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Quantum walk on a graph of spins: Magnetism and entanglement
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We introduce a model of a quantum walk on a graph in which a particle jumps between neighboring nodes
and interacts with independent spins sitting on the edges. Entanglement propagates with the walker. We apply
this model to the case of a one-dimensional lattice to investigate its magnetic and entanglement properties. In the
continuum limit, we recover a Landau-Lifshitz equation that describes the precession of spins. A rich dynamics
is observed, with regimes of particle propagation and localization, together with spin oscillations and relaxation.
Entanglement of the asymptotic states follows a volume law for most parameters (the coin rotation angle and the

particle-spin coupling).
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I. INTRODUCTION

Quantum information [1-3] is a fundamental physical con-
cept, now part of the curriculum [4,5], which has a profound
impact in vast domains, well beyond its obvious application
to computing, such as in condensed matter through the phe-
nomenon of many-body entanglement [6—8]. An interesting
field of investigation opened at the frontier of matter and
information [9].

Discrete quantum walks [10-12], although initially pro-
posed as an extension of the classical random walk [13] with
possible applications in optics, were first investigated in rela-
tion with the theory of quantum simulation by Meyer in 1996
[14]. In his seminal paper Meyer demonstrated that a quantum
system evolving by discrete steps on a lattice (cellular au-
tomaton) cannot be homogeneous and local: in order to keep
a unitary evolution one needs to introduce an internal degree
of freedom associated with the walking particles and coupled
to their motion. Applications of quantum walks range from
the implementation of the quantum circuit universal model
of computation [15-18] to the study of topological phases of
matter [19]. The experimental realization [20] demonstrated
the practical feasibility of quantum walks, allowing the inves-
tigation of topological edge states [21] and the measurement
of topological invariants [22-24].

Quantum walks can be used to simulate physical systems;
see, for instance, the recent experimental realization of a
periodically driven Chern insulator [25]. Meyer [14] showed
that the one-particle case of his quantum automaton, in fact a
quantum walk, reduces to the Dirac equation in the continuum
limit. Since then, the continuum limit of quantum walks was
extensively explored to simulate neutrino oscillations [26],
Weyl fermions [27], or the Dirac equation in two dimensions
[28], to give a few examples.

Generalizations from the one particle case to two entangled
particles, including possible interactions, were also studied
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theoretically [29-32] and experimentally [33,34]; besides,
Anderson localization was observed in an array of interfer-
ometers [35], and the effect of boson and fermion statistics
simulated using the symmetries of the photon’s state. Another
important extension of quantum walks from regular lattices
to general graphs [36-38] led to interesting algorithms like
the generalization of the Grover search [39], showing that the
square speedup over the classical algorithm applies to struc-
tured data [40—42], or to algorithms aiming at determining
graph isomorphism [43,44], although a solution to this prob-
lem is still open [45]. Finally, quantum walks are a starting
point to explore many-body physics, once generalized to a
quantum automaton [14,46—48].

Loosely speaking, in quantum mechanics the state of a
system can be modified by a unitary transformation or by a
projection over a smaller Hilbert space. These two possibil-
ities lead to two main models of quantum computing [49]:
the circuit model theorized by David Deutsch [16] and the
measurement driven computation [49-52]. In the first model a
universal set of one- and two-qubit gates [53—-55] are used to
create a suitable entangled state, while in the second model,
a highly entangled state, a cluster state [56,57], is modified
by one-qubit measurements to imprint the logical operations.
In this fuzzy classification, quantum walks pertain to the
“circuit” category, in which suitably local coin and motion
operators entangle a state [58] in order to coherently enhance
the probability of certain configuration (such as in the search
problem). Information processing requires in addition to re-
sources, communication channels. A physical realization of
a transmission line is a spin chain [59,60]. Therefore, very
schematically a possible computing system is a network of
spin chains connecting logical gates, implemented for exam-
ple by interacting spins.

We present here a model in which the resource, the en-
tangled state, is created by a walker on a network of spins.
In its simplest form, the spins are noninteracting, and it is
the motion of the particle that induces spin correlations and a
global entangled state. This is reminiscent to the protocol used
to entangle carbon nuclear spins by the electron of a nitrogen

©2021 American Physical Society


https://orcid.org/0000-0003-1773-7079
https://orcid.org/0000-0002-7825-3353
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.032123&domain=pdf&date_stamp=2021-03-17
https://doi.org/10.1103/PhysRevE.103.032123

KEVISSEN SELLAPILLAY AND ALBERTO D. VERGA

PHYSICAL REVIEW E 103, 032123 (2021)

vacancy in diamond; entanglement is produced by successive
interactions of the electron with the neighboring nuclear spins
(two-qubit gates) [61]. This protocol was successfully applied
to experimentally demonstrate teleportation [62] and error
correction [63]. We generalize the usual setup of a quantum
walk, by assigning a specific physical structure to the support
on which the wandering particle moves. A natural way is to
associate a spin degree of freedom to the graph nodes [64] or,
as we do here, to the links between nodes. At variance to the
model of Ref. [64,65] the spins do not interact and are then
located on the edges of the graph, and, as a consequence, the
particle-spin interaction is independent of the local degree of
the graph (which was the case in the node spin model).

Consequently the constituents of our system are a particle
and a set of spins. As usual in a discrete quantum walk, the
particle’s motion between neighboring nodes of the graph is
controlled by a coin (an operator acting on the particle internal
degree of freedom); the coupling between the walker and the
spin network is defined by an exchange interaction, as in a
Heisenberg magnet. This model keeps some analogy, albeit
with one free particle, with a magnetic system where free
electrons interact with local magnetic moments creating an
effective interaction between spins, like in the Ruderman-
Kittel-Kasuya-Yosida exchange interaction and the Kondo
lattice [66—68]. The idea is that the walker, which may spread
ballistically over the graph, a defining feature of the quantum
walk already noted in the original paper by Aharonov et al.
[13], can create spin entanglement at a linear rate in a many-
body system [69—72]. In the present model the dynamics
of spins adds to the particle motion. We find that the spin
distribution can be modelized, in the continuous limit, by a
Landau-Lifshitz equation [73]. The relation with the magneti-
zation dynamics, described by the Landau-Lifshitz equation,
can be understood by observing that the exchange interaction
of a moving spin with the canted fixed spins should induce a
torque in much the same way as a spin polarized current in-
duces a so-called spin-transfer torque [74,75] (note, however,
that the current is here replaced by the current probability of
one quantum particle).

