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Thermally driven state in a spin-1 model with competing interactions
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We study a recently proposed spin-1 model with competing antiferromagnetic first-neighbor interaction and
a third-neighbor coupling mediated by nonmagnetic states, which reproduces topological features of the phase
diagrams of high-Tc superconductors [S. A. Cannas and D. A. Stariolo, Phys. Rev. E 99, 042137 (2019)]. We
employ a cluster mean-field approach to investigate effects of crystal field anisotropy on the phase transitions
hosted by this model. At low temperatures, the temperature-crystal field phase diagram exhibits superantifer-
romagnetic (SAF), antiferromagnetic (AF), and paramagnetic (PM) phases. In addition, we found a thermally
driven state between SAF and PM phases. This thermally driven state and the SAF phase appears in the phase
diagram as a domelike structure. Our calculations indicate that only second-order phase transitions occur in the
PM-AF phase boundary, as suggested by previous Monte Carlo simulations.
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I. INTRODUCTION

Competing interactions in strongly correlated materials are
a continuous source of complex and novel phenomena. De-
spite decades of active research, describing many of these
systems still remains a challenge for both theoretical and ex-
perimental standpoints. In particular, relevant insights into the
physics of correlated systems have been revealed by the study
of interacting spin models. Although incorporating a reduced
number of degrees of freedom, magnetic models have allowed
us to unveil mechanisms underlying several interesting phe-
nomena, such as order by disorder [1–3], inverse transitions
[4–6], and quantum criticality [7–9], to name a few. Central to
the advances achieved so far is the proposal of models capable
to incorporate the basic features of more complex systems.
Recently, a three-state pseudospin model with competing an-
tiferromagnetic and pairing interactions has been proposed
by Cannas and Stariolo (CS) [10] to reproduce the structure
found in phase diagrams of high-temperature superconductors
[11,12], including antiferromagnetic long-range order and a
domelike phase boundary. However, several aspects of this
model, such as the nature of phase transitions and possible
other types of orderings, still deserve further attention. In the
present work, we investigate the phase diagram of the CS
model by means of cluster mean-field (CMF) calculations.

The three-state CS model [10] considers two types of
interactions: an antiferromagnetic (AF) interaction (JA) be-
tween first-neighbors and a third-neighbor AF coupling JB,
which is mediated by holes (represented by nonmagnetic spin
states). The latter can be seen as a type of three-site four spin
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interaction, which can drive a rather unusual form of long-
range order, the so called superantiferromagnetic (SAF)
phase. In this state, the system is divided into two interpen-
etrated sublattices: one with very low local magnetization and
the other showing an AF pattern (see Fig. 1). For a relevant
strength of the interactions (JB = 2JA), effects of chemical
potential (μ) on the competition between ordered phases were
evaluated within standard mean-field approach and Monte
Carlo simulations [10]. At low temperature (T ), tuning the
chemical potential can lead to the onset of a SAF state, which
appears in a domelike structure in the T -μ plane. In addition,
the ground state changes from the SAF phase to an AF phase
when magnetic states are favored by μ. Therefore, the CS
model is able to reproduce the topology of the phase diagrams
of high-temperature superconductors induced by hole doping.

Despite the ground-state transitions are established for the
CS model, the mean-field calculation and Monte Carlo simu-
lations lead to rather different descriptions for the nature of the
phase transitions in the CS model [10]. One of the relevant dis-
crepancies concerns the transition line between paramagnetic
(PM) and SAF phases: while Monte Carlo results indicate
the presence of both first- and second-order phase transitions,
standard mean-field findings suggest only first-order phase
transitions. Moreover, for the PM-AF phase boundary, mean-
field calculations indicate the presence of both first-order and
second-order phase transitions, but no evidence of first-order
phase transitions are found within Monte Carlo results. There-
fore, further studies of the CS model are required to shed some
light on the nature of phase transitions. It also should be noted
that additional investigations can unveil novel and unexplored
features of the model.

