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Impurity-driven transitions in frustrated quantum Ising rings
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We study the quantum phase transition driven by a point impurity in a chain seamed with ring frustration. With
strong coupling and light impurity, the system is in a topological extended-kink (TEK) phase, which exhibits
gapless excitations in the bulk. With strong coupling and heavy impurity, the system is in a gapped kink bound
state (KBS) phase. Two-point bulk and impurity correlations are defined to characterize the two phases. In the
TEK phase, both the bulk and impurity correlations are long range and factorizable so that scaling functions can
be parsed. The scaling functions relies on the distance scaled by the system’s size. An impurity correlation length
can be extracted from the impurity correlation. In the transition from TEK to KBS, the scaling function of the
bulk correlation undergoes an abrupt steplike change. Meanwhile, the impurity correlation length decreases from
a divergent value to a finite one. The ground state of the TEK phase retains a relatively high value of entanglement
entropy due to the absence of symmetry breaking. However, spontaneous symmetry breaking occurs in the KBS
phase, which induces antiferromagnetic order in the bulk and entangled spin configuration near the impurity.
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I. INTRODUCTION

In the field of quantum phase transition [1], an impurity (or
defect) can play important roles. For instance, it can induce
remarkable bulk effects in critical or quasicritical systems
[2] and pave the way to designing and fabricating quantum
devices [3–5]. On the other hand, geometrical spin frustration
in low dimensions can induce strong quantum fluctuations that
lead to interesting phenomena [6]. Recently, the effect of ring
frustrationhas attracted interest because it can provide novel
quantum states [7–12]. It can produce topological extended-
kink (TEK) states forming a band of gapless excitations in
the bulk [13–16], which is in contrast to the usual cases of
gapped symmetry-protected topological systems [17,18]. For
a spin system, the simplest conditions to realize the TEK
phase include a tremendous ground-state degeneracy induced
by geometrical ring frustration and a source of quantum fluc-
tuations making the kinks spread and distribute evenly in the
bulk [12]. It has also been shown that a strongly interacting
fermion system can fulfill the conditions and realize the effect
of ring frustration [16].

It is an intriguing topic to explore the joint effect of the im-
purity and ring frustration. Motivated by this, we investigate
the role of a point impurity in a quantum Ising chain seamed
with ring frustration. In systems exhibiting ring frustration,
bond defects have been introduced and studied [11,16,19]. We
devote this work to the point impurity, through which we elu-
cidate some uncovered properties in such a system, including
the steplike change of the scaling function of the bulk correla-
tion, impurity correlation length, and the absence/occurrence
of spontaneous symmetry breaking. The main results in this
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work will not be observed in a system without ring frustration,
such as a quantum Ising chain with open boundary condition
[20,21].

The contents of this paper are organized as follows: In
Sec. II, we construct the ground-state phase diagram basing
on the rigorous solution. In Sec. III, we analyze the two-point
correlation function to characterize the phases and transitions
induced by the interplay between the ring frustration and
impurity. In Sec. IV, we discuss the absence of symmetry
breaking and entanglement entropy of the ground state in the
TEK phase. Then we discuss the occurrence of spontaneous
symmetry breaking in the kink bound state (KBS) phase in
Sec. V. Last, we give a summary and some discussions in
Sec. VI.

II. THE MODEL AND PHASE DIAGRAM

The model. The model we consider reads,

H = J
N∑

j=1

σ x
j σ

x
j+1 − h

N−1∑
j=1

σ z
j − μhσ z

N , (1)

where σ a
j (a = x, z) are Pauli matrices, and σ a

N+ j = σ a
j . The

geometrical ring frustration in the first term is guaranteed
by the odd total number of lattice sites, N ∈ odd, and the
antiferromagnetic coupling, J > 0. We shall set the reference
energy scale as J = 1, henceforth. The transverse fields are
tunable so as to realize a heavy point impurity at site N for
μ > 1 and a light one for 0 < μ < 1.

By the standard Jordan-Wigner transformation, f †
j =

1
2 (σ x

j + iσ y
j )

∏ j−1
l=1 (−σ z

l ) (1 � j � N ), one can find that the
exact solution of the model in Eq. (1) can be mapped to the
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TABLE I. Four modes singled out in Eqs. (4) and (5) that can
turn into complex modes if the corresponding root qi in Table II is a
complex number.

�1 �2 �3 �4

sgn(1 − h)ω(q1) ω(q2) ω(q3) −ω(q4)

proper channels of two fermion Hamiltonians [22],

H = P−
z HR + P+

z HNS, (2)

where the first and second terms represent the odd and
even channels respectively, P±

z = (1 ± Pz )/2 are projectors,
Pz = ∏N

j=1(−σ z
j ) is a parity operator, and

HR/NS =
N∑

j=1

( f †
j f j+1 + f j+1 f j + H.c.)

