
PHYSICAL REVIEW E 103, 032124 (2021)

Influence of distinct kinds of temporal disorder in discontinuous phase transitions
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Based on mean-field theory (MFT) arguments, a general description for discontinuous phase transitions in the
presence of temporal disorder is considered. Our analysis extends the recent findings [C. E. Fiore et al., Phys.
Rev. E 98, 032129 (2018)] by considering discontinuous phase transitions beyond those with a single absorbing
state. The theory is exemplified in one of the simplest (nonequilibrium) order-disorder (discontinuous) phase
transitions with “up-down” Z2 symmetry: the inertial majority vote model for two kinds of temporal disorder. As
for absorbing phase transitions, the temporal disorder does not suppress the occurrence of discontinuous phase
transitions, but remarkable differences emerge when compared with the pure (disorderless) case. A comparison
between the distinct kinds of temporal disorder is also performed beyond the MFT for random-regular complex
topologies. Our work paves the way for the study of a generic discontinuous phase transition under the influence
of an arbitrary kind of temporal disorder.
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I. INTRODUCTION

Disorder is commonly present in many real systems and
more recently it has also been broadly investigated in nonequi-
librium phase transitions with absorbing states [1–3] by
considering spatial [4–8] and temporal [9–17] variation of
control parameters. In both cases, the criticality is marked by
the existence of new (and universal) set of critical exponents
and present a subregion in the phase space in which exotic
behaviors are found. The former region is named spatial Grif-
fiths phase and it is located in the absorbing phase in which
the order parameter vanishes slower (power law or stretched
exponential) than the exponential decay in the absence of
disorder. Conversely, temporal disorder is featured by a region
in the active phase in which the mean lifetime increases as a
power law (instead of exponential).

Now let us shift the discussion for nonequilibrium phase
transitions with spontaneous breaking symmetry. It mani-
fests in a countless sort of systems beyond the classical
ferromagnetic-paramagnetic phase transition [1,2,18], such
as for an (approximate) description for fish shoals mov-
ing under an ordered way for protecting themselves against
predators, spontaneous formations of a common language
and culture, the emergence of consensus in social systems,
and others [19–21]. They can be qualitatively expressed via
the differential equation for the order-parameter x dx/dt =
ax + bx3 − cx5 . . . . It presents only odd terms, in which
the classification of phase transition, whether continuous
or discontinuous, depends on the above coefficients (b and
c should be positive for a discontinuous phase transition).
Despite predicted under the simple above approach, compar-
atively there are less (nonequilibrium) microscopic models
presenting discontinuous transitions exhibiting up-down sym-
metry. A remarkable example is the majority vote model
with inertia [22]. Originally, its phase transition is always
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continuous [23–25], but the inclusion of an inertial term, e.g.,
a term proportional to the local spin, can shift the phase transi-
tion to a discontinuous one, in both complex network [22,26]
and in regular lattices [27,28].

The importance of such results is highlighted not only
for occurrence of discontinuous phase transition in a mini-
mal nonequilibrium model in which general features at the
phase coexistence were established [27,28], but also by the
fact that behavioral inertia is an essential characteristic of
human being and animal groups and it is also a significant
ingredient triggering abrupt transitions arising in social sys-
tems [19]. Thereby, the inertial majority vote (IMV) could be
(in principle) considered for the description of such phenom-
ena. However, the effects under the inclusion of more realistic
ingredients, such as its time dependent variation of parameters
(e.g., inertia), have not been satisfactorily understood yet.

Recently, a theory for discontinuous phase transitions with
a single absorbing state in the presence of temporal disorder
was proposed in Ref. [29]. In contrast to the spatial disor-
der case [30], they are not suppressed due to the temporal
disorder, although remarkable features emerge when com-
pared with their pure (disorderless) systems. This includes
the existence of rare temporal fluctuations which changes
the behavior of metastable phase, turning it into an inac-
tive phase characterized by exponentially large decay times.
Since systems with Z2 symmetry present distinct features
from phase transitions into a single absorbing state (which
can be viewed by a distinct differential equation dx/dt =
ax + bx2 − cx3 . . .) [31,32], a question that naturally arises is
if similar findings about the effect of temporal disorder are
verified and can be extended beyond Ref. [29]. Due to the
fact that inertia plays a fundamental role for shifting the phase
transition in the IMV, an interesting question concerns that
temporal disorder in the inertia may provide similar findings
to the usual case (temporal disorder in the control parameter).