The description of phase transitions in models with
competing interactions often represent a challenge for theo-
rists. While the simplest approach—the standard single-site
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FIG. 1. Representation of the clusters considered in the CMF approach with (a) ns = 4 and (b) ns = 8. In the reference system, the clusters
are decoupled from the neighborhood and only intercluster interactions (solid lines) are treated exactly. The intercluster interactions (dashed
lines) are evaluated within a mean-field procedure. The SAF ground-state is depicted with arrows representing the magnetic states (Si = ±1)
and empty circles denoting the nonmagnetic states (Si = 0).

mean-field theory—allows a straightforward description of
phase boundaries, this method neglects effects of correlations,
which can be relevant for the nature of phase transitions
[13]. However, Monte Carlo simulations allows to incorpo-
rate the role of correlations, but classifying phase transitions
can be very tricky within this approach, in which finite-size
effects should be taken into account [14,15]. Therefore, alter-
natives to these methods are often required to describe phase
boundaries. A method that allows to incorporate short-range
correlations and still provides a simple framework to evaluate
the nature of phase transitions is the cluster mean-field theory.
The method consists in evaluating exactly the interactions
within a given cluster, while the intercluster couplings are
computed in a mean-field fashion [16–18]. The CMF theory
has been recently employed in the study of several systems
with competing interactions [18–29], often providing an ac-
curate description for the nature of phase boundaries [18,27–
29]. Motivated by the issues concerning the nature of phase
transitions of the CS model, we propose a CMF investigation
of this model, with particular focus on the nature of phase
transitions and the possible onset of other ordered states.

The paper follows with the model definition and its treat-
ment within the cluster mean-field theory in Sec. II. In Sec. III,
we present a detailed discussion of the obtained results. We
present our conclusion in Sec. IV.

II. MODEL

We considered the spin-1 model proposed by Cannas and
Stariolo [10], which is given by the Hamiltonian

H = −JA

∑
〈i, j〉

SiS j − JB

∑
〈〈i, j,k〉〉

(
1 − S2

i

)
S jSk − D

∑
i

S2
i , (1)

where Si represents the spin variables placed at the vertices
of a square lattice, which can assume three different states
Si = ±1, 0. The first sum, denoted by 〈i, j〉, runs over first-
neighbors and incorporates an interaction of strength JA. The
second term accounts for a third-neighbor coupling of strength
JB, which is mediated by nonmagnetic states (Si = 0). It is
also worth to mention that this coupling is expected to mimic
a pairing interaction [10]. The sum denoted by 〈〈i, j, k〉〉 runs

over sites i, j and k, such that j is a third neighbor of k and
i is a first neighbor of both j and k. The last term in the
Hamiltonian incorporates the crystal field D, which can be
used to tune the energetic favoring of magnetic (when D > 0)
or nonmagnetic states (when D < 0). In this way, the crystal
field plays an analogous role of the chemical potencial consid-
ered by the authors of the model [10]. Following Ref. [10], we
considered both couplings to be antiferromagnetic (JA = −1
and JB = −2). We note that a negative JA favors a parallel
alignment between third neighbors, acting against the antifer-
romagnetic coupling between third neighbors JB. Thus, there
is a competition between JA and JB.

To investigate the model of Eq. (1), we considered a CMF
approximation [18], based on the Bogoliubov inequality

F � φ = F0 + 〈H − H0〉0, (2)

where F is the free energy of the original system, F0 is the
free-energy of a reference system with Hamiltonian H0, and
〈· · · 〉0 denotes an average with respect to H0. In this work, we
considered that the reference system is composed of Ncl clus-
ters with ns sites each. The spins on this clusters are coupled
with intracluster neighbors (for ns > 1) and with variational
parameters, which means that the clusters are decoupled from
the neighborhood. We note that the cluster size and shape
considered are relevant to the outputs of this method. In the
present work, we considered four levels of approximation: the
single-site approximation and clusters with ns = 4 [Fig. 1(a)],
ns = 8 [Fig. 1(b)], and ns = 12 (Fig. 11). In the following, we
discuss the CMF procedure for ns = 4, providing details for
ns = 1, 8, and 12 in the Appendices A, B, and C, respectively.