− h
N−1∑
j=1

(2 f †
j f j − 1) − μh(2 f †

N fN − 1), (3)

with the superscript R/NS meaning the “Ramond” sec-
tor or periodic boundary condition (PBC) ( fN+1 = f1) and
the “Neveu-Schwarz” sector or anti-PBC ( fN+1 = − f1) re-
spectively. We can diagonalize the fermion Hamiltonians
into the form of normal modes in terms of fermion opera-
tors ηq, η

†
q [20,21,23,24] (the diagonalization is discussed in

Appendix A),

HR =
∑
i=1,2

�i(2η
†
i ηi − 1) +

∑
q

ω(q)(2η†
qηq − 1), (4)

HNS =
∑
i=3,4

�i(2η
†
i ηi − 1) +

∑
q

ω(q)(2η†
qηq − 1), (5)

where �i’s are possible complex modes (listed in Table I in
Appendix A), and

∑
q means the sum over the rest of the

quasicontinuous modes ω(q) =
√

1 + h2 − 2h cos q.
Ground-state phase diagram. Let the vacua devoid of

quasiparticles for HR and HNS be denoted by |0R〉 and |0NS〉
respectively. Then we can recover the valid states of the target
Hamiltonian H by picking out the valid states in the odd
channel, P−

z HR, and the even channel, P+
z HNS, according to

Eq. (2). The ground state and the first excited state can be
written as ∣∣ER

0

〉 = η
†
1|0R〉, (6)

∣∣ENS
1

〉 = η
†
3η

†
4|0NS〉. (7)

For the ground state, the phase diagram is established and
illustrated in Fig. 1. We get three phases: (i) TEK phase
(μ � 1 and h < 1), (ii) kink bound state (KBS) phase (μ > 1
and h < 1), and (iii) paramagnetic (PM) phase (h > 1). The
schematics of the ground state, the first excited state, and the
lowest upper band in the transitions are depicted in Fig. 2. The
TEK and KBS phases are effects of ring frustration, which are
absent for a chain without ring frustration [12,21].

Because energy level crossing may occur for the first ex-
cited state in the transition between the phases, we also use
|ENS

1′ 〉 to denote it after the level crossing. The expression for

FIG. 1. Ground-state phase diagram. There are three phases:
TEK, KBS, and PM. The PM phase can be divided into two sub-
phases, PM-1 and PM-2, due to the energy level crossing of the first
excited state at μ = 1. The visualizations of the states in the insets
are obtained by perturbative treatment on a system with N = 41. The
parameters for |ER

0 〉 in the TEK phase are (h, μ) = (0.1, 1), and the
ones for |KBSR/NS〉 in the KBS phase are (h, μ) = (0.1, 2).

|ENS
1′ 〉 is the same as that in Eq. (7). For convenience, we use

|ENS
1 〉 for TEK and PM-1, and |ENS

1′ 〉 for KBS and PM-2,
as shown in Fig. 2. And due to this energy level crossing at
μ = 1, we can divide the PM phase into two subphases, PM-1
and PM-2.

TEK phase. There is no complex mode in this phase, since
all qi’s are real (Table II). We can divide this phase into two
subphases. When μ = 1, we get a translationally symmetric

FIG. 2. Schematics of the ground state (solid red lines), the first
excited state (dotted-dashed blue lines), and the lowest upper band
(shaded area) in the transitions: (a) from TEK to KBS; (b) from
KBS to PM-2; (c) from TEK to PM-1; (d) from PM-1 to PM-2. The
schematics is obtained by Eq. (2), which leaves the energy states with
valid parity. In the transitions, energy level crossing does not occur
for the ground state and the first excited state in (b) and (c), but does
occur for the first excited state in (a) and (d). Two kinds of energy
gaps, �2 and �1, above the ground state and the first excited state
are involved.
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TABLE II. Asymptotic expressions of the roots qi (i =
1, 2, 3, 4), when N � 1. The corresponding modes �i are de-
fined in Table I. If qi is a complex number, we may call �i a
complex mode. In the table, we have defined the following real pa-
rameters: a1 = π (1 − h)(1 − μ)/[N (1 − h)(1 − μ) + 1 + μ], a3 =
π (1 − h)(1 + μ)/[N (1 − h)(1 + μ) + 1 − μ], a2 = π − a1, a4 =
π − a3, b1 = b3 = ln[

√
μ2 + h2(1 − μ2 )2/4 + h(1 − μ2)/2], and

b2 = b4 = ln[
√

μ2 + h2(1 − μ2)2/4 − h(1 − μ2)/2].

Phase TEK KBS PM-1 PM-2

q1 a1 ib1 ib1 a1

q2 a2 π + ib2 a2 π + ib2

q3 a3 ib3 ib3 a3

q4 a4 π + ib4 a4 π + ib4

TEK subphase that has been described in previous studies
[12,16]. This phase was found to be topologically nontrivial
because one can work out the winding number, w = 1, by the
fermion Hamiltonians HR/NS [16]. When 0 < μ < 1, we get a
nonsymmetric TEK subphase because translational symmetry
is gone.