In order to process information the physical system must be
able to transfer the information through the network and also
to stock it at some location. This means that it is desirable
to find regimes of the quantum walk in which the quantum
state can spread over the available space or, instead, can re-
main localized. We focus here on the simplest case, in which
the quantum walk is defined on a one-dimensional lattice to
show that even in this geometry, a rich variety of dynamical
regimes exists. We observe both propagation and localization
of the particle distribution, together with spin oscillations,
irregular dynamics, and relaxation to some uniform state. As
in condensed matter topological phases allow the control of
the conduction to insulator transition, quantum walks exhibit
analogous topological properties [11] in which the interaction
may play an important role [32]. We investigate the topolog-
ical properties of the particle-spin quantum walk to identify
the effect of the interaction on an otherwise single step Dirac
walk, which is known to support edge states at the interface
between two nonequivalent phases. [We call “Dirac” the walk
with a SU (2) coin that converges to the Dirac equation in the
continuum limit [76,77]].

It is worth noting that the walk build state possesses besides
the local spin degrees of freedom, the walker position, and
internal degrees of freedom, which spread generally over the
network: this structure changes the entanglement characteris-
tics, impeding, for instance, to spatially partition the graph as
can be done in pure spin systems. This interplay of the walker
and spins is exploited here to investigate the spin entangle-
ment indirectly induced by the moving particle. In particular,
we can analyze the role of local and nonlocal effects in the
multipartite entanglement of spins.

Our aim in this work is to demonstrate that a simple quan-
tum system governed by local unitary rules leads to complex
dynamics suitable to investigate the links between entangle-
ment, topological, and magnetic properties. The paper starts
with the presentation of the model; we show in particular how
to handle the spins lying on the graph edges and their coupling
with the itinerant particle. We specialize the model to the
simple Dirac walk on the line and explore its phenomenology
using exact numerical computations. We discuss the different
dynamical regimes and their relation with the entanglement of
the quantum state. We observe that the many-body interaction
is essential in the setting of well-defined magnetic properties
and in the evolution towards a stationary regime. These mag-
netic properties can be described by a semiclassical theory and
the corresponding Landau-Lifshitz equation derived. We end
with a discussion of the results and a conclusion.

II. MODEL

We implement a quantum walk on a simple, undirected,
simply connected graph G(V, E), where V is the set of nodes
and E the set of edges. The number of nodes is the cardinal
|V| (we write | - | for the number of elements of a set). Nodes
are denoted x, y, ... € V and edges are pairs of linked nodes
(x,y) € E. The set

Vei={yl(xy) €E} e))

is the set of nodes y € V neighbors of x, and d, = |V,| the
degree of node x. A particle jumps between neighboring nodes
(y € Vi, Vx € V) and interacts with spins located on the edges
(x,y) € E. The motion between adjacent vertices depends on
an internal degree of freedom, the coin state c, taking d,
values. These values correspond to the different eigenstates
of the coin operator and decorate the graph nodes with a label
“c,” the “subnode,” for each incident edge [78]. In addition,
the coin degree of freedom is coupled with the particle motion,
and with the edge spin through a spin-particle interaction.
This model simulates a kind of itinerant magnetism in which
the motion of a particle determines the correlations between
localized spins.

The basis of the graph Hilbert space H¢ is the set of kets
of the form

|xes) = |x) ® |c) ® Iso ... s51E1-1) € Ho, ()

(the canonical basis) where the labels “x, ¢, s” stand for the
position x, spanning the nodes x =0, ..., |V|—1 € V; the
coin values ¢ = c¢,(x), spanning the incoming edges (x,y)
of each node x € V, ¢ =0, ...,d, — 1; and the set of spins
s = 8081 ... 8E|—1, represented by a string of binary numbers
s¢e=0,1, e=0,...,|E| — 1 (e labels the edges) for the up
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FIG. 1. Graph showing the labeling of subnodes (c =0, 1,...)
between nodes (position x, y, . ..) and edges (spin s,).

and down states at each edge, and spanning the configurations
s €{0,...,2Fl —1}. The Hilbert space dimension is

dimHg = |V| X diax x 2'F! (3)

(dmax = max, |V,| is the maximum degree). A node state is a
superposition of |xcs) vectors with fixed x, and the edge state
is given by a superposition of pairs of node vectors of the form

{|XCySe> , |nySe>}, (x,y) € E, 4

where ¢, = (cy, ¢,), formed by the subnodes of the corre-
sponding neighbors, is defined as the edge coin state (Fig. 1).

The interacting quantum walk is defined by a unitary oper-
ator,

U=VU)W, 4)

which splits into two parts, the walk W part and the interaction
V (J) part that depends on a particle-spin coupling constant J:
The walk part W = MC includes a motion operator (M) that
permutes the amplitudes at a node x with the amplitudes of its
neighbors y € V,, according to the edge coin state, and a coin
operator (C) that actualizes the coin state at each node. The
motion step M is

M |XCyS> = |ycys), Yy eV, (6)

where the set of values of ¢ = ¢, with y € V,, corresponding
to the subnodes of x, determines the direction of the particle
motion. The result of the motion step is then a superposition
of position amplitudes y labeled by c,(x) (in the next section
we show that this operator reduces in one dimension to a shift
operator). The coin step C,

c=1""®cC 1" (7)

|xcs)y — C |xcs) ,

(I? is the D-dimensional identity matrix), where C, can be any
operator of dimension d, (conveniently completed with zeros
up to the total dimension dp,x). The composite operator W
defines a simple quantum walk in a graph [36,37,43,79]. The
choice of the coin C, is somewhat arbitrary, but the Grover
and Fourier operators possess complementary properties [10].
The Grover operator,

G(d) = ng -1, (8)

where J9 is the d-dimensional matrix filled with 1, is not
balanced but distributes the walker amplitudes at each node

preserving the graph symmetries; the Fourier operator is the
quantum version of a balanced coin,

F(d) = LEZinccT/d’ )
Vd
where ¢ is the vector whose coordinates are the coin subnode
values ¢ = (cp, . .., ¢q,—1) at each node x.
And the coin-spin interaction part, which superposes the
coin state of the edge ¢, = (cy, ¢;) with the edge spin s,