For ns = 4, our reference system is a square lattice divided
in identical square clusters, as illustrated in Fig. 1(a). Then, H0

can be written as a sum of the Hamiltonians of each cluster,
so we can express it as H0 = ∑Ncl

ν H ν
0 . The Hamiltonian of a

single cluster ν is given by

H ν
0 = Hin −

∑
i∈ν

ηiSi −
∑

(i,k∈ν)

λi,kS2
i Sk, (3)
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where

Hin = −JA

∑
〈i, j∈ν〉

SiS j − D
∑
i∈ν

S2
i , (4)

with the first sum running over the intracluster first neighbors,
with each pair counted only once. The variational parameters
ηi and λi,k are coupled to single sites (Si) and pairs of sites
(S2

i Sk), respectively. In addition, (i, k ∈ ν) indicates a sum
over all sites (i) of the cluster ν and its intracluster nearest
neighbors (k).

To evaluate the last term in Eq. (2) we divided the original
system into Ncl interacting clusters. In this way, we can write

〈H ν〉0 = − JA

∑
〈i, j∈ν〉

〈SiS j〉0 − JA

2

∑
(i, j′ )

〈SiS j′ 〉0

− JB

∑
〈〈i, j′,k〉〉

〈(
1 − S2

i

)
S j′Sk

〉
0 − D

∑
i∈ν

〈S2
i 〉0,

(5)

where (i, j′) in the second sum refers to intercluster interac-
tions where i belongs to cluster ν and j′ belongs to a cluster
in the neighborhood of ν. The 1/2 factor is adopted to avoid
double counting of the interactions. The third sum accounts
for the intercluster couplings mediated by nonmagnetic states,
where i and k belongs to ν and j′ belongs to a neighbor cluster.

As the averages are taken with respect to a system of
decoupled clusters, we can write

〈SiS j′ 〉0 = 〈Si〉0〈S j′ 〉0, (6)

and
〈(

1 − S2
i

)
S j′Sk

〉
0 = 〈(

1 − S2
i

)
Sk

〉
0〈S j′ 〉0. (7)

Then, the upper limit of the free energy per cluster is given by

φν = − 1

β
ln(Tre−βHν

0 ) − JA

2

∑
(i, j′ )

〈Si〉0〈S j′ 〉0

− JB

∑
〈〈i, j′,k〉〉

〈(
1 − S2

i

)
Sk

〉
0〈S j′ 〉0

+
∑
i∈ν

ηi〈Si〉0 +
∑

(i,k∈ν)

λi,k
〈
S2

i Sk
〉
0,

(8)

where β = 1/T . In the following, we discuss the CMF solu-
tion for each long-range order observed in the model.

In the antiferromagnetic solution, the clusters are identical
due to the periodicity two of the phase. It means that the site
i in a cluster ν is equivalent to the site i′ in the cluster ν ′, i.e.,
〈Si〉0 = 〈Si′ 〉0. For the SAF phase, however, equivalent sites
from neighbor clusters show local magnetizations of opposite
signs, as shown in Fig. 1(a). Therefore, we considered that
〈Si〉0 = −〈Si′ 〉0 for the SAF solution. Then, minimization of
Eq. (8) leads to the effective Hamiltonian of the AF/SAF
phase

HAF/SAF
eff = Hin ∓ JA

∑
(i, j∈ν)

Simj

∓ JB

∑
(i, j∈ν)

Si
[(

2 − S2
j

)
mi − Cji

]
,

(9)

where the upper (lower) signs account for the AF (SAF)
solution. In addition,

mi = 〈Si〉 = Tr Si e−βHAF/SAF
eff

Tr e−βHAF/SAF
eff

(10)

and

Cji = 〈
S2

j Si
〉 = Tr S2

j Si e−βHAF/SAF
eff

Tr e−βHAF/SAF
eff

. (11)

After solving the self-consistent Eqs. (9), (10), and (11), one
can compute the free-energy of the AF/SAF solution, which
is given by

φν
AF/SAF = − 1

β
ln

(
Tre−βHAF/SAF

eff
) ± JA

∑
〈i, j∈ν〉

mimj

±JB

∑
(i, j∈ν)

mi(mi − Cji ). (12)

It is important to point out that the orders can also be
identified by considering sums and differences of local mag-
netizations [30]. In particular, the thermodynamic phases can
be described by the following order parameters: mA = (m1 +
m2 + m3 + m4)/4 and mB = (|m1 − m2| + |m3 − m4|)/4. For
instance, the AF phase occurs when mA = 0 and mB �= 0. The
SAF order is characterized by mA �= 0 and mB �= 0, while the
PM phase presents mA = 0 and mB = 0.