There are totally 2N extended-kink states composing the
lowest energy band of width 4h [see Fig. 2(a), or Fig. 9
in Appendix B). Including the ground state and the first
excited state, half of them come from the odd channel,
{η†

1|0R〉, η†
2|0R〉, η†

q|0R〉} (q �= q1, q2), and half of them from

the even channel, {η†
3η

†
4|0NS〉, η†

4η
†
q|0NS〉, |0NS〉} (q �= q3, q4).

Because the energy differences of adjacent levels go to zero
in the order O(1/N ), this band becomes quasicontinuous and
leads to gapless excitations in the thermodynamic limit.

A nice perturbative treatment can be applied here. The key
point is to utilize the 2N Ising kink states (the kink is indicated
by the box),

| j,→〉 = | . . . ,← j−1, → j,→ j+1 ,← j+2, . . . 〉, (8)

| j,←〉 = | . . . ,→ j−1, ← j,← j+1 ,→ j+2, . . . 〉 (9)

( j = 1, 2, . . . , N ),

of the Ising Hamiltonian, H0 = ∑N
j=1 σ x

j σ
x
j+1, and take the

restt of the Hamiltonian, HV = H − H0, as a perturbation. The
degeneracy of the 2N Ising kink states is lifted, the ground
state becomes unique, and a gapless energy band of width 4h
comes into being. In the symmetric case (μ = 1), the ground
state in the perturbative picture (the lowest inset in Fig. 1)
reads

∣∣ER
0

〉 ≈ 1√
2N

N∑
j=1

(| j,→〉 + | j,←〉). (10)

The expression of it in the nonsymmetric case can be found
in Appendix B. We see clearly that the kink is extended in the
bulk.

KBS phase. In this phase, all qi (i = 1, 2, 3, 4) become
complex (Table II), which induces complex modes. The com-
plex modes make both the ground state and the first excited

state become KBSs. We mark them specifically as

|KBSR〉 ≡ ∣∣ER
0

〉
, (11)

|KBSNS〉 ≡ ∣∣ENS
1′

〉
. (12)

They are degenerate in the thermodynamic limit, since
the energy gap between them goes to zero rapidly, �2 ∼
O(e−N ). Meanwhile, a finite gap opens above them,
�1 = 2(1 − h) − 2

√
1 + h2 − 2h cosh b1 with b1 = ln[h(1 −

μ2)/2 +
√

μ2 + h2(1 − μ2)2/4]. The number of KBSs is 2,
which is a consequence of Z2 symmetry. We can think that
there is a bulk-defect correspondence [25] between the two
KBSs and the symmetric TEK phase with winding number
w = 1.

To get a simple picture of the KBSs, we use the
same perturbative treatment introduced above (see details in
Appendix B). We found that the two KBSs can be expressed
as

|KBSR〉 ≈ ∑
j ψ j (| j,→〉 + | j,←〉), (13)

|KBSNS〉 ≈ ∑
j χ j (| j,→〉 − | j,←〉), (14)

where the coefficients are worked out as (for large enough N ∈
odd)

ψ j =
√

μ2−1
2μ

×
⎧⎨
⎩

μ− j
(
1 � j � N−1

2

)
,

μ−N+ j+1 (other j),
1 ( j = N − 1, N ),

(15)

χ j =
⎧⎨
⎩

(−1) jψ j
(
1 � j � N−3

2

)
,

(−1) j−1ψ j (other j),
0

(
j = N−1

2

)
.

(16)

The coefficients ψ j and χ j are depicted in the upper two insets
of Fig. 1, which show clear pictures of the kink’s localization
near the impurity.

PM phase. In PM-1, the ground state is an extended state,
while the first excited state shows localization behavior when
the light point impurity is present. Two gaps open at the same
time [Figs. 2(c) and 2(d)]. The gap from the ground state to the
first excited state is �2 = 2

√
1 + h2 − 2h cosh b1 with b1 =

ln[h(1 − μ2)/2 +
√

μ2 + h2(1 − μ2)2/4]. Another gap from
the first excited state to the bulk band is �1 = 2|h − 1| − �2.
In PM-2, the first excited state turns into an extended state
and becomes the bottom of the above band. Thus the gap
�1 is ∼O(1/N ), while the gap �2 = 2|h − 1| remains finite
[Figs. 2(b) and 2(d)].

There is a critical line h = 1 in the transition from TEK or
KBS to PM phases. The critical behavior is similar to the one
in previous studies [12,14]. In the following, we shall focus
on the TEK and KBS phases.