Ve E, |c.) ®lse) > V(I)lce) ® Ise) - (10)
This operator acts then on the set of edges E € G,
x¢,0,
xcyl,
V() a0, | V(x,y) e E, (11)
Cxle

where, for a given edge (x,y), c, is the subnode of node x
pointing to y and ¢, the subnode of y pointing to x; the spin
states of edge e are denoted by 0, and 1, corresponding to
the configurations s = s¢ . .. s . . . with s, = 0, 1, respectively.
The choice of V(J) determines the physics of the system. In
the framework of an itinerant electron we can implement an
analogous to the so-called sd exchange interaction H; [75,80]:

J
Vo)) = exp(~it), Hy =7t 0. (12)

with 7,0 = (X, Y, Z) vectors of Pauli matrices acting on the
coin and spin spaces, respectively; J is the coin-spin coupling
constant. [Remark that, for the sake of simplicity, we define
the matrix V' (J) by its action on the edges (x, y), which are
not in the basis of the Hilbert space H¢]. This interaction

el 0 0 0
_i 0 cos(J/2) isin(J/2) 0
_ —il/4
Vol/) =e 0  isinJ/2) cosJ/2) O
0 0 0 ¢l

13)
is related to the swap gate for the particular choice of the cou-
pling J = m. The interaction V (J) is able to entangle the coin
and spin degrees of freedom, while W may entangle the coin
and particle position; as a result, distant spins generically get
entangled through the particle motion (for standard choices of
the coin operator and parameters).

Therefore, the unitary evolution of the quantum state [yr)
is governed by the operator U such that

W@+ 1)) =Uy@), [¥@) eHe, (14)

which advances the quantum state by one time step (we chose
units such that i = 1 and the time step At = 1). In summary,
this equation describes the quantum walk on the nodes of an
arbitrary graph of a particle interacting with the spins on the
corresponding edges. In Appendix A we study in more detail
the tensor structure of U to explicitly show its local action on
the canonical basis of H in the specific case of a line graph.

A. One-dimensional lattice

In the following we will investigate the one-dimensional
lattice. The graph reduces to the set of nodes x e V C Z
with edges e€ E (e=0,1,...,|E| — 1) simply given by
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(x,x 4+ 1). The set of neighbors (1) of node x is V, = {x —
1, x + 1}. The Hilbert space dimension (3) is |[V| x 2/FI*1,
We consider periodic (|E| = |V|), and finite lattices (|[E| =
|V| — 1), for different initial states.

We choose a rotation matrix of angle 6 for the coin

operator C,,
cosf —sinf
R(@®) = (sin@ cos 6 ) (15

which, for the special value 8 = 7 /2, exchanges amplitudes
like a two-dimensional Grover matrix G(2), and for 0 =
7 /4 distributes the amplitudes like the balanced Hadamard
coin F(2), thus conveniently interpolating between Grover
and Fourier coins. The motion operator reduces to a trans-
lation such that the swapping of neighbor amplitudes can be
written as

M= Z(Ix—i—

so that the 0 coin amplitude moves to the right, while its state
flips to 1. The one-step evolution operator is then given by

UWJ,0) =V(JI)MR®), (17)

) (k[ @ 1) (0] + |x — 1) (x[ ® |0) (1]), (16)

which depends on two parameters taking values in the rel-
evant ranges 6 € (0, 7) and J € (0, 7). Appendix A shows
the action of U on the basis vectors arranged in edges related
amplitudes, and Appendix B illustrates the case |V| = 2.

Initially the particle can be located on one node, or
uniformly distributed on the line (“i”), in different coin su-
perposition states, and spin states: all spins z-polarized (“z”),
x-polarized (“x”), or a single spin up in a background of “x”
spins (“zx”). We label the initial state as follows:

Particle at x = xo and spins up |0),

1%000) = |x00) ® |0>®'EI .
= (1/4/2)(10) +

“Z” | )

Particle at x = xy and spins “right”

1),

21E1—1

: 2\E\/2 Z xo0s) =

Particle at x = x spins up at e = (xp, xo + 1), and the other
spins in |+),

bl

|X()0 ® |+>®\E|

“zx”: |zx) =

1
— Y |x0s),
2E1- {Vs|s.=0}

where the sum goes over all spin configurations having s, = 0.
Particle at x = x is in a superposition of up and down spins
(entangled spins),

e Je) = %(lx()OO) + |x002'F171).

If initially the particle is uniformly distributed over the
position states we add a prefix “i” to the initial state label (“iz
“ix,” etc.).

We also studied different boundary conditions: (“p”) pe-
riodic, (“b”) reflective, and (“t”) with an mterface With
reflection of the walker at the line boundary the translation

[IP%2]

€9

symmetry preserved by the periodicity is broken. The inter-
face is introduced to investigate topological properties of the
quantum walk, using different coins on the two sides.

In summary, the system is determined by the boundary
and initial conditions and the couple of parameters (6, J): an

“ ”»” “ ”

example is (7 /3, 1), Z.

B. Observables

After the ¢ step, the quantum walk (pure) state is given by
the density matrix,

p(t) = plxes, 1) = [YO) (YOI, 1Y)
=) Va0 lxes) (18)

xXcs

where we explicitly wrote the functional dependency of p
on the basis labels xcs. This state is numerically computed
iteratively multiplying by U, and then it is exactly known. The
knowledge of the quantum state allows us to monitor the phys-
ical properties of the system; we focus on the probabilities
distribution of position and spin, as well as different measures
of the entanglement entropy. We denote / € {x, c, s} one of the
basis state labels and [ the complement set of the label / (i.e.,
ifl =x,1=/{c,s)}), and

(0)(I,1) = TrOp(l, 1), p(l,t) = Tr;Op(xcs, 1)  (19)

the expected value of the magnitude O as a function of
the variables (/, ¢), obtained from the partial density matrix
o(l, t), which is the partial trace Tr; over the complement / of
the total matrix p(xcs, t).

The particle distribution probability, function of the nodes
x and step ¢, is given by

px,t) = Trzp(xcs, t) = Trp(x, 1), (20)

where we used the notation (19). The expected value of the
spin s(e, t) located at edge e in the state p(¢), is

s(e,t) =Trop(se,t), 21

where, as noted in the preceding section, s, labels the spin at
edge e in the configuration string s = sp...S,...8g—1. We
can label the edges simply using the node label and write
s(x,t) for the edge e = (x, x + 1). The spatial mean is then
given by

s(t) = % Xe:s(e, 1). (22)

The expected value s corresponds to the graph magnetization
distribution (here the magnetization on the line).

