B, respectively. Using p0

n = e−βAnh̄ωc/ZA with ZA = e−βAh̄ωc/2 + eβAh̄ωc/2, it follows that 〈n2(0)〉 = ∑
n n2 p0

n =
1/4. Meanwhile, 〈n2(τch)〉 can be calculated as

〈n2(τch)〉 =
∑
n,m

n2 pτch
m→n p0

m(βA) =
∑
n,m

n2|〈m|Ucom|n〉|2 p0
m(βA)

= 1

4ZA
[e−βAh̄ωc/2(|〈+|Ucom|+〉|2 + 〈+|Ucom|−〉|2) + eβAh̄ωc/2(|〈−|Ucom|+〉|2 + 〈−|Ucom|−〉|2)]

= 〈n2(0)〉 = 1

4
, (B1)

and 〈n(0)n(τch)〉 reads

〈n(0)n(τch)〉 =
∑
n,m

nmpτch
narrowm p0

n(βA) =
∑
n,m

nm|〈n|Ucom|m〉|2 p0
n(βA)

= 1

4ZA
[e−βAh̄ωc/2(|〈+|Ucom|+〉|2 − 〈+|Ucom|−〉|2) + eβAh̄ωc/2(−|〈−|Ucom|+〉|2 + 〈−|Ucom|−〉|2)] = 1

4
(1 − 2ξ ),

(B2)

where ξ = |〈±|Uexp|∓〉|2 = |〈±|Ucom|∓〉|2 and 1 − ξ = |〈±|Uexp|±〉|2 = |〈±|Ucom|±〉|2 have been used. For the unitary expan-
sion C → D of the two-level engine, we therefore have

〈n2(τcyc − τc)〉 = 〈n2(τch + τh)〉 = 1
4 (B3)

and

〈n(τch + τh)n(τcyc − τc)〉 = 1
4 (1 − 2ξ ). (B4)

Integrating over the probability distribution function Eq. (15) in the main text, the first two central moments of quantum work
can be calculated as

〈w〉 =
∫

wp(w)dw

=
∫

w dw
∑

m,n,i, j

pτch
n→m p0

n pτhc
i→ j pτch+τh

i δ{w − w[n(0) → m(τch); i(τch + τh) → j(τcyc − τc)]}

=
∫

w dw
∑

m,n,i, j

pτch
n→m p0

n pτhc
i→ j pτch+τh

i δ
{
w − [(

Eh
i − Ec

j

) − (
Eh

m − Ec
n

)]}

=
∫

w dw
∑

m,n,i, j

pτch
n→m p0

n pτhc
i→ j pτch+τh

i δ{w − h̄[(iωh − jωc) − (mωh − nωc)]}

= h̄[(ωc − (1 − 2ξ )ωh]〈n(0)〉 + h̄[(ωh − (1 − 2ξ )ωc]〈n(τch + τh)〉 (B5)

and

〈w2〉 =
∫

w2 p(w)dw

=
∫

w2dw
∑

m,n,i, j

pτch
n→m p0

n pτhc
i→ j pτch+τh

i δ{w − w[n(0) → m(τch); i(τch + τh) → j(τcyc − τc)]}

=
∫

w2dw
∑

m,n,i, j

pτch
n→m p0

n pτhc
i→ j pτch+τh

i δ
{
w − [(

Eh
i − Ec

j

) − (
Eh

m − Ec
n

)]}

=
∫

w2dw
∑

m,n,i, j

pτch
n→m p0

n pτhc
i→ j pτch+τh

i δ{w − h̄[(iωh − jωc) − (mωh − nωc)]}

= h̄2ω2
h〈n2(τch + τh)〉 − 2h̄2ωcωh〈n(τch + τh)n(τcyc − τc)〉 − 2h̄2ωcωh〈n(0)n(τch)〉

+ h̄2ω2
c 〈n2(0)〉 + 2h̄2[ωc − (1 − 2ξ )ωh]〈n(0)〉[ωh − (1 − 2ξ )ωc]〈n(τch + τh)〉

+ h̄2ω2
c 〈n2(τcyc − τc)〉 + h̄2ω2

h〈n2(τch)〉. (B6)
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With the above results, the second moment of stochastic work can be simplified as

〈w2〉 = 2h̄2
{

1
4

[
ω2

h + ω2
c − 2ωcωh(1 − 2ξ )

] + [ωc − (1 − 2ξ )ωh]

× 〈n(0)〉[ωh − (1 − 2ξ )ωc]〈n(τch + τh)〉}. (B7)

Combining this with Eq. (B5), the work fluctuations, δw2 = 〈w2〉 − 〈w〉2 can be obtained as Eq. (19) in the main text.
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