III. SCALING ANALYSIS OF THE TWO-POINT
LONGITUDINAL CORRELATIONS OF THE

TEK AND KBS PHASES

Definitions. The two-point longitudinal correlation func-
tion between sites j and j + r for the ground state |ER

0 〉 is
defined as

Cj, j+r = 〈
σ x

j σ
x
j+r

〉
, (17)
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FIG. 3. Two kinds of two-point longitudinal correlation func-
tions, Cb(r, α) and Ci (r, α), for bulk and impurity.

where 〈· · · 〉 means 〈ER
0 | · · · |ER

0 〉. Throughout the whole
paper, we only consider the longitudinal correlation func-
tion in the x direction. To simplify the notation, we have
dropped the superscript xx and simply denoted it as Cj, j+r . By
Wick’s theorem, the correlation functions can be expressed
in determinants, as demonstrated in Appendix C. Although
translational symmetry is broken by the impurity at site N ,
there still holds a reflection symmetry (Fig. 3),

CN− j−r,N− j = Cj, j+r . (18)

We investigate two kinds of correlation functions. The first
one is the impurity correlation, denoted by

Ci(r, α) ≡ CN,r, (19)

where the parameter α = r/N (0 < α < 1/2) is a distance
scaled by the system’s size. It measures the spin fluctuations
between the impurity at site N and another site r in the bulk.
The second one is the bulk correlation, denoted by

Cb(r, α) ≡ Cj0, j0+r, (20)

where

j0 = N − 1

2
−

[ r

2

]
( j0 �= N, j0 + r �= N ), (21)

and [ r
2 ] means taking the integer part of r

2 . For simplicity,
we have chosen the two sites, j0 and j0 + r, to be symmetric
about the impurity (Fig. 3).

As demonstrated by several exactly solvable models
[14,26], finite-size scaling analysis can unravel an unusual
scaling function R(α) due to the effect of ring frustration in
the correlation function when it is a long-range one. Here, we
look for the influence of the impurity.

Bulk correlation. We observed that the bulk correlation
Cb(r, α) is long range and factorizable in both the TEK and
KBS phases (h < 1) [27],

Cb(r, α) = (−1)rCb(r)Rb(α), (22)

FIG. 4. Analysis of the correlations, Cb(r) and Ci (r) in
Eqs. (23) and (26). The numerical data are produced by calcula-
tions on finite systems with fixed r (= 8) and increasing N (=
201, 401, 801, 1601). The numerical extrapolations to the limit N →
∞ are compared with the analytical formulas in Eqs. (23) and (26).
The selected parameters are h = 0.5 in (a) and (c), μ = 0 in (b)
and (d).

where

Cb(r) = (1 − h2)
1
4 (for all μ), (23)

Rb(α) =
⎧⎨
⎩

1 − 2α − 2
π

sin(απ ) (μ < 1),
1 − 2α (μ = 1),
1 (μ > 1).

(24)

We observe that the scaling function relies on the scale param-
eter α in the TEK phase and does not in the KBS phase. The
former part of the correlation, Cb(r), is numerically verified
and shown in Figs. 4(a) and 4(b), which fits the extrapolation
of the data of finite systems quite well. The steplike scaling
function Rb(α) in Eq. (24) is worked out by perturbative treat-
ment (Appendix B), and can be verified by rigorous numerical
calculation and finite-size scaling analysis, as shown in Fig. 5.
We label the shaded areas A1 and A2, which indicate the
differences between the results of finite systems and that by
the formula in Eq. (24). Scaling analysis in Fig. 5 shows the
behaviors A1 ≈ 1.41N−1 and A2 ≈ 2.57N−0.81.

Impurity correlation. Similarly, the impurity correlation
Ci(r, α) is long range and factorizable in the TEK phase,

Ci(r, α) = (−1)rCi(r)Ri(α), (25)

where

Ci(r) = (1 − h2)(1+μ2 )/8 (for μ � 1), (26)

Ri(α) =
{

1 − 2α + 1
π

sin(2απ ) (μ < 1),
1 − 2α (μ = 1).

(27)

However, in the KBS phase (μ > 1), the impurity correlation
becomes a short-range one,

Ci(r, α) ≡ CN,r ∼ e−r/ξi , (28)
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FIG. 5. Upper plot: Analysis of the scaling function Rb(α) with
α = 1/8 in the transition from TEK to KBS phases, which shows
the extrapolation to the limit N → ∞ meets the steplike function in
Eq. (24) very well. The shaded areas, A1 and A2, indicate the dif-
ference between the numerical data and the results by Eq. (24). The
parameter h = 0.5 is used. Inset: the same plot in a wider scope of
the parameter μ ∈ (0, 2). Lower left plot: Scaling analysis of A1 (≈
1.41N−1). Lower right plot: Scaling analysis of A2 (≈ 2.57N−0.81).

where the impurity correlation length is

ξi = 1

2 ln[
√

μ2 + h2(1 − μ2)2/4 + h(1 − μ2)/2]
. (29)

This formula is inferred from the result by perturbative theory
(Appendix B). It can be verified numerically, since it can be
defined in another way,

ξi = lim
N�r�1

[
ln

∣∣∣∣ CN,r

CN,r+1

∣∣∣∣
]−1

. (30)

As illustrated in Fig. 6, we observed that the data of finite sys-
tems with r = 10, 20, 30 and N = 101, 201, 401, 801, 1601
fit the formula very well. And, by scaling analysis, we found
that the impurity correlation length becomes divergent when
the system enters into the TEK phase, because it behaves as
ξi ∼ Nν with exponent ν = 1 at the transition point μ = 1
(please see the inset in Fig. 6).