In order to measure the von Neumann entropy we partition
the Hilbert space into two parts, selecting the relevant degrees
of freedom. The entropies related to the basic degrees of
freedom are defined by

Si(t) = =Trp(l,1)log p(l, 1) (23)

(we use throughout base 2 logarithms denoted log). It is also
interesting to measure the entanglement of a subset A of spins.
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We take
A={s=0...5....
A={xcs|s ¢A), 24)

|e:eanlv"'EE}a

where here e is a list of selected edges. With this definition,
the entanglement entropy of A spins is

Sa(t) = —Trp(A,t)logp(A,t), p(A,t) = Trzp(xcs,t).

(25
For a binary partition of the system the von Neumann entropy
measures the entanglement of the corresponding reduced state
[81-83]. It is important to note that (23) is a global quantity
defined with respect to the Hilbert’s space degrees of freedom,
while S, is much a local quantity in the sense that the set A is
spatially defined by the set of edges; as a consequence we may
have in general that

Sp > S, (26)

for a large enough |A| (the number of spins in A). In particular
S4 can be used to test entanglement for spatially separated
spins, using a disconnected set A.

To establish the entanglement between two spins at edges
(e1, ep) we use the standard notion of concurrence [84,85],
defined by

Cler. e2) = Clpa] = max{0, VA; — vAs — VA3 — VA4l

27)

where p, is the reduced matrix of the couple of spins, and A;
are (in decreasing order, i = 1, ..., 4) the eigenvalues of the
matrix

p2(Y ®@Y)p3(Y ®Y), (28)

where p* is the conjugate matrix in the canonical basis (the
same as the p, basis). The concurrence measures the entan-
glement of formation of a two qubits state, it is zero for a
separable state and one for a maximally entangled one; in
particular, if p, is diagonal, it vanishes, and hence no two-
spin entanglement would be present. See Appendix B for an
application to the case |V| = 2 of some of these formulas.

In summary, we use three distinct entanglement measures:
a global one, the von Neumann entropy of each kind of Hilbert
space (coin, position, and spin), a spatial one, in which we
partition the spin into connected and nonconneted parts, and,
finally, a measure of the entanglement formation, as given by
the concurrence of two spin states.

III. RESULTS

We investigate now the dynamical evolution of the system
in the parameter phase space (8, J). We consider systems of
different sizes, the typical one being |V | = 13, whose Hilbert
space dimension is about 2 x 103; some simulations were
performed for |V | = 19 (dimension about 2 x 107).

In the absence of interaction J = 0 we identify two ex-
treme behaviors: for 6 = 0 the particle remains confined in
the neighborhood of its initial position; in contrast, for 6 =
7 /2 the walker translates at speed 1 without spreading (the
motion reduces to an amplitude swap to the left or to the
right). Intermediate values give the usual ballistic spreading
along the line of the Dirac quantum walk [86]. In the interval

0 € (/2, ) the system’s behavior symmetrically reverses.
However, it should be noted that interactions may in principle
break this symmetry.

In the interacting case we may classify the different
regimes according to the particle motion [using p(x, ¢)], which
can be localized or propagating, and to the spin dynamics
[using s(x, )], which may exhibit oscillations, relaxation or
be chaotic. In addition, each of these regimes may display a
variety of entanglement behaviors that can be characterized
by the von Neumann entropies S; associated to each class
of degrees of freedom, position, coin, and spin, and also by
the entanglement of a connected or unconnected subset of
spins Sy4.

A. Weak coupling

The motion of the walker for weak coupling J = 0.2 is
illustrated in Fig. 2, where we represent in a logarithmic scale
the probability In p(x,t) for the particle to be at step ¢ at
node x. Between the case 6 = /8 [Fig. 2(a)] and the case
0 = /2 [Fig. 2(b)] we note that not only the propagation
speed differs, with values of about 1 for & = 7 /2 and about
1/3 for 8 = 7 /8, but that the probability spreading is much
stronger for small rotation angles. It is worth mentioning that,
at variance to the case “x” (0 = m /2), the initial condition “z”
is a proper state of U (J, 7w /2) leading to a trivial translation.
A slight dispersion of the position probability appears in the
case 6 = 7 /2 for larger times (visible for # = 150). This is an
interesting effect of the interaction; it induces a dispersion on
the underlying Dirac quantum walk.

The difference in the spreading of the particle reflects
in the spin dynamics. We show in Figs. 3(a) and 3(c), for
the same parameters (6 = 7 /8, w/2,J = 0.2), the mean spin
vector s(t) as a function of time and the von Neumann spin
entropy S;(¢) (I = x, c, s). Both cases exhibit spin oscillations,
yet for & = 7 /8 an almost recurrence to the initial state ap-
pears (relaxation is very weak: the peaks are 1, 0.98, 0.97, at
t =0, 839, 1648), while for & = 7 /2 oscillations are damped
(relaxation is stronger: the peaks are 1,0.74,0.39, at t =
0, 834, 1679). We observe that in spite of the irregular and
fine-grained features of the particle motion, the mean magne-
tization is smooth and behaves as if it would obey a simple
dynamical system.

The oscillation period can be empirically estimated to be

T ~ 4z |V|/J, (29)

which is T = 817 for |[V| =13 and J = 0.2, and depends
essentially on J. However, the amplitude of the oscillations
is strongly dependent on the rotation angle 6: for m /8 the
amplitudes are much smaller than for 77 /2.

The motion and spin distributions for weak coupling dis-
play some qualitative differences depending on the values of
the rotation angle; these differences also appear in the walk
entanglement properties [Figs. 3(b) and 3(d)]. The recursive
behavior found in the case /8 is also present in the entropy
S;(t). In the case /2 we have instead a steady increase of the
entanglement towards saturation. The spin entropy is smaller
than the position one S, 2 S; and remains well under the
maximum possible values

S, <log([V]) ~ 3.7, S, <log2 x [V)~4.7 (V| =13)
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FIG. 2. Spatiotemporal plot of the particle density p(x,); the
color map is in logarithmic scale. Parameters (a) (r/8,0.2) “x,”
(b) (;r/2,0.2) “x.” (a) Dispersive ballistic propagation; (b) ballistic
propagation with weak dispersion.

for the smaller angle; while for the larger one, the spin and
position entropies are larger, rather close to each other, and
for long times we have S, < S;. Another important qualitative
difference we observe is the relatively large fluctuations of
the node entropy S, in the small angle case. The coin entropy
S, generally reach its saturation value at one qubit, in a time
which is of the order of the propagation time of the walker
over the system length.