As will be discussed in the following section, we also find
a cluster antiferromagnetic state, in which the local magne-
tizations follow the pattern depicted in Fig. 4, with order
parameters mA �= 0 and mB = 0. For the cluster of size ns = 4,
the relation 〈Si〉0 = −〈Si′ 〉0 is also valid, which means the
cluster antiferromagnetic solution could be obtained by using
the equations of the SAF solution.

III. RESULTS AND DISCUSSION

We computed the different self-consistent solutions for the
mean-field parameters and, then, used the local magnetiza-
tions and the free-energy to locate the phase boundaries. This
allowed us to evaluate phase diagrams of the temperature ver-
sus the crystal field at three levels of approximation, namely,
for cluster sizes ns = 1, 4, and 8. We start by analyzing the
case where the cluster has size ns = 1, i.e., within the usual
mean-field approach. It is important to remark that in this case,
as each cluster has a single site, we solved the self-consistent
mean-field equations for four clusters to capture the AF and
SAF symmetries.

Figure 2 exhibits the phase diagram within the single-site
mean-field level. We note that AF and SAF phases can be
found at low temperatures, depending on the crystal field
value. At zero temperature, the system is found in the AF state
for D/|JA| � 0 and in the SAF state for −4 � D/|JA| � 0.
For D/|JA| � −4, a zero-temperature PM state is observed,
as a consequence of the nonmagnetic states favored by the
crystal field. It is worth to mention that the ground-state de-
scription is in agreement with the Monte Carlo results and
the MF calculations from Ref. [10]. We also note that thermal
fluctuations can lead to the onset of a PM state. In particular,
the SAF phase is found in a domelike structure in the phase
diagram, as suggested by the Monte Carlo results. Moreover,
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FIG. 2. Phase diagram of T/|JA| vs D/|JA| for ns = 1. Dashed
and solid lines represent first-order and second-order phase transi-
tions, respectively. The circle represents the tricritical point.

the MF findings indicate that the transitions between the
SAF phase and other phases are discontinuous. However, the
phase boundary between paramagnetic and antiferromagnetic
phases exhibit both continuous and discontinuous phase tran-
sitions, with a tricritical point near (D/|JA|, T/|JA|) = (6.25,
3.23). We note that this tricritical point is found at larger val-
ues of crystal field when compared to the findings of Ref. [10].
This divergence in the results occurs because in the present
work we allowed thermally dependent local densities in the
AF solution. It is also important to remark that in the Ising
limit, i.e., when D → ∞, our analysis gives a finite Néel
temperature (TN/|JA| = 4), which is in agreement with pre-
vious mean-field results [31]. We note that the nature of phase
transitions at the mean-field level are rather different from
the Monte Carlo findings [10]. In particular, the simulations
in Ref. [10] indicate that only second-order phase transitions
occur between PM and AF phases and that the PM-SAF
phase boundary exhibits both first- and second-order phase
transitions. This suggests that it is necessary to go beyond the
single-site mean-field treatment to improve the description of
the present model.

As an attempt to improve the canonical mean-field treat-
ment, we first consider a cluster mean-field approach with
ns = 4. In this case, the phase diagram (see Fig. 3) exhibits
several differences when compared to the results for ns = 1.
For instance, second-order AF-PM phase transitions are found
for lower values of D/|JA|. In particular, tricriticality occurs
for D/|JA| ≈ 0.9.

Surprisingly, we also found a magnetic order not pre-
viously reported for this model. This magnetic state, here
referred as cluster antiferromagnetic (CAF) phase, is found
between the SAF phase and the high-temperature paramag-
netic state. In the CAF phase, the local magnetizations exhibit
a pattern with the formation of four-site square plaquettes, as
shown in Fig. 4.