IV. ABSENCE OF SYMMETRY BREAKING AND
ENTANGLEMENT ENTROPY OF THE GROUND STATE IN

THE TEK PHASE

First, we point out the absence of symmetry breaking in
the TEK phase, although it possesses long-range correlation as
shown by Eqs. (23) and (24). A clear picture is provided by the
perturbative theory introduced in Sec. II. We can assume that
spontaneous symmetry breaking occurs for the classical Ising
Hamiltonian H0 = ∑N

j=1 σ x
j σ

x
j+1, because the system can fall

into one of the degenerate 2N Ising kink states with lowest

FIG. 6. Impurity correlation length ξi in the KBS phase. The nu-
merical data are obtained by the formula in Eq. (30) with parameters
h = 0.5 and varying μ. The solid line denotes the rigorous formula
in Eq. (29). The inset depicts scaling analysis of ξi at the transition
point μ = 1, which shows a scaling behavior, ξi ∼ Nν with exponent
ν = 1.

energy. When the perturbation HV = H − H0 is turned on, the
degeneracy is lifted and the ground state becomes nondegen-
erate. The ground state by the perturbative theory, Eq. (10),
shows a highly entangled nature, because it contains all of
the 2N Ising kink states with equal weight. From it, one can
easily get zero value for the local magnetic order parameter
mx = 〈σ x

j 〉 = 0 for any site j. Moreover, it is not hard to prove
this result for the rigorous ground state in Eq. (6). Thus the
symmetry breaking in H0 is absent now. Now that the ground
state in the TEK phase exhibits an entangled nature, we can
use the entanglement entropy to characterize it rigorously.
Following the standard procedure [28], we divide the system
into two half parts: part A containing sites from N−1

2 to N − 1
and part B containing the rest. we can obtain the reduced
density matrix by tracing over the degrees of freedom of one
of the subsystem, ρA/B = trB/A(ρ) with ρ = |ER

0 〉〈ER
0 |. Then

the block entanglement entropy S between the two subsystems
is obtained by S = −tr(ρA log2 ρA) = −tr(ρB log2 ρB). The
numerical results are illustrated in Fig. 7. We observe that the
value of S is always higher than 2 in the TEK phase and turns
down at the transition point μ = 1. For comparison, the re-
sult for the well-known Greenberger-Horne-Zeilinger (GHZ)
state is 1, and the one for the Affleck-Kennedy-Lieb-Tasaki
(AKLT) model is 2 [29].

V. SYMMETRY BREAKING IN THE KBS PHASE

Now, we show that the Pz symmetry can be broken in the
KBS phase. We can display this phenomenon by defining two
states,

|±〉 = 1√
2

(|KBSR〉 ± |KBSNS〉), (31)

whose Pz symmetry is broken. Then the occurrence of spon-
taneous symmetry breaking can be obviously seen in the
framework of perturbative theory. By substituting Eqs. (13)
and (14) into Eq. (31), we can write the states |±〉 in the
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FIG. 7. Entanglement entropy S of the ground state in the TEK
and KBS phases. The selected parameters are h = 0.1, 0.7, 0.9 and
varying μ. The inset shows the scaling analysis for the case of h =
0.7. Please see the text for more details.

approximate form,

|±〉 ≈
∑

m=1,2,3,···
λm|imp〉m ⊗ |bulk,±〉m, (32)

where λm =
√

μ2 − 1/(
√

2μm) is the weight of each compo-
nent labeled by m, |imp〉m denotes the entangled impurity part
of the component that can be written as

|imp〉1 = | →N 〉 + | ←N 〉, (33)

|imp〉2 = | ←N−1,→N ,←1〉 + | →N−1,←N ,→1〉, (34)

|imp〉3 = | →N−2,←N−1,→N ,←1,→2〉
+ | ←N−2,→N−1,←N ,→1,←2〉, (35)

...

and |bulk,±〉m denotes the antiferromagnetic bulk part of the
component. If m ∈ odd, they read

|bulk,+〉m = | →m,←m+1, . . . ,←N−m〉, (36)

|bulk,−〉m = | ←m,→m+1, . . . ,→N−m〉, (37)

while if m ∈ even, they swap the expressions. Because λm

decreases rapidly with m increasing, the entangled impurity
parts, |imp〉m, show almost the same localization behavior in
the broken states |±〉 as that in |KBSR/NS〉.