Aimed at answering aforementioned points, here we ex-
amine, separately, the role of temporal disorder in two
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fundamental ingredients: the control parameter and inertia.
Based on mean-field analysis, we derive general predictions
for both kinds of temporal disorder, which are also verified
beyond the mean-field theory (MFT) for complex structures.
Our analysis provides a general procedure for tackling the
effect of temporal disorder in discontinuous phase transitions.

This paper is organized as follows: In Sec. II we present
the analysis of pure model and temporal disorder based on the
MFT, and in Sec. III we present the main findings beyond the
MFT. Conclusions are drawn in Sec. IV.

II. MODEL AND MEAN-FIELD ANALYSIS

The original (inertialess) majority vote model (MV) is
defined as follows. At each time step, a site i with spin σi

is randomly selected and with probability 1 − f ( f ) it is (is
not) aligned with the majority of its ki nearest neighbors. If
there is no majority of a given spin (whether +1 or −1),
one of the possible values is chosen with equal probability.
The inertial majority vote model (IMV) differs from the MV
by the inclusion of an inertial term θ , taking into account
the contribution of the local spin. The transition rate ωi(σ )
associated to the spin flip σi → −σi also depends on the local
spin σi and it is given by [22]

ωi(σ ) = 1
2 [1 − (1 − 2 f )σiS(�i )], (1)

where �i accounts for the local neighborhood plus the inertial
contribution given by

�i = (1 − θ )
ki∑

j=1

σ j

ki
+ θσi,

with S(x) = sign(x) if x �= 0 and S(0) = 0. Note that one
recovers the original MV when θ = 0. Except to the trivial
cases, f = 0 and θ = 0.5, there is (always) a finite proba-
bility of not following the majority vote rule and hence the
phase transition does not present an absorbing phase [29]. An
order-disorder phase transition yields only when the inertia
is constrained between θ ∈ [0, 0.5]. For θ > 0.5 there is no
interaction between neighboring sites and the transition rate
is always dominated by the inertial term. Since spin flips

due to the interaction between neighboring spins are absent,
there is neither spontaneous magnetization nor phase transi-
tion. By increasing θ and the connectivity, phase transition
is shifted from continuous (second order) to a discontinuous
(first order). At the mean-field level the phase coexistence is
marked by the appearance of an hysteretic region in which
two symmetric ordered phases and a disordered phase coexist.
A discontinuous phase transition also manifests in homoge-
neous and heterogeneous networks, but an entirely different
behavior is presented for regular lattices, in which the main
quantities (magnetization, its variance χ , the entropy produc-
tion, the position of maximum of χ ) scale with the system
volume at the phase coexistence [27,28,33].

From the transition rate, the time evolution of the average
magnetization mk = 〈σi〉k of a local site i with degree k is
given by

d

dt
mk = −mk + (1 − 2 f )〈S(�i )〉. (2)

The first analysis will be performed by means of a MFT
treatment, in which the joint probabilities appearing in the
average 〈S(�i )〉 are rewritten in terms of one-site probabili-
ties. From this assumption, one gets the following expression
〈S(�i )〉 = (1 + mk )〈S(�+)〉/2 + (1 − mk )〈S(�−)〉/2, where
〈S(�±)〉 are given by

〈S(�±)〉 ≈
k∑

n=�n±
k 	

Ck
n pn

+ pk−n
− −

k∑
n=�n∓

k 	
Ck

n pn
− pk−n

+ , (3)

with p± being the probability of a nearest neighbor having
spin ±1 given by p± = (1 ± m∗)/2 (associated with the “lo-
cal” magnetization m∗), n−

k and n+
k correspond to the lower

limit of the ceiling function given by n−
k = k/[2(1 − θ )] and

n+
k = k(1 − 2θ )/[2(1 − θ )], respectively.

In order to relate m∗ and mk , we shall focus our analysis on
uncorrelated networks, in which the probability of a randomly
chosen site has degree k reads as kP(k)/〈k〉, with P(k) and
〈k〉 being the probability distribution of nodes and its mean
degree, respectively. The relation between m∗ and mk then
reads as m∗ = ∑

k mkkP(k)/〈k〉. By combining the above ex-
pression with Eq. (2), we obtain the following equation of m∗
in the steady-state regime:

m∗ = (1 − 2 f )
∑

k

kP(k)

〈k〉
[(

1 + mk

2

)
〈S(�+)〉 +

(
1 − mk

2

)
〈S(�−)〉

]
. (4)