Summarizing this weak interacting case, we find that the
walker propagates for a large range of rotation angles with
increasing dispersion for small angles; the mean spin shows
temporal oscillations with a period determined by the size
of the system and the coupling constant; the entanglement
manifests the recursive dynamics at small angles, and, for
larger angles, it is smooth and slowly increases to saturation
at long times.

B. Strong coupling and entanglement

We turn now to the strong coupling regime and compare
for the initial condition “z,” two cases with fixed J = 1.2
and angles 6 = 37 /8, 7 /8. Both cases show a rapid spin
relaxation (Fig. 4), with a smoother evolution in the large
angle case 37 /8. The walker density of Fig. 5 revels two
distinct propagation regimes. Comparing the two cases we see
a qualitatively new behavior appearing for (v /8, 1.2) (Fig. 5
c): the walker mainly stays in the neighborhood of its initial
position in sharp contrast to the (37 /8, 1.2) case. We refer
to this situation as pertaining to a “localization” regime, at
variance to the “propagation” regime of Figs. 2 and 5(a). Tak-
ing into account the ballistic motion of the underlying walker
in the absence of interaction, we may refer to this enhanced
probability at the origin as interaction induced localization. A
related phenomenon linking interaction and localization was
found in the quantum walk of two coupled particles [32].

The entanglement entropy of a set of spins S4(¢) is pre-
sented in Figs. 5(b) and 5(d). The main distinction between the
propagating and localized regimes is revealed by their respec-
tive growth laws. In the propagating case, we remark a linear
stage for times t < 50, after which follows a saturation regime
where entanglement slowly increases. In the localization case,
the linear stage disappears. In the case where the walker
spreads ballistically approaching a uniform distribution over
the line, the entropy sharply grows, while for the localized dy-
namics the growth of the entanglement is smoother. In contrast
with normal exponential saturation, the spin set entropy of the
localized dynamics can be fitted with a stretched exponential
[the gray shaded curve in Fig. 5(d)]:

Sa(t) ~1—e™, (30)

where the exponent is @ = 0.5, and v = 0.11 a constant de-
pendent in principle on the system’s parameters (6,J) (and
it might be slightly dependent on |V, in particular due to
finite-size effects). The fit is consistent with an initial stage
Sa(t) ~ +/t, instead of the linear one Sy(f) ~ ¢ observed in
the propagation case.

One interesting question is whether spins spatially sepa-
rated are entangled. We investigate this question in a system
with closed (refelctive) boundaries “b” and using an initial
state that propagates preferentially in one direction. We define
a disconnected set of spins near the two borders:

A=1{1,2,3,4,9,10,11,12}, |A| =8, [|V|=15
and measure S4(¢) using (25), in a system with 15 nodes. In
Fig. 6 we show together the particle and spin densities; the
logarithmic scale of p(x,t) covers two orders of magnitude
to reveal the correlation with the spin distribution; we see in
particular a propagating front where the spin reverses. The
(xcs) entanglement entropy, displayed in Fig. 7(a), saturates
to the random state values. The answer to the question is
provided by the behavior of S4 shown in Fig. 7(b). We find
that the separated spins entangle concomitantly with the pro-
gression of the mentioned flip spin front. Therefore, we may
conclude that in addition to the global entanglement of the
distinct degrees of freedom spanning the Hilbert space, en-
tanglement also possesses a spatial organization that reflects
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in the possibility of distant spins entanglement through the
interlacing created by the nonlocal smeared particle.

However, the state of two arbitrary selected spins does not
form a Bell state as can be measured by the concurrence (27).
We find that whatever the pair of values (6, J) the concur-
rence essentially vanishes. Indeed, a favorable situation for
the formation of entanglement of two spins is when the state
is near “z” eigenstate so that the particle can propagate almost
freely 6 ~ m /2 together with a strong coupling J > 1; we
show in Fig. 8 the concurrence as a function of the number
of sites. The increasing time interval between concurrence
revivals can be interpreted as a progressive transition between
a quasiperiodic and a chaotic dynamics, in analogy with the
kicked top phenomenology [87], which corresponds to the
actual behavior of the system for the chosen parameters. In ad-
dition to this interpretation, the vanishing of the concurrence,
that is to say, the absence of bipartite entanglement correlated
with an increase in the multipartite entropy Sy, can be related
to the presence of nonlocal entanglement, not necessarily as-
sociated with nonregular dynamics; a scenario consistent with
the mediated character of the spin-spin interaction. We discuss
below the appearance of irregular behavior.

In summary, we have shown in Figs. 2-5 the characteristic
oscillations which are present for the full range of angles in
the weak coupling limit J < 1, and pointed out some of the
qualitative differences observed between angles in the first
and second quarters. We found that systems in the oscillation-

relaxation regimes can be characterized by their distinct
entanglement features, from recurrent to monotone growth
towards saturation. At variance to the weak coupling case,
for strong interaction oscillations are almost suppressed by a
rapid relaxation to a saturation regime. We also observed that,
depending on the point in the phase space (6, J), two distinct
particle density distributions arise, one uniform which can be
associated with ballistic propagation, and another picked at
the origin, which reveals localization driven by interaction.
Finally we found evidence of entanglement between distant
spins as unveiled by the entropy of a disconnected set.

C. Chaos

In addition to oscillations and relaxation, the interacting
walk exhibits irregular dynamics, characterized by a complex
behavior of the observables. We fix the point (0.1,2) in the
6 =~ 0 region of the parameter phase space, with initial condi-
tions “x” and “zx,” which differ in the spin state of the edge
e = (xp, x0 + 1). A remarkable pattern shows up in Fig. 9.
The particle density is essentially concentrated at the origin;
however, intermittently ballistic excursions spark throughout
the line. We note that the localized spin initial state “zx”
leads to a stronger particle localization, underlining the close
link between entanglement features and spin distribution. The
spatiotemporal spin dynamics (Fig. 10) shows the emergence,
from an initial homogeneous spin state perturbed by the
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motion of the particle starting from one node, of structures
with a large-scale range. The intermittent behavior is clearly
seen in Fig. 11 where we plot the mean spin vector as a func-
tion of time (we zoomed into the y and z spin components) and
the entanglement entropies. It is worth noting the close rela-
tionship between the spin and particle entanglements, mean-
ing that the system is far from spin entanglement saturation
(as would be the case for an almost random quantum state).