To observe this symmetry breaking by rigorous calculation,
we define a special three-point correlation function among
sites j0, j0 + r, and N for the ground state |ER

0 〉,
Tj0, j0+r,N = 〈

σ x
j0σ

x
j0+rσ

z
N

〉
, (38)

in which j0 is defined in Eq. (21). Tj0, j0+r,N can be expressed
in determinants (Appendix C) and can be evaluated efficiently
for quite large systems. In the TEK phase, it gives zero value.
In the KBS phase, we demonstrate that it is an adequate
quantity for observing the symmetry breaking of the KBS
phase. The numerical result is illustrated in Fig. 8. We see
that Tj0, j0+r,N can be factorized into a product of a two-point

FIG. 8. Three-site correlation function Tj0, j0+r,N and the product
〈σ x

j0
σ x

j0+r〉〈σ z
N 〉, for a system with size N = 401 and parameters h =

0.1 and μ = 1.5. When j0 is far away from the impurity, we have
Tj0, j0+r,N ≈ 〈σ x

j0
σ x

j0+r〉〈σ z
N 〉, which means Tj0, j0+r,N is factorizable in

the thermodynamic limit. However, it cannot be factorized when site
j0 is near the impurity, which is reflected by the difference, �T =
Tj0, j0+r,N − 〈σ x

j0
σ x

j0+r〉〈σ z
N 〉, as shown in the inset.

bulk correlation and a one-point impurity average,〈
σ x

j0σ
x
j0+rσ

z
N

〉 ≈ 〈
σ x

j0σ
x
j0+r

〉〈
σ z

N

〉
, (39)

when both N and j0 are large enough. This signifies a
symmetry breaking in the bulk, because the two-point bulk
correlation is a long-range one, 〈σ x

j0σ
x
j0+r〉 ≡ Cj0, j0+r = (1 −

h2)
1
4 . Notice that we have Rb(α) = 1 now, according to

Eq. (24). Thus we can define the order parameter for the bulk
in the conventional way [30] and get

mx = 〈σ x
j0〉 = √|Cj0, j0+r | = (1 − h2)

1
8 ( j0 � 1). (40)

As a bonus, Tj0, j0+r,N can also reflect the localized and en-
tangled part of the ground state near the impurity ( j0 � 1).
As shown in the inset of Fig. 8, we observe that it cannot be
factorized for small j0 and the difference �T = Tj0, j0+r,N −
〈σ x

j0σ
x
j0+r〉〈σ z

N 〉 is robust against the change of the system’s
size near the impurity.

VI. SUMMARY AND DISCUSSION

In summary, we have constructed the ground-state phase
diagram of the frustrated quantum Ising chain in the presence
of a point impurity. The impurity can tune the system to depart
from the symmetric TEK phase. Light impurity induces a
gapless nonsymmetric TEK phase and heavy impurity induces
a KBS phase. Both phases are characterized by two-point
longitudinal correlations. It was demonstrated that the corre-
lations can be factorized when they are long-range ones. The
scaling function of the bulk correlation is shown to undergo a
steplike change in the transition between the two phases. The
absence of spontaneous symmetry breaking in the TEK phase
is stressed and entanglement entropy is calculated to reflect
the entangled nature of the ground state. In contrast, spon-
taneous symmetry breaking occurs in the KBS phase, which
induces antiferromagnetic order in the bulk and entangled spin
configuration near the impurity.
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Next, we discuss some important issues. First, PBC is of
great theoretical and experimental interest. Theoretically, it
can produce fascinating phase transitions and critical phenom-
ena [31–35]. Experimentally, there ha been much impressive
progress in designing and fabricating quantum devices with
ring structure to achieve potential applications [36,37]. In
our model, PBC is indispensable, because it maintains the
geometrical ring frustration and leads to the TEK and KBS
phases. In the same parameter region (h < 1), one would get
an usual antiferromagnetically ordered phase when there is no
ring frustration, e.g., the periodic chain with N ∈ even or the
open chain [21]. Our work shows that the effect of ring frus-
tration can be exploited to realize exotic quantum phases and
transitions. Second, the gapless TEK phase is distinct from
the critical models with gapless excitations in the literature
[35,38], since the entanglement entropy does not diverge here.
To maintain the effect of ring frustration, we did not cut the
ring and resorted to the bulk-defect correspondence instead
of the bulk-boundary correspondence as discussed in Sec. II,
which indicates that the TEK phase with gapless bulk excita-
tions is unconventional. In fact, the gapless TEK phase does
not belong to the typical categories of gapped phases with
symmetry-protected topological order or symmetry-breaking
order [18]. So how to categorize it remains an open question.
Finally, we must consider interaction terms in a pure fermion
system to realize the effect of ring frustration [16]. Thus the
frustrated spin model in this work has an interacting nature.
It would be very interesting to explore similar phenomena in
other relevant systems in which ring frustration can play an
important role.
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APPENDIX A: DIAGONALIZATION OF HR/NS

Here, we mainly explain the diagonalization of HR since
the procedure for HNS is almost the same. HR can be rewritten
as [20,21,23,24]

HR =
∑
i, j

[
f †
i Ai j f j + 1

2
( f †

i Bi j f †
j + H.c.)