Equation (4) can be analyzed for a generic lattice topology [specified by P(k)]. We restrict our study for random-regular (RR)
topologies, in which all sites have the same number of neighbors k0 [P(k) = δ(k − k0)] and one gets the following self-consistent
expression for the steady m in terms of f and θ :

m = (1 − 2 f )

[(
1 + m

2

)
〈S(�+)〉 +

(
1 − m

2

)
〈S(�−)〉

]
, (5)

where we considered the fact that m∗ = m. Equation (5)
presents three steady-state solutions ms( f ) > mu( f ) >

md ( f ) = 0 and a discontinuous phase transition occurring
at f = f f . For f > f f , the system evolves to the solution
md ( f ) = 0 for t → ∞, characterizing the disordered (DIS)

phase irrespective of the initial condition. Conversely, the
ordered phase is separated by two distinct regions: f < fb

and fb < f < f f . In the former, the time evolution of m(t )
evolves to m(t → ∞) → ms( f ), also independently of
the initial condition, whereas for fb < f < f f the steady
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state depends on the initial condition. More specifically,
for m(0) > mu( f ) and m(0) < mu( f ) the system will
evolve to m(t → ∞) → ms( f ) (ordered phase) and
m(t → ∞) → md ( f ) (disordered phase), respectively. This
feature of the ordered phase will be referred as the metastable
(ME) phase, contrasting with the behavior for f < fb. The
value f = fb marks the crossover between the above regimes.
Since m(t ) deviates from mu( f ) whenever m(0) �= mu( f ),
such a solution is unstable.

Although the achievement of analytic expressions for the
steady-state regime and transition point from Eqs. (4) and (5)
become quite cumbersome as k0 is raised, a simpler analysis
can be performed in the limit of large connectivities since each
term of the binomial distribution approaches a Gaussian with
mean k0 p± and variance σ 2 = k0 p+ p− [24,26,33–35]. From
Eq. (5), each term from the right hand side is approximately
rewritten as

k0∑
n=�n±

k 	
Ck0

n pn
± pk0−n

∓ → 1

σ
√

2π

∫ k0

n±
k

e− (	−k0 p± )2

2σ2 d	 = 1

2

√
π

{
erf

[
k0(1 − p±)√

2σ

]
− erf

[
k0(n±

k − p±)√
2σ

]}
, (6)

with erf(x) denoting the error function erf(x) = 2
∫ x

0 e−t2
dt/

√
π , and the second one can be rewritten under a similar way. Taking

into account that erf[k0(1 − p±)/
√

2σ ] approaches to 1 for large k0, we arrive at the following expression for the steady-state
regime:

f = 1

2

[
1 − 2m

(1 + m)erf(α) − (1 − m)erf(β )

]
, (7)

where parameters α and β are given by

α =
√

k0

2

[
θ

1 − θ
+ m

]
and β =

√
k0

2

[
θ

1 − θ
− m

]
, (8)

respectively. The transition point f f corresponds to the maximum of Eq. (7), whereas at the vicinity of fb (or fc for a critical
phase transition), m is expected to be small and then the above differential equation approaches dm/dt ≈ A( f , θ, k0)m, where
A( f , θ, k0) is given by

A( f , θ, k0) = −1 + (1 − 2 f )

[√
2k0

π
e− k0θ2

2(1−θ )2 + erf

(√
k0

2

θ

1 − θ

)]
. (9)

From the above expression, fb is then given by A( fb, θ, k0) =
0 and marks, for a given value of θ , the separatrix between
an exponentially growth to the steady-state value ms( f ) if
A( f , k0, θ ) > 0 ( f < fb) and an exponential decay to md ( f )
if A( f , k0, θ ) < 0 ( f > fb). For θ = 0, one recovers the ex-
pression for the critical point 2 fc = 1 − √

π/(2k) [24,33].
In order to illustrate all previous findings, Fig. 1 depicts,

for the clean system, the phase diagram and all the above
main features of discontinuous phase transitions for k0 = 12
and θ = 0.45 as f is changed. In particular, the regions
f � fb = 0.027 457 3 . . . and fb < f < f f = 0.080 121 mark
the ordered (ORD) and ME phases, respectively, whereas for
f > f f the disordered phase (DIS) prevails. Similar results are
obtained for other connectivities k0 and θ .

As a final remark, it is worth mentioning that although
the dependence between m and θ is more cumbersome than
with f , all previous signatures of phase coexistence are held
valid when the inertia is taken as the control parameter (for
fixed f ).