To better describe the CAF phase, we investigate some
relevant properties of this order, such as the local magneti-

FIG. 3. Phase diagram of T/|JA| vs D/|JA| for ns = 4. Dashed
and solid lines represent, respectively, first and second-order phase
transitions. The tricritical point is indicated by the filled circle.

zations and the correlations Ci j . Figure 5(a) shows the local
magnetizations for D/|JA| = −2, where a first-order phase
transition between SAF and CAF phases is driven by thermal
fluctuations. We note that in the ground-state, the sites 2 and
3 present zero magnetization. However, thermal fluctuations
lead to a finite magnetization on these sites even within the
SAF phase. In particular, near the SAF-CAF phase transition,
all the local magnetizations show a strong dependence on tem-
perature. In the CAF phase, the local magnetizations show a
finite value, which decreases with the increase of temperature
until it vanishes at a second-order phase transition to a PM
phase. The analysis of the local magnetizations, may suggest
the correlations Ci j in the CAF phase should exhibit a larger
value when compared to the SAF phase. However, our find-
ings show that the correlation 〈S2

2S1〉 is significantly reduced
as the system enters in the CAF phase [see Fig. 5(b)]. Overall,
the CAF phase shows very low values for the correlations Ci j .

FIG. 4. Representation of the cluster antiferromagnetic order for
ns = 4.
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FIG. 5. Thermal dependence of (a) local magnetizations and
(b) correlations for D/|JA| = −2 and ns = 4. The gray region indi-
cates the range of temperature in which the CAF phase is stable.

Therefore, a more complete description of this phase requires
an analysis of the spin states that are relevant for this type of
ordering.

In this way, we investigate the probability of spin states
as a function of temperature for D/|JA| = −2 (see Fig. 6).
For a cluster state σ described by spins (S1, S2, S3, S4) [see
Fig. 1(a)], the probability of this state is given by Pσ =
e−βEσ /Z , where Eσ is the energy related to this state and Z is

FIG. 6. Probability of different spin states as a function of tem-
perature for D/|JA| = −2 and ns = 4. The gray region indicates the
range of temperature in which the CAF phase is stable.

the partition function. We found that as T → 0 the probability
P(1,0,0,1) → 1, in agreement with the behavior of the local
magnetizations [see Fig. 6(a)]. Moreover, the probability of
other states is also increased by temperature, which is an
expected outcome of thermal fluctuations.

In the CAF region, based on the local magnetizations,
one could expect that the probability of the state σ =
(1, 1, 1, 1) should be greater than the probability of other
states. However, we found that this state has low proba-
bility, being very close to zero [see Fig. 6(b)]. The high
probability of these states can be clarified by considering
the competitive scenario and the role of thermal fluctua-
tions. In particular, the crystal field favors only nonmagnetic
sites while JB favors states in which half the sites are mag-
netic. Therefore, the state σ = (1, 1, 1, 1) is not favored
neither by D nor by JB, making it very unlikely. In this
context, thermal fluctuations yield a highly degenerate phase
in which nonmagnetic and magnetic sites play a significant
role. For example, the states with only one magnetic site
[σ = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0,0,0,1)] are of
large probability. These results explain the low values for the
correlations and local magnetizations within the CAF ther-
modynamic phase, as shown in Fig. 5. Thereby, we propose
that the CAF phase is a thermally driven degenerate state. We
also note that the probability of relevant states with magnetic
sites is reduced as temperature is increased and the CAF-PM
phase transition is approached. However, the probability of
σ = (0, 0, 0, 0) shows a maximum at the phase transition,
indicating that nonmagnetic states play a significant role near
the CAF-PM phase transition.

A relevant quantity in the description of the present model
is the density of magnetic sites, which is given by

ρ = 1

ns

∑
i∈ν

ρi, (13)

FIG. 7. Thermal dependence of the density of magnetic sites for
several values of D/|JA|. Inset: local density of magnetic sites as
a function of temperature for ns = 4 and D/|JA| = −2. An arrow
indicates the temperature of the transition between CAF and PM
phases.
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FIG. 8. Phase diagram of T/|JA| vs D/|JA| for ns = 8. Dashed
and solid lines represent, respectively, first- and second-order phase
transitions.