]
. (A1)

The real matrices A and B are symmetric and antisym-
metric respectively, and their elements are given by Ai, j =
J (δi, j+1 + δi+1, j ) + 2h[(1 − μ)δi,N − 1] + J (δ1,N + δN,1) and
Bi, j = J (δi, j+1 − δi+1, j ) − J (δ1,N − δN,1). We try to find a lin-
ear transformation

ηq =
∑

j

(gq, j f j + hq, j f †
j ),

η†
q =

∑
j

(gq, j f †
j + hq, j f j )

(A2)

with canonical coefficients gq, j and hq, j , so that we can trans-
form the Hamiltonian into a diagonalized form,

HR =
∑
i=1,2

�i(2η
†
i ηi − 1) +

∑
q

ω(q)(2η†
qηq − 1), (A3)

FIG. 9. Comparison of the low-energy levels by perturbative the-
ory (dashed lines) and exact solution (solid lines) in the TEK and
KBS phases for N = 11 and h = 0.05. The red and blue lines are for
parities Pz = 1 and −1 respectively. With N increasing, the energy
levels in the middle become quasicontinuous.

where �1 and �2 are defined in Table I, and q in
∑

q
runs over the rest of the quasicontinuous modes, ω(q) =
2
√

1 + h2 − 2h cos q.
To work out the values of q, we introduce two matrices: �

with elements φq, j = gq, j + hq, j and � with elements ψq, j =
gq, j − hq, j . This leads to the eigenvalue problem

ω2� =�(A − B)(A + B),

ω2� =�(A + B)(A − B),

where ω = diag( . . . , ω(q), . . . ) is a diagonal matrix that
consists of eigenvalues. Then, following the standard proce-
dure described in Refs. [23,24,39], we arrive at the equation

2Pzμ sin q + h(μ2 − 1) sin Nq

+ sin(N + 1)q − μ2 sin(N − 1)q = 0 (A4)

with Pz = −1. All independent q (including q1 and q2) are
roots of this equation. Notice that Eq. (A4) has an extra bound-
ary term, 2Pzμ sin q, compared with the free open boundary
case [20]. It can be solved numerically. When N ∈ odd is
large enough, we can work out the asymptotic expressions of
the roots qi (i = 1, 2, 3, 4), as shown in Table II, in which
the phases are described in Sec. II of the main text. �1 and
�2 defined in Table I can become complex modes when
the corresponding roots denoted by q1 = a1 + ib1 and q2 =
a2 + ib2 are complex numbers as shown in Table II. We have
observed that the roots q1 and q2 change continuously from
real numbers to complex ones in the transitions. For instance,
q1 : a1 → 0 → ib1 and q2 : a2 → π → π + ib2.

Likewise we can transform HNS to

HNS =
∑
i=3,4

�i(2η
†
i ηi − 1) +

∑
q

ω(q)(2η†
qηq − 1). (A5)

where �3 and �4 are defined in Table I. They can become
complex modes when the roots denoted by q3 = a3 + ib3 and
q4 = a4 + ib4 are complex numbers as shown in Table II. All
independent q (including q3 and q4) are roots of Eq. (A4)
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with Pz = 1. We have also observed that the roots q3 and
q4 change continuously from real numbers to complex ones in
the transitions.

APPENDIX B: PERTURBATIVE THEORY FOR
THE TEK AND KBS PHASES

The perturbative theory is carried out in the subspace
composed of the one-kink Ising states in Eqs. (8) and (9),
which are also eigenstates of the main Hamiltonian H0 =∑N

j=1 σ x
j σ

x
j+1. As a perturbation (h � 1), the transverse term

HV = H − H0 does not commute with H0, so we can get
approximate eigenstates by diagonalizing it in this subspace.
Because of the commutator [Pz, H] = 0, we introduce an-
other set of states with good quantum number of Pz, | j,↑〉 =
(| j,→〉 + | j,←〉)/

√
2 and | j,↓〉 = (| j,→〉 − | j,←〉)/

√
2,

so as to get the effective Hamiltonian,

Heff =
N∑

j=1

[(2 − N )(| j,↑〉〈 j,↑ | + | j,↓〉〈 j,↓ |)

−h j+1(| j,↑〉〈 j + 1,↑ | − | j,↓〉〈 j + 1,↓ |
+H.c.)], (B1)

where h j = h + (μ − 1)hδ j,N . Heff can be solved numerically.
The energy levels of the lowest 2N energy states in the TEK
and KBS phases are illustrated in Fig. 9, which shows that the
perturbative theory is quite good for small enough h.

In the TEK phase, the unique ground state can be analyti-
cally worked out as

∣∣ER
0

〉 ≈
N−2∑
j=1

[cos q1 j + cos(N − j − 1)q1]| j,↑〉

+
N∑

j=N−1

[cos q1 + cos(N − 2)q1]

2 cos q1 − μ
| j,↑〉, (B2)

where q1 ≈ π (1−μ)
N (1−μ)+(1+μ) for μ � 1. In the KBS phase, it

becomes a KBS with odd parity and is denoted by |KBSR〉 =
|ER

0 〉 with q1 ≈ i ln μ for μ > 1. Another KBS with even
parity can be worked out as

|KBSNS〉 ≈
N−2∑
j=1

[sin q1 j − sin(N − j − 1)q1]| j,↓〉

+
N∑

j=N−1

(−1) j [sin q1 − sin(N − 2)q1]

2 cos q1 + μ
| j,↓〉.