A. Temporal disorder in the control parameter

Once we presented the main features about the pure sys-
tem, we now are in position for tackling the effects of the
temporal disorder. We start with time variations of the con-
trol parameter f . Although similar findings are expected for

distinct temporal disorder distributions, we shall consider the
simplest case in which for a given time interval constrained
between t and t + �t , control parameter f is randomly ex-
tracted from a bimodal distribution Pdis( f ):

Pdis( f ) = pδ( f − f−) + (1 − p)δ( f − f+), (10)

where f− < f+ and p(1 − p) is the probability in which f as-
sumes the values f−( f+). During this time interval, the system
behaves as the pure system since its control parameter is kept
fixed. For simplicity and also for comparing with previous
findings [29], we set p = 1

2 .
Analysis starts from a given initial condition m(0) and its

time evolution is analyzed until a sufficient large time tmax

that generates a given sequence of control parameter values
{ f1, f2, . . . , fM}, where tmax = M × �t . This process is then
repeated for sufficiently ND distinct disorder sequences (we
have considered here ND = 102–103).

Although our findings do not depend on particular values
of k0 and θ , the effect of temporal disorder will be exemplified
for k0 = 12 and θ = 0.45, in order to draw a comparison be-
tween clean and disordered systems. All possible variations of
both f− and f+ along ORD, ME, and DIS will be considered.
We face two scenarios, in which both f− and f+ belong to the
same and different phases, respectively.

Let us start with the case when both f− and f+ vary over
the ordered phase (0 � f± < fb). Irrespective of the initial
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FIG. 1. (a) Depicts the MFT phase diagram for a RR topology with k0 = 12. ORD, ME, and DIS denote the ordered, metastable, and
disordered phases, respectively. In (b), the steady magnetization m versus f for θ = 0.45. Continuous and dashed lines denote the stable and
unstable solutions of Eq. (5), respectively. Their main features are exemplified in (c) and (d) by taking the time evolution of m as a function of
time for f = 0.016(c), f = 0.10(d ) and 0.06 (inset) for distinct initial conditions m(0).

condition m(0), the system will evolve towards an ordered
state in which the steady magnetization fluctuates between
ms( f−) and ms( f+). A similar conclusion is valid when both
f− and f+ belong to the disordered phase ( f f < f± � 1

2 ), in
which the disordered phase prevails independently of m(0).
For both f− and f+ belonging to the metastable phase [ fb �
f± � f f and mu( f−) < mu( f+)], then m(t → ∞) → 0 and
m(t → ∞) �= 0 if m(0) < mu( f−) and m(0) > mu( f+), re-
spectively, irrespective of the sequence of f− and f+. The case
in which mu( f−) < m(0) < mu( f+) will depend on the partic-
ular sequence of f− and f+. This can be verified under two
extreme cases. Take, for instance, a particular (long) sequence
of f = f+, in which m(t ) becomes lower than mu( f−). In such
a case, the system always reaches the disordered phase. Con-
versely, a long sequence of f = f− will lead to m(t ) > mu( f+)
and then the system will converge to the ordered phase. Thus,
as for absorbing phase transitions [29], ORD, ME, and DIS
phases are preserved under the temporal disorder.

Next, we analyze the cases in which f− and f+ be-
long to different phases. Starting with f− ∈ ORD and f+ ∈
ME (with f− < fb and fb < f+ < f f ), the phase predomi-
nance can be understood under a heuristic analysis based on
the time evolution for m(t ) � 1. Since the inertia is fixed,
Eq. (9) assumes the form m ∼ e−α( f − fb )t , where parameters
α and fb are approximately given by Eq. (9) for large k0.
The dynamics then will be characterized for sequences in
which m(t ) increases and vanishes according to asymptotic
expressions m ∼ eα( fb− f− )t and m ∼ e−α( f+− fb)t , respectively.
The ordered phase prevails if f+ + f− < 2 fb, whereas the
metastable phase dominates when f+ + f− > 2 fb. The line

fulfilling f+ + f− = 2 fb denotes the crossover between or-
dered and metastable phase lines.