where ρi = 〈S2
i 〉 are local densities. In Fig. 7, we present ρ as

a function of temperature for different values of D/|JA| and
ns = 4. We observe a discontinuity in ρ at the SAF-CAF tran-
sition, which occurs due to the first-order nature of this phase
transition. However, a much more subtle change in density is
observed at the CAF-PM transition. This could be attributed
to the second-order nature of the phase transition and that in
both phases a variety of spin states are relevant. It is worth to
remark that our findings for ρ are in good agreement with the
Monte Carlo simulation [10] for this model. Despite the CAF
phase is not reported in Ref. [10], we note that the density
is not the ideal parameter to identify a CAF-PM transition,
specially when error bars should be taken into account, as
in Monte Carlo methods. In the inset of Fig. 7, we show

the thermal dependence of the local density of magnetic sites
(〈S2

i 〉) for the sites one and two. We note that in the SAF phase,
the local densities are different on sites belonging to different
sublattices, contrary to what occurs in the CAF phase, in
which all the local densities are identical. It means that the
difference between local densities of nearest-neighbors could
be a useful tool to identify whether the system is on a SAF or
CAF state.

To prevent a possible effect of the particular choice of clus-
ter on the CMF outcomes, we investigate clusters of sizes ns =
8 [see Fig. 1(b)] and ns = 12 (see Fig. 11). The phase diagram
obtained within the ns = 8 approximation is shown in Fig. 8.
As a result, we find that the PM-AF phase boundary shows
only second-order phase transitions, which is in qualitative
agreement with the Monte Carlo simulations [10]. Moreover,
the CAF phase is still found at intermediate temperatures,
which indicates that this state is not an artifact of the cluster
size adopted within the CMF theory. However, we remark that
the CAF region is moderately reduced when compared with
the ns = 4 approximation. Since the mean-field-like methods
usually overestimate the ordering temperatures, a small reduc-
tion in the CAF region, as the approximation is improved, is
expected. However, it also raises a question on whether the
presence of the CAF phase is robust under the increase of ns.

To shed some light on this question, we investigate the local
magnetizations behavior in a ns = 12 cluster for different val-
ues of D/|JA|. In Fig. 9, we show a comparative between the
magnetizations of topologically equivalent sites for ns = 12
(see Fig. 11) and ns = 8, as well as the order parameters
for ns = 4. We note that the CAF region is slightly reduced
when the cluster increases from ns = 8 to ns = 12, indicating
that the CAF phase remains present for larger ns. Also, we
observe a more noticeable decrease in the CAF region for
lower values of D, indicating that the CAF region might be
slightly displaced toward larger values of D/|JA|.

We also note that the nature of the phase transitions in-
volving SAF, CAF and PM phases are the same for ns = 4,

FIG. 9. Thermal dependence of order parameters for ns = 4 and local magnetizations for ns = 8 and 12 (see Fig. 11) at different values of
D/|JA| : −1.5, −2.0, and −2.5. The gray regions indicate the temperature ranges of the CAF phase.
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8, and 12. In particular, the ground-state description remains
unchanged within all the different levels of approximation
adopted.

IV. CONCLUSIONS

We investigate a three-state spin model with competing
interactions, including a hole-mediated coupling, proposed
recently in Ref. [10]. Our central goal was to describe the
temperature versus crystal field phase diagram of the model,
which is expected to reproduce some features from the phase
diagrams of high-Tc superconductors [12,32]. To provide a
picture beyond the standard mean-field theory, we employ a
cluster mean-field method that allows us to incorporate short-
range correlations in the model description.

Our CMF results indicate that the PM-AF phase bound-
ary shows only second-order phase transitions, which agree
with the Monte Carlo findings and differs from the single-
site mean-field description [10]. Moreover, our calculations
indicate only first-order phase transitions between AF and
SAF orders. We remark that the Monte Carlo description of
these phase boundaries is rather tricky [10], which means our
findings provide an important benchmark for the model.

In addition, we found a thermally driven ordered state,
named CAF state, which is not reported in previous investi-
gations of the model [10]. Our findings suggest that the CAF
phase is characterized by low values of local magnetizations
and correlations. Moreover, this phase can be described as
a degenerate state, in which several spin states have a high
probability of occurrence. In fact, these features suggest that
describing this phase within Monte Carlo simulations could
be very intricate. For instance, the finite-size effects on sim-
ulations can prevent the use of small local magnetizations to
identify long-range orders, as the CAF phase. In addition, we
find that the transition between CAF and other ordered states
are of first-order, while the CAF-PM transitions are always of
second-order.