(B3)

Equations (13) and (14) are recovered by taking N → ∞. The
two KBSs are degenerate.

The longitudinal correlation function of the ground state
defined in Eq. (17) can be directly worked out in the frame-
work of perturbative theory. By Eq. (B2), we get

Cj, j+r ≈ (−1)rF (q1)G(q1), (B4)

in which

F (q1) = 2 cos2
(

N−1
2 q1

)
2
N

[ cos q1+cos(N−2)q1

2 cos q1−μ

]2 + 1
N

∑N−2
l=1 [cos lq1 + cos(N − l − 1)q1]2

, (B5)

G(q1) = 1 − 2
r

N
+ sin(N − 2r − 2 j)q1 + sin Nq1 − sin(N − 2 j)q1

N sin q1
. (B6)

Substituting q1 into F (q1) and G(q1) and taking N → ∞, we find that

F (q1) →
⎧⎨
⎩

1 (μ < 1),
1
2 (μ = 1),
N (μ2−1)
2μeN ln μ (μ > 1),

(B7)

G(q1) →

⎧⎪⎨
⎪⎩

(1 − 2α) + sin[(1−2α−2 j
N )π]−sin[(1−2 j

N )π]
π

(μ < 1),
2(1 − 2α) (μ = 1),
1 − 2 r

N + 2μeN ln μ

N (μ2−1) [1 − e−2(N−r− j) ln μ + e−2(r+ j) ln μ + e−2(N− j) ln μ − e−2 j ln μ] (μ > 1).
(B8)

By substituting Eqs. (B7) and (B8) into (B4), we can recover the scaling functions Rb/i (α) as described in the main text. We can
also get the approximate impurity correlation length ξi = 1

2|q1| ≈ 1
2 ln μ

for the KBS phase (μ > 1).

APPENDIX C: DETERMINANT REPRESENTATION OF CORRELATION FUNCTIONS

By using Wick’s theorem and Majorana fermions,

Aj = f †
j + f j, Bj = f †

j − f j, (C1)

the two-site longitudinal correlation function defined in Eq. (17) can be represented by a rth-order determinant. First, we can
write down

Cj, j+r =〈0R|ηz1 BjAj+1Bj+1Aj+2 · · · Aj+r−1Bj+r−1Aj+rη
†
z1
|0R〉. (C2)
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Then by the contractions 〈
ηz1η

†
z1

〉 = 1,

〈AiAj〉 = −〈BiBj〉 = δi, j,

〈BjAj+r〉 ≡ Gj, j+r =
∑

q

(hq, j − gq, j )(hq, j+r + gq, j+r ),

〈
ηz1 Aj+r

〉〈
Bjη

†
z1

〉 − 〈
ηz1 Bj

〉〈
Aj+rη

†
z1

〉 ≡ Fj, j+r = 2
(
hz1, j − gz1, j

)
(hz1, j+r + gz1, j+r ) (C3)

we can arrive at

Cj, j+r = det

⎡
⎢⎢⎣

Gj, j+1 − Fj, j+1 Gj, j+2 − Fj, j+2 · · · Gj, j+r − Fj, j+r

G j+1, j+1 − Fj+1, j+1 Gj+1, j+2 − Fj+1, j+2 · · · Gj+1, j+r − Fj+1, j+r
...

Gj+r−1, j+1 − Fj+r−1, j+1 Gj+r−1, j+2 − Fj+r−1, j+2 · · · Gj+r−1, j+r − Fj+r−1, j+r

⎤
⎥⎥⎦. (C4)

Except for the translationally symmetric case (μ = 1), this determinant is generally not a Toeplitz determinant due to the presence
of impurity (μ �= 1); however, it can still be evaluated numerically for quite large systems.

The three-site correlation function defined in Eq. (38) can also be represented by a determinant. By Wick’s theorem, we have

Tj, j+r,N = − 〈0R|ηz1 BN AN BjA j+1Bj+1Aj+2 · · · Aj+r−1Bj+r−1Aj+rη
†
z1
|0R〉. (C5)

Then we can write it into a (r + 1)-th order determinant,

Tj, j+r,N = − det

⎡
⎢⎢⎢⎢⎣

GN,N − FN,N GN, j+1 − FN, j+1 · · · GN, j+r − FN, j+r

G j,N − Fj,N Gj, j+1 − Fj, j+1 · · · Gj, j+r − Fj, j+r

G j+1,N − Fj+1,N Gj+1, j+1 − Fj+1, j+1 · · · Gj+1, j+r − Fj+1, j+r
...

Gj+r−1,N − Fj+r−1,N Gj+r−1, j+1 − Fj+r−1, j+1 · · · Gj+r−1, j+r − Fj+r−1, j+r

⎤
⎥⎥⎥⎥⎦. (C6)
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