Next, we consider f− and f+ belonging to the ME and DIS
phases, respectively. Despite different from absorbing phase
transitions (APTs) [29], the existence of a hysteretic branch
is also responsible for the prevalence of the disordered phase
over the metastable one. Since the magnetization vanishes for
f > f f , irrespective of the initial condition, it suffices a single
long sequence of consecutive f+’s (e.g., a rare fluctuation)
in which m(t ) < mu( f−) for the system always reaching the
disordered phase. For sufficiently long times, a rare fluctuation
occurs with probability one and thus the temporal disorder
always suppresses the ME phase when f+ > f f . However, the
appearance of a rare fluctuation may require exponentially
large times (mainly when f+ approaches to f f and/or for
small �t’s). The above features are depicted in Fig. 2(d)
by comparing the time evolution of the magnetization over
individual runs and its average value. Note that in all cases,
individual runs are featured by the system evolving to the
disordered phase after the appearance of a rare fluctuation.
Since the interval time in which it appears varies, individual
and averaged runs behave very differently. The latter exhibits
a “plateau,” reflecting the absence of a rare fluctuation that
drives the system to the disordered phase for lower and in-
termediate times. The plateau is more pronounced for lower
time windows �t and it is followed by the vanishing of the
mean magnetization according to a characteristic time T . In
order to obtain an upper limit for T , we assume the extreme
case in which the disordered phase is reached only via a long
sequence of consecutive f+’s, whose magnetization evolves
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FIG. 2. MFT temporal disorder analysis: For a RR network with k0 = 12, θ = 0.45, and �t = 5, the time evolution of m for distinct sets
of f+ and f− and distinct independent realizations. (a)–(d) Exemplify the following cases: ( f−, f+) ∈ (ORD, ME) with f̄ < fb and f̄ > fb,
( f−, f+) ∈ (ORD, DIS), and ( f−, f+) ∈ (ME, DIS), respectively. Dashed and symbol curves correspond to the pure versions (for f = f+) and
m averaged over ND = 103 realizations, respectively.

from ms( f−) to mu( f−) (when f = f+) and it is character-
ized by the decay time τ+. The mean characteristic time T
is approximately given by T ≈ τ+ p−τ+/�t [29]. Figures 3(a)
and 3(b) depict the time evolution of average m(t ) for distinct
�t’s for ( f−, f+) ∈ (ORD,DIS) and (ME,DIS), respectively.
As can be seen, the relationship between T and �t follows
rather well such above theoretical estimate. According to it,
the appearance of a rare fluctuation driving the system to the
disordered phase would require a sufficient long time T ≈
1013 for �t = 1. We close such analysis by remarking that
although the disordered phase prevails over the metastable, the
discontinuous phase transition between DIS and ME phases is
preserved by the temporal disorder and yields at f+ = f f .

Since the disordered and metastable phases behave simi-
larly when m(t ) � 1, the case in which f− and f+ belong to
the ORD and DIS phases is similar to the first one and then the
ordered and disordered phases prevail if f < fb and f > fb,
respectively. The relation 2 fb = f+ + f− marks the separatrix
between the above regimes. As previously, the average m(t )
is significantly different from individual runs and the mean
decay time also increases as �t decreases. These features are
exemplified in Figs. 2(c) and 3(a) for �t = 5, f− = 0.020,
and f+ = 0.082 with ND = 20/103 individual/averaged runs.
The prevalence of ORD phase is possible only for smaller
values of inertia ( 1

3 < θ < 2
5 and 3

13 < θ < 1
3 for k0 = 12 and

20, respectively). In the present case, the phase DIS always
dominates over the ORD phase for k0 = 12 and θ = 0.45
since the summation of lowest f− = 0 and f+ = f f is always
greater than 2 fb.

From the previous analysis, we build the phase diagram
for the temporal disorder IMV for k0 = 12 and θ = 0.45,

as depicted in Fig. 4. Dotted and dashed lines denote the
crossover and phase coexistence lines between phases.

We close this section by remarking that although APT and
up-down systems share distinct features, the effect of temporal
disorder is similar and directly related to the bistability of the
active or ordered phase.

B. Temporal disorder in the inertia

Now we consider the effects of temporal disorder in the
inertia, in which its values are chosen from two possible
values θ− and θ+ (with θ+ > θ−):

Pdis(θ ) = pδ(θ − θ−) + (1 − p)δ(θ − θ+). (11)

Although the dependence between the m(t ) and θ is more
cumbersome than the control parameter f , our analy-
sis will be carried out for m(t ) � 1, in which the time
evolution of the order parameter is approximately given
by dm/dt ≈ A′( f , θ, k0)m [the coefficient A′( f , θ, k0) ap-
proaches to Eq. (9) for large k0]. Since A′( f , θ, k0) > 0(< 0)
for θ belonging to the ORD (ME and DIS) phases [see, e.g.,
Tables I and II and Eq. (9)], the inertial disorder can be
analyzed in similarity with the temporal disorder in f , whose
resulting phase is predicted from the competition between
A′( f , θ+, k) and A′( f , θ−, k).