For the “zx” initial state, it is interesting to follow the
evolution of the spin up located at the central bond (Fig. 12).
The irregular motion of the central spin contrasts with the
smoother oscillatory behavior of its neighbors. This is an
interesting illustration of the spectrum of scales created by
the iteration of U (0, J), in particular the appearance of large
spatiotemporal scales.

We discuss now a case “x” with parameters (7 /2, ), in
the large angle strong coupling region, to illustrate irregular
dynamics without localization. The particle density, which
corresponds to a ballistically propagating and spreading par-
ticle, does not show any concentration near the origin and
becomes rapidly irregular. Monitoring the step by step motion
of the walker one observes the modification of the spin state:
a spin wake follows the particle progressively transforming
the initial homogeneous |+) state, enriching it with new am-
plitudes and exciting the other spin components. The initial
spatiotemporal spin evolution is presented in Fig. 13; it is
interesting to note the strong correlation of the particle motion

with the behavior of the z spin component, the particle density
concentrations correspond to the spin wave pattern. At long
times this simple initial pattern becomes a complex motion as
reflected by the mean spin shown in Fig. 14.

In brief, we observed that in some regions of the parameter
space irregular dynamics of the particle and magnetization are
possible. The chaotic like behavior of the observables occurs
for both localized and propagating states. One characteristics
of the “chaotic” regime is its relatively small entanglement
entropy, with the spin entropy sticking to the particle one.

D. Topology

A hallmark property of quantum free walks is that they can
be used as a laboratory to investigate topological phases and
the bulk-boundary correspondence, as we mentioned in the
introduction. Less investigated is the interplay between topol-
ogy and interaction in quantum walks. For instance, one may
think that tuning the coupling constant J, it would be possible
to change the topology of a given phase. The Dirac walk,
as we shall discuss in the next section, has two topological
phases for & < /2 and 6 > 7 /2, corresponding to each side
of the parameter boundary 6 = /2 for which the spectral gap
of its associated effective Hamiltonian closes [19]. However,
the physical difference between the two phases is somewhat
arbitrary because of the existence of a simple relationship
relating 6 < /2 and 6 > /2 (cf. Ref. [86] for a discussion
about the chiral symmetry of the Dirac walk). In the absence
of interaction the walk is governed by W (6) = MR(0), hence
a change 6 — 7 /2 — 0 corresponds to a change in the ro-
tation direction, or equivalently to a change ¥ — —Y, up to
a constant unitary transformation, which do not modify the
behavior of the observables. This is similar to what happen
in other context, with the Dirac equation as already noted
by Shen et al. [88]. The Dirac equation does support edge-
localized states protected by the mass gap; however, it is not
a satisfactory model of a topological insulator: the symmetry
between positive and negative energy states must be broken
in this case to obtain a genuine model of distinct topological
phases. In our case the presence of the interaction, whose
unitary operator do not commute with coin rotations, breaks
the symmetry between the two angle sectors. We may expect
new effects to appear due to interaction and related to the
existence of edge states at the interface separating the phases.

As a consequence, to investigate the topological properties
of the interacting walk, we generalize the coin operator C to
take into account the change in the value of 6 at an interface
defined at x = xo. In practice, we introduce two operators R(6)
differing only in the value of the angle: 6_ and 6, for x < xg
and x > xo, respectively. In the case of periodic boundary con-
ditions, a second interface at x = 0 is also present. In Fig. 15
we compare three cases distinguished by their topological
properties, as defined by the associated noninteracting case.
We choose for the topological interface 6_ = 1.1, 6, = 2.1,
which are at a similar distance to the critical value 8 = /2,
and for the trivial one 6_ = 0.5, 0, = 1.2. The free case
J = 0 with nontrivial interface shows almost recurrences cor-
responding to probability concentrations alternating between
the two interfaces. This behavior reflects in the temporal evo-
lution of the probability at specific nodes, as shown in the
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FIG. 5. Position density and entanglement. Parameters as in Fig. 4, (a,b) (37/8,1.2), |V| =13, “2” (c, d) (7 /8, 1.2), |V| =19, “z.”
Propagation (a) and localization (c) regimes. (b, d) Entanglement of a set of spins. (b) The one-spin entropy saturates to its maximum value
(S; = 1); the |A| = 6 curve shows a linear range. (d) The one-spin entropy saturates; S4(¢) for [A| = 10 slowly increases following a curve that
can be fitted by a stretched exponential with exponent 1/2 (see text). Printed version: (b) 6 (top), 1 (bottom); (d) 10 (top), 1 (bottom).

second row of the figure, where p(x, t) is represented for a
central and a bulk node, x = 6, 9. The interacting trivial case
J = 0.2 (c—d), shows normal scattering at the discontinuities
of the coin parameter 6, but no edge states. The interacting
nontrivial case J = 0.2 (e—f) shows the convergence towards
a probability at the origin larger than the equidistribution (thin
dotted line); recurrences and alternation between the inter-
faces disappear, and a probability concentration forms. The
level of the probability at the interface x = 6, slightly larger
than the mean in the present case, grows with the value of
the coupling constant, which is consistent with the presence
of an edge state. A more precise diagnostic is provided by the
probability distribution averaged over time, which we discuss
next.

In Fig. 16 we present the time-averaged particle density
for three cases illustrating the free nontrivial (a), interacting
trivial (b), and interacting nontrivial (c) situations. In Fig. 17
the spin density comparing the trivial (top) and nontrivial
(bottom) interacting cases. At variance to the previous case,
the initial condition is “z” and the boundary is closed, which
allow us to focus on the dynamics around the unique interface.
The particle distribution shows that in the free case there is a

symmetry between the two phases, symmetry which is broken
by the interaction in a case having the same angle parame-
ters [Fig. 16(c)]. Both (a) and (c) possess edge states, where
the particle probability concentrates. In the interacting trivial
interface case (b), a strong asymmetry arises between the two
regions; this asymmetry is also present, albeit smoother, in the
nontrivial case (c). The discontinuity found in the interacting
trivial case can be related to different propagation properties
at small and large angles: for 8 = 0.5 the particle tends to
localize, while for & = 1.2 it moves ballistically with a small
dispersion. In (c) the asymmetry between the two sides of the
interface, absent in the equivalent free case, is related to the
preferring direction of the particle motion (towards the left). In
the free case, this tendency is compensated by the alternation
between the two sides of transmission and reflection, which
cancel when averaged over time: with J > 0 this symmetry is
broken.