In our opinion, the rich phenomenology arising from this
model is a topic worth of further investigations. Despite we
consider different cluster sizes in our approach, other approx-
imations, such as effective-field theory [33], cluster variation
method [34] and correlated cluster mean-field theory [31],
could be adopted to investigate our findings. For instance, the
onset and stability of the CAF phase are particularly relevant
subjects, and could be analyzed by other methods [35].

Furthermore, extensions of the present model can un-
veil other interesting properties. For instance, the inclusion
of second-neighbor antiferromagnetic couplings can lead to
other relevant phenomena, as suggested by Ref. [10]. We note
that the CMF method was recently applied to the J1-J2 Ising
model on the square lattice for both spin-1/2 [18] and spin-1
[36]. Moreover, the CMF description of the thermally driven
phase transitions on the spin-1/2 version of this model shows
good agreement with recent Monte Carlo findings [18]. This
suggests the CMF method is suitable to investigate the role of
second-neighbor couplings on the CS model.
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APPENDIX A: ns = 1

In the usual mean-field treatment the reference system is a
set of noninteracting sites on a square lattice. To describe the
AF and SAF phases, we solved the mean-field equations for
four different sites, as represented in Fig. 10. In this way, the
four-site Hamiltonian is given by

H ν
0 = −

∑
i∈ν

(
ηiSi + λiS

2
i + DS2

i

)
. (A1)

The original system follows Eq. (5), where the averages
can be expressed as

〈SiS j′ 〉0 = 〈Si〉0〈S j′ 〉0, (A2)

and
〈(

1 − S2
i

)
SkS j′

〉
0 = 〈(

1 − S2
i

)〉
0〈Sk〉0〈S j′ 〉0. (A3)

We note that the labels introduced in Fig. 10 allows to relate
the local properties from cluster ν and its neighbors (such as
ν ′). In particular, for the AF solution we have 〈Si〉0 = 〈Si′ 〉0

and the minimization of the free-energy upper bound leads to
the effective Hamiltonian

HAF
eff = − 2JA

∑
(i, j∈ν)

Simj − D
∑
i∈ν

S2
i

− JB

∑
(i, j∈ν)

Si
[
2(1 − ρ j )mi − Sim

2
j

]
,

(A4)

where mi and ρi are local magnetizations and local densities
from ν. The four-site free energy is given by

φν
AF = − 1

β
ln

(
Tre−βHAF

eff
) + JA

∑
(i, j∈ν)

mimj

+ 2JB

∑
(i, j∈ν)

m2
i

(
1

2
− ρ j

)
. (A5)

FIG. 10. Representation of the clusters considered in the CMF
approach with ns = 1.
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FIG. 11. Representation of the clusters considered in the CMF
approach with ns = 12.

For the SAF solution we consider 〈Si〉0 = −〈Si′ 〉0, which
results in the effective Hamiltonian given by

HSAF
eff = JB

∑
(i, j∈ν)

Si
[
2(1 − ρ j )mi − Sim

2
j

] − D
∑
i∈ν

S2
i . (A6)

The four-site free-energy of the SAF solution is given by

φν
SAF = − 1

β
ln

(
Tre−βHSAF

eff
) − 2JB

∑
(i, j∈ν)

m2
i

(
1

2
− ρ j

)
. (A7)

APPENDIX B: ns = 8

For ns = 8, our reference system is a square lattice divided
in identical clusters as illustrated in Fig. 1(b). This cluster
allows to incorporate exactly some couplings between third
neighbors, which allows us to improve over the four-site ap-
proximation. The Hamiltonian of a single cluster ν is then

given by Eq. (3) with

Hin = −JA

∑
〈i, j∈ν〉

SiS j − JB

∑
〈〈i, j,k∈ν〉〉

(
1 − S2

i

)
S jSk

− D
∑
i∈ν

S2
i . (B1)

It should be noted that each cluster is connected to four
nearest-neighbor clusters, as in the ns = 1 and ns = 4 cases.
Here, however, we have two types of clusters ν ′ and ν ′′ in the
neighborhood of ν, as shown in Fig. 1(b). This distinction is
necessary due to the magnetization pattern in the SAF and
CAF phases.