Table I and Fig. 5(d) exemplify coefficients A′( f , θ, k0)
and the phase diagram for f = 0.12 and distinct θ ’s, respec-
tively. For the pure version, the crossover between ORD and
ME phases yields at θb = 1

3 , whereas ME-DIS discontinuous
phase transition yields at θ f = 2

5 [see, e.g., Fig. 1(a)].
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FIG. 3. For a RR network with k0 = 12 and θ = 0.45, (a) and
(b) show m averaged over ND = 103 realizations for �t =
2, 3, 4, 5, and 6 for ( f−, f+) ∈ (ORD,DIS) and (ME,DIS),
respectively.

Starting with θ− and θ+ belonging to the same phase (ORD
and ME and DIS) the resulting phase will be preserved for
the temporal disorder, as expected. When θ− and θ+ belong
to distinct phases, the result phase will depend on the sign of
coefficients A′( f , θ, k0)’s.

The case in which θ− belongs to ORD and θ+ be-
longs to ME/DIS phases, the resulting phase will be or-

FIG. 4. MFT phase diagram for RR network with values k0 =
12 and θ = 0.45 under temporal disorder over the control parameter
f . The resulting phase is represented by distinct colors. Dotted and
dashed lines represent crossovers and discontinuous transition lines,
respectively.

TABLE I. Coefficients A′( f , θ, k0 ) for f = 0.12 and k0 = 12 and
the resulting phase.

θ A′( f , θ, k0) Phase

0 < θ <1/7 0.614... ORD
1/7< θ < 1/4 0.467... ORD
1/4< θ < 1/3 0.192... ORD
1/3 < θ <2/5 −0.0122... ME
2/5< θ < 5/11 −0.0979... DIS
5/11 < θ <1/2 −0.118... DIS

dered if A′( f , θ−, k0) > A′( f , θ+, k0) and ME and DIS if
A′( f , θ−, k0) < A′( f , θ+, k0), respectively. The competition
between θ− and θ+ belonging to the ME and DIS phases will
also result in the disordered phase. Since both A′( f , θ−, k0)
and A′( f , θ+, k0) are negative, the system solely requires a
long sequence of θ = θ+ for driving it to m(t ) < mu(θ−) and
then it will evolve to the DIS phase, irrespective of the sub-
sequent values of θ . Although more pronounced for k0 = 20
than for k0 = 12, but (apparently) less pronounced than the
disorder in the control parameter, temporal disorder in the in-
ertia is also featured by a long and remarkable period in which
the system exhibits ordering until its vanishing [see, e.g.,
Figs. 5(c) and 6]. As previously, a consecutive sequence of
θ+’s driving the system to the disordered phase also requires
larger times for lower �t’s and for this reason the mean time
decay T increases. A discontinuous phase transition between
ME and DIS yields at θ+ = θ f . Thus, the temporal disorder in
inertia also does not suppress the existence of a discontinuous
transition nor hysteretic branch.

Since the difference between the lowest A′( f , θ−, k0) and
the largest A′( f , θ+, k0) is always positive, the ORD phase al-
ways prevails over the DIS/ME ones for k0 = 12, f = 0.12,
and p = 1

2 [see, e.g., Figs. 5(a) and 5(b)]. The prevalence of
the ordered phase over the disordered and metastable phases
in such case is a feature originated from the temporal disorder
in the inertia, whose main features are exemplified in the
phase diagram in Fig. 5(d).

We close this section by mentioning that although not
presented for k0 = 12, the competition between ORD and ME
and DIS phases can result to a metastable or disordered phase
as exemplified for k0 = 20 (see, e.g., coefficients in Table II).

III. BEYOND THE MEAN-FIELD THEORY: MONTE
CARLO SIMULATIONS FOR DISTINCT KINDS

OF TEMPORAL DISORDER

In this section, we tackle the influence of temporal disorder
beyond the MFT by analyzing their effects in complex net-

TABLE II. Coefficients A′( f , θ, k0 ) for f = 0.12 and k0 = 20
and the resulting phase.