The role of the particle-spin interaction is apparent in the
behavior of the spin density s(x, ¢) at the interface (Fig. 17).
In the trivial case (top) a simple discontinuity in the z spin
component is present at the interface, while in the nontrivial
case (bottom) a rich quasiperiodic dynamics develops, within
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FIG. 6. Simulation with closed boundary conditions “b.” Spa-
tiotemporal particle and z-spin density. Parameters (37 /8, 1), “z.”
The arrows in (a) show the set A of selected spins.

an overall symmetric distribution. The initial uniformly up
polarized state relaxes towards two different values in the
topologically trivial case, on both sides of the discontinuity
of the rotation angle. In the localized region (on the left) the
spin fades out smoothly, in contrast to the fluctuating behavior
in the propagating region, in which at long times the mean
spin tends to vanish. In the nontrivial case, both regions are
propagating and the spin density evolves similarly; the main
effect is on the interface, where a faster scale dynamics sets
up (but slower than the free particle return time to the origin).
The oscillations of the central spin are correlated with the
oscillations of the particle density at the same position (the
two nodes defining the corresponding link), as we can see in
Fig. 18, where we observe the correlation arising after a short
initial transient. In fact, at the interface the particle executes
a zig-zag motion between the neighbors at xy and xy + 1, the
lattice link where the spin resides [Fig. 18(b)].

0 50 100 150 200
(b) time

FIG. 7. Entanglement with closed boundary conditions “b.” Pa-
rameters (37 /8, 1), “z.” (a) The (xcs) entropies saturate to their
maximum values. (b) Spin entropy of a disconnected set A, shown

in Fig. 6(a). Printed version: (a) s, x, ¢” (top, middle, bottom).

The main point about the topological properties of the
system 1is its ability to create at the interface between topo-
logically different regions edge states where the particle
concentrates and where a distinct spin dynamics develops.
The edge states are robust under wide changes of the phase
parameters, as well as to the initial condition (whose overlap
with this state should be nevertheless significant).

E. Parameter phase space

In order to organize the information about the different
physical regimes we described, it is desirable to define ap-
propriated diagnostics amenable at distinguishing between
motion regimes and entanglement characteristics. We focus
first on one basic distinction, which determines many other
properties of the system, the ability of the walker to propagate
or to be localized. To this goal, we use as localization test
the spatial distribution of the particle at long times: a uniform
distribution means a propagation dominated regime, while a
picked distribution is an indicator of localization. To measure
the difference between the actual distribution and the uniform
one we use the Kolmogorov-Smirnov distance. It is defined by
the equation

Dis = max |F[(p)] - wl, (31
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FIG. 8. Concurrence as a function of the system size. Parameters (1.5,1.2), “z”; [V| = 7,9, 11.

where F is the actual distribution (in the probability lan-
guage: a monotone increasing function) associated to the
time-averaged position probability density p(x,t) and u the
uniform distribution over the line (a simple linear function).
The parameter phase space (6, J) is represented in Fig. 19
for two initial states (“x” and “z”). Two examples of the
particle density are given in Fig. 20, where we find typical
localized and uniform densities. The transition between lo-
calization and propagation regimes (the white level) is rather
smooth, at least in this small size system |V | = 13. However,
within the localized region of the phase space, the position
density increases rapidly with the interaction, given large
values of Dgg, while in the propagation part of the phase
space the particle density is much more homogeneous (note
the change of color scale between the two phases). Localized
states occupy a larger part of the parameter space in the case
of the “z” initial condition than in the case of the “x” initial
condition, for which the propagation region is more extended.
The interaction (13) acts very differently on up and plus states;
for instance, when applied to a spin up in a uniform position
state, it gives a state that changes only the z spin component;
at variance, when applied to a |+) state all spin components
are affected. We discuss in the next section the origin of
this dynamical anisotropy. In a spatially uniform state the

é:
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homogeneous spin up state, but not the plus state, is an eigen-
vector of U. The restricted spin dynamics in the “z” case
facilitates then localization of the walk.

To complement this view of the parameter phase space
based on the particle motion, it is interesting to explore the
entanglement as a function of (6, J). This is given in Fig. 21,
where the von Neumann entropy of the (xcs) degrees of free-
dom is depicted. The left column corresponds to “x,” and the
right one to “z.” The first row corresponds to J = 7 /2, and the
second one to J = 7 /10. We observe that, for strong coupling,
there is a tendency of a weaker entanglement between the
particle and spin degrees of freedom in the localized region
for the “x” initial state, and a stronger entanglement in the
propagation region; for “z,” the entanglement is maximum at
the transition between the two regimes. In the case of a weaker
coupling, entanglement is globally smaller, with comparable
values of the position and spin entropies. The small angle part
of the “z” J = 7 /10 is biased by finite-size effects, even if
the decreasing entanglement with the angle is qualitatively
correct (cf. Fig. 5). The vanishing of the entanglement for
0 =m/2, “z,” is simply a consequence that this initial state
is a proper state of U. By extension, the dynamics in the
propagation region of “z” is regular, showing smooth slightly
damped oscillation for J < 1 and relaxation for larger J.
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FIG. 9. Irregular dynamics. Particle density for two different initial conditions: (a) “x,” (b) “zx.” Parameters (0.1, 2). In addition to a central
concentration the particle makes intermittent ballistic excursions, rarer in the “zx” case (b).
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FIG. 10. Spatiotemporal spin density. Parameters (0.1, 2) “x.” The (y, z) spin components are scaled by a factor 10.