The average of the Hamiltonian of the original system is
given by

〈H ν〉0 = 〈Hin〉0 − JA

2

∑
(i, j′ )

〈SiS j′ 〉0

− JB

∑
〈〈i, j′,k〉〉

〈(
1 − S2

i

)
S j′Sk

〉
0,

(B2)

where the averages can be expressed as in Eqs. (6) and (7).
In the AF phase, the local magnetization pattern is identical
on each cluster. In other words, for the AF solution we can
adopt 〈Si〉0 = 〈Si′ 〉0 = 〈Si′′ 〉0. For the SAF and CAF phases,
the clusters connected by horizontal links showed the same
pattern of local magnetizations, while the clusters connected
by vertical links showed local magnetizations of opposite sign
on equivalent sites. Therefore, we considered 〈Si〉0 = 〈Si′′ 〉0

and 〈Si〉0 = −〈Si′ 〉0. Minimization of Eq. (2) with respect to
the variational parameters allows us to write the effective
Hamiltonian and free-energy for the AF/SAF phases as

HAF/SAF
eff = Hin − JA[S1(m4 ± m5) ± S2m6 ± S3m7 + S4(m1 ± m8) + S5(m8 ± m1) ± S6m2 ± S7m3 + S8(m5 ± m4)]

± JB
[
S2

1 (S5m5 ± S2m4) + S2
2S6m6 + S2

3S7m7 + S2
4 (S8m8 ± S3m1) + S2

5 (S1m1 ± S6m8) + S2
6S2m2

+ S2
7S3m3 + S2

8 (S4m4 ± S7m5)
] − JB[S1(m3 ± 2m1 − C4,3 ∓ C5,1) + S2(m4 ± 2m2 ∓ C6,2)

+ S3(m1 ± 2m3 ∓ C7,3) + S4(m2 ± 2m4 − C1,2 ∓ C8,4) + S5(m7 ± 2m5 − C8,7 ∓ C1,5)

+ S6(m8 ± 2m6 ∓ C2,6) + S7(m5 ± 2m7 ∓ C3,7) + S8(m6 ± 2m8 − C5,6 ∓ C4,8)], (B3)

and

φν
AF/SAF = − 1

β
ln

(
Tre−βHAF/SAF

eff
) + JA[m1(m4 ± m5) + m8(m5 ± m4) ± m2m6 ± m3m7]

+ JB[m1(m3 ± m1 − C4,3 ∓ C5,1) + m2(m4 ± m2 ∓ C6,2) ± m3(m3 − C7,3)

+ m4(±m4 − C1,2 ∓ C8,4) + m5(±m5 ∓ C1,5 − C8,7) ± m6(m6 − C2,6)

+ m7(m5 ± m7 ∓ C3,7) + m8(m6 ± m8 − C5,6 ∓ C4,8)], (B4)

respectively. It is worth to note that the topological inequiv-
alence of sites for the cluster with ns = 8 leads to artificial
inhomogeneities on the local quantities. As a consequence, an
analysis of local densities and magnetizations can be done in

a more straightforward way when the cluster with ns = 4 is
considered, due to the topological equivalence of all the sites
in this cluster. For ns = 8, one can differ the CAF state from
the SAF phase by comparing the local magnetizations. For
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instance, the CAF state is described by m1 = m5 = −m4 =
−m8 while the SAF phase shows m1 = −m8, m5 = −m4 and
m1 �= m5.

APPENDIX C: ns = 12

The CMF approach for the 12-site cluster is a straight-
forward extension of the method for smaller clusters. The

Hamiltonian of a single cluster ν (see Fig. 11) follows
Eq. (B1), and its average is given by Eq. (B2). Nevertheless,
the AF and SAF solutions follow the same symmetry of the
ns = 4 approximation. It means that, for the AF solution we
consider 〈Si〉0 = 〈Si′ 〉0, and for the SAF solution we consider
〈Si〉0 = −〈Si′ 〉0. Because the final equations for the effective
Hamiltonian and free energy are lengthy, their explicit form is
omitted.
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