θ A′( f , θ, k0 ) Phase

3/13 < θ <2/7 0.2295... ORD
2/7� θ < 1/3 0.0328... ORD
1/3� θ < 3/8 −0.0683... ME
3/8 −0.0876... ME
3/8< θ < 7/17 −0.1176... DIS
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FIG. 5. MFT analysis for the temporal disorder in the inertia: For RR network with values k0 = 12 and f = 0.12, (a)–(c) exemplify the
average time evolution of the m for distinct initial configurations and sorts of inertia (θ−, θ+) ∈: (ORD,ME), (ORD,DIS), (ME,DIS), (ME,ME)
(inset), respectively. In (d) the phase diagram with dashed and dotted lines representing discontinuous phase transition lines and crossover
between phases, respectively. The resulting phase is represented by distinct colors.

works structures. We also consider random-regular structures
which have been built for fixed connectivities k0 (for a given
system size N) according to the scheme by Bollobás [36].
Also, the neighborhood of each site has not been altered as
the time is changed.

As in the MFT, numerical simulations start for given ini-
tial condition in which a new value of the control parameter
(whether f or θ ) is sorted from the two possible values ( f−/θ−
and f+/θ+) for every interval time ranged between t and t +
�t . The time evolution of system is analyzed until a maximum
time tmax that results in a given sequence of { f1, f2, . . . , fM}

FIG. 6. For k0 = 20, f = 0.12, θ− = 0.334 ∈ ME, and θ+ =
0.412 ∈ DIS, the average m versus t obtained for ND = 103 disorder
realizations and distinct �t’s.

({θ1, θ2, . . . , θM}) in which tmax = M × �t . Such analysis is
repeated over ND = 103–104 distinct sequences of temporal
disorder. We have considered �t = 20 and tmax = 105–106.

Resulting phases as well as phase transitions can be iden-
tified from two distinct (but equivalent) ways. In the former
approach, one considers analysis in the steady-state regime in
which we start from the ordered phase (|m| close to 1) and f
is raised by an amount � f and the end configuration at f is
adopted as the initial condition at f + � f . This procedure is
repeated until the system reaches the disordered phase at f f .
Conversely, the numerical simulation is restarted for a given
value of f constrained in the disordered phase but now f is
decreased by � f until the ordered phase will be reached at fb.
Both forward and backward curves are expected to coincide
themselves at both ordered and disordered phases, but not
along the metastable branch.

Additionally, the presence of temporal disorder can be
more conveniently analyzed (as previously) by inspecting the
time evolution of order parameter for distinct initial condi-
tions 0 < |m(0)| � 1. The system will converge for a well
defined m(t → ∞) in both disordered and ordered phases,
respectively, irrespective of the initial conditions, whereas it
will evolve to two well defined values for f constrained in the
metastable branch. Due to the finite-size effects, the magneti-
zation never vanishes, but instead, it behaves as m(t → ∞) ∼
1/

√
N in the disordered and metastable phases [for low m(0)].

Although the temporal disorder features are not expected
to depend on the values of θ and k0, the bistable branch is
more pronounced for large connectivities and θ ’s and for this
reason numerical simulations will be undertaken for θ = 0.3

032124-7



JESUS M. ENCINAS AND C. E. FIORE PHYSICAL REVIEW E 103, 032124 (2021)

10
0

10
2

10
4

10
6

0,01

0,1

1

10
0

10
2

10
4

10
6

0,01

0,1

1

10
0

10
2

10
4

10
6

0,01

0,1

1

0 0,05 0,1 0,15 0,2
0

0,5

1
forward
backward f

+
=0.12, f

-
=0.1

f
+
=0.16, f

-
f1.0=
+
=0.152, f

-
=0

(c)

(a) (b)

(d)

m(t)

t

m(t)

t

f

|m|

FIG. 7. (a) Depicts, for N = 5000, k0 = 20, and θ = 0.3, the order parameter |m| versus f for the pure system. Continuous and dotted
lines denote the forward and backward increase of f , respectively. (b)–(d) Show the average time evolution of the order parameter m (over
ND = 104 realizations) for distinct initial conditions m(0) and different sorts of [ f−, f+] ∈ [ME,ME], [ME,DIS], [ORD,DIS]. respectively. Due
to finite-size effects, m(t → ∞) does not vanish in the disorder phase, but it is proportional to 1/

√
N .