In the region of strong entanglement, we verified that the
spin entropy of a set of spins is proportional to its size. We
show S4 as a function of |A| in Fig. 22 (red dots), where we
compare it to the Don Page entropy [89] of a pure random
state (gray dots),

A
1 (32)

D
Sg = log(Dy) — —A4—,
r = log(Dy) 3D, 1n2
where
Dy =24 Dy =21v |2V,

Sg, for our range of parameters, is close to Sg =~ |A|. We
find for J > 1 that the state of maximum spin entanglement
is an extensive variable, well described by a random pure
global state. However, random maximally entangled states
disappear for weaker couplings, leading instead to smaller
entanglement, which follows a sublinear increase law with
the subsystem size, as can be appreciated in Fig. 22, where
we also show S4 for J = 0.3 (blue dots, the system size is
V| =15).

Before closing this section on the phenomenology, let us
mention that the initial spin entangled state “e” imposes a

constraint on the absolute value of the mean spin §, which
is zero at t = 0, very different from the other initial states
[5(0) = 1]. One observes the emergence of persistent irregular
oscillations, whose period is also roughly given by ~|V|/J
and an amplitude generally smaller than the mean particle
density, with a complex spatial distribution. At strong cou-
pling in the propagation region, the spin polarization sticks
to the particle propagation. At variance to the initial product
states, no relaxation towards a stationary state is found.

IV. DISCUSSION
A. Free walk

We consider first the free walk J = 0. With periodic bound-
ary conditions, the evolution operator reduces to a translation
invariant walk operator U (6, 0) = W(68) = MR(6). There-
fore, the evolution operator W can be diagonalized in Fourier
space. We write, using (16), the motion operator,

M =" |k) (k| ® M(k),
k
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FIG. 11. Averaged spin (a) and entanglement entropy (b), for strong coupling and small angle showing irregular dynamics. Parameters
(0.1, 2), “x” as in Figs. 9(a) and 10. Particle and spin entropies follow the same pattern, remaining at a low level with respect to the random
state value max S, & 3.7 (the coin entropy saturates quickly). Printed version: (a) 5, top (gray), 5, bottom (light gray), 5, middle (black); (b) s,

X, ¢’ top, middle, bottom.
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FIG. 12. Spatiotemporal plot of the z spin component (scaled)
(a), and the corresponding temporal profile of node x = xy. Param-
eters, (0.1, 2), “zx” as in Fig. 9(b). The rapid variation at x = xp
contrasts with the regular oscillations of the neighbor x = xy + 1,
the red line in (b).

where k € (—m, ) is the quasimomentum, and

—ik
M(k) = e = (?k eo ) (33)

e
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FIG. 13. Spatiotemporal diagram of the spin s(x, ¢). Parameters
(w/2,7), “x.”
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FIG. 14. Long time evolution of the averaged spin as a func-
tion of time, showing irregular dynamics in the propagating regime.
Parameters (7 /2, ), “x” (cf. Fig. 13). Printed version: 5, (large
variations), 5, (0.0), 5, (0.05).

Then, after multiplying by R(6), the walk operator (in Fourier
space) is given by the matrix

—ik o —ik
e *sinfd e ™cosH
Wk, 0) = <e”‘ cosf® —e*sin 0)
= o iHo k0T /2. 34)

where we introduced the free effective Hamiltonian,
Hy(k,0) =E(k,0)do(k,0) - T, (35)
with
cosE(k,0) = —sinksinf,

coskcos®
sinkcos@ |, (36)
cos k sin @

do(k,6) = sinE(k, 0)

where E(k,0) is the quasienergy spectrum, and dy a
momentum-like unit vector (in analogy with a spin-orbit cou-
pling). The free spectrum displays two bands separated by a
gap which is maximum for 6 = 0, 7, and closes for 6 = /2.
At 0 = /2 the spectrum is similar to the massless Dirac
cone.

In Fig. 23 we represent the group velocity as a function of
the shifted wave number p = k — 7 /2 and the angle 9,

sin p sin 6
ve(p, 0) = ——
V1 —cos? psin“ 0

The group velocity vanishes for & = 0 and tends to a constant
v, = 1 for 6 = 7 /2; between these two extreme values the
wave propagation is dispersive; as a function of 6, it is an
increasing function. These two regimes qualitatively follow
the behavior observed in the interacting case for small J, as
shown in Fig. 2, in which we found recurrent oscillations in
the case of a slowly moving walker and damped oscillations
with high entanglement in the case of a propagating walker.
This picture is also consistent with the observation of local-
ized states for angles smaller than 6 ~ /4. Nevertheless, in
order to understand the rich phenomenology of the system we
must take into account the interaction.

(37
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FIG. 15. Topology “t”” Columns represent different interfaces and interaction strengths: (a-b) J =0, (c—d, e-f) J = 0.2; (a-b, e—f)
topological interface, 0(x < 6) = 1.1, 6(x > 6) = 2.1; (c—d) normal interface 6(x < 6) = 0.5, 8(x > 6) = 1.2. Interfaces are at x = 0 and
x = 6, due to the periodic boundary condition. The top row shows the position distribution in logarithmic scale In p(x, #); the bottom row, the
time dependency of the probability p(x, ¢) for the central node x = 6 and a “body” node x = 9. Initial condition “x.” (b, d, f) The thin gray line
corresponds to the uniform probability. Printed version: (b, d, f) top (6), bottom (9).

B. Homogeneous system case), we observe a smooth temporal evolution of the spin
density s(z), which is only a function of the time. Therefore,
it is natural to assume a mean field separation of scales, and
split the evolution operator:

We consider first the simplest situation in which the parti-
cle and spin distributions are initially homogeneous, implying
that they remain homogeneous because of translation invari-
ance. Under homogeneous conditions, the spatial dynamics ) , .
becomes trivial anﬁ the corresponding motiI())n oper):zltor es- Un(A1) = V(W (p, 0) = e MO8 A~ o HOA,
sentially decouples from the other degrees of freedom. The (38)
consequence is that we can reduce U to the coin-spin coupling ~ Where W = M(p)R(6),
and characterize the particle by its momentum p. Moreover,

. . J
for large times and most parameters (in the homogeneous H=Hy(p,0)+H/t), Ht)= _Zs(t) T, (39)
020 ‘ ‘ ‘ ‘ — ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.10 F 0107 I
0.151 I
=010 £ o)
—~ U.107 = =4 L = | L
= 00 005
0.001 I I I I I I I I I L 0004 L 0.00 —
0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

() node (b) node () node
FIG. 16. Topology “t.” Particle density averaged over time. The light dashed line is the uniform level distribution. Parameters