and k0 = 20, whose hysteretic loop for the pure system was
investigated in Ref. [22] and reproduced in Fig. 7(a). As
it can be seen, for f < fb = 0.060(5) the system is con-
strained in the ordered phase, whereas the bistability yields for
fb < f < f f = 0.150(5). The disordered phase emerges for
f > f f , irrespective of the initial condition. Figures 7(b)–7(d)
depict the main features for temporal disorder in the control
parameter for distinct sets of f+ and f− belonging to the
ORD, ME, and DIS phases. In particular, the MFT analysis
describes reasonably well the findings obtained from com-
plex topologies, including the prevalence of the disordered
phase over the metastable [Fig. 8(a)] for f+ < f f and the
competition between ordered and metastable and disordered
phases. Also, by taking into account that the summation of
the lowest f− = 0 and f+ = f f is lower than 2 fb (for k0 = 12
and θ = 0.45), we can understand (from MFT) the prevalence
of the disordered phase over the ORD one, as illustrated in
Fig. 5(d). Despite the similarities between MFT and present
results, due to a finite-size effects, the ORD phase always
prevails over the metastable for finite N . Since m(t → ∞) is
finite and proportional to 1/

√
N in the disordered phase, it

suffices a long sequence (e.g., a rare fluctuation) of f = f−
for driving the system to the ORD phase. However, finite-size
effects disappear as N → ∞ and MFT also describes well the
prevalence of the ME phase when f+ + f− > 2 fb.

Since the main features are quite similar to those from
MFT, we shall omit the phase diagram. As a final comment,
we expect similar trends for other lattice topologies, although
the line separating ordered and other phases does not neces-
sarily obey a derivation like MFT.

In the last analysis, we exemplify the main features of
inertial temporal disorder. Figure 8(b) shows the competition
between metastable and disordered phases for f = 0.12. For
the pure version, the hysteretic branch is verified for 2

7 < θ �
θ f = 1

3 in which the order parameter jumps at θ > θ f (see,
e.g., [35]).

Also in accordance with previous MFT analysis, the com-
petition between ME and DIS phases always suppresses the
phase coexistence [see, e.g., curves for θ+ > θ f in Fig. 8(b)]
and a discontinuous transition yields at θ+ = θ f . On the other
hand, the resulting phase from the competition between ORD
and DIS phases will depend on particular values of θ− and θ+.
More specifically, for θ− = 0.28 and 1

3 < θ+ = 3
8 the ORD

prevails, whereas the system evolves to disordered phase when
θ− = 0.29. Since transition points from MFT and complex
topologies are similar for large k0’s [22], the above findings
can also be (qualitatively) understood from coefficients from
Table II from which the predominance of ORD and DIS
phases holds for θ− = 0.28 and 0.29, respectively.

IV. CONCLUSIONS

Based on the MFT, a general description for discontin-
uous phase transitions in the presence of temporal disorder
was considered. Our theoretical predictions are valid for any
system displaying a bistable behavior characterized by the
existence of a hysteretic branch. The present study not only
confirms previous findings [29], but also extends for other
kinds of phase transitions and distinct kinds of temporal
disorder. Analysis was exemplified in one of the simplest
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FIG. 8. For a RR network of size N = 104, k0 = 20, and θ = 0.3, panel (a) depicts the average time evolution of the order parameter m
starting from the ordered state for f− = 0.10 (ME) for distinct f+’s. (b) Depicts, for f = 0.12 and m(0) = 1, the time evolution of the average
m for θ− = 0.30 (ME) for distinct θ+’s. In (c) the same but for θ− = 0.28 and 0.29 (both belonging to the ORD phase) and distinct θ+’s starting
from m(0) = 10−4. In all cases, averages are evaluated over ND = 103–104 realizations. Due to finite-size effects, m(t → ∞) does not vanish
in the disorder phase, but it is proportional to 1/

√
N .

“up-down” Z2 symmetry for two kinds of temporal disorder:
the inertial majority vote model. Since the inertia plays a fun-
damental role for the emergence of a discontinuous transition,
the effect of its time variation was also investigated. Although
both kinds of temporal disorder do not suppress existence
of a discontinuous phase transition, the phase coexistence is
always suppressed when there is a competition between dis-
ordered and metastable phases. As for APTs, the competition
between different phases can also lead to an order-parameter
vanishing characterized by exponentially large decay times.

The mean-field approach describes very well the effect
of temporal disorder in complex topologies and one expects
its validity for other complex networks, such as Erdös-Renyi

and heterogeneous structures. As a final comment, it will be
remarkable to extend such analysis for discontinuous phase
transitions in regular structures, which presents an entirely
different behavior from complex topologies. In these systems,
no hysteretic behavior is presented [27,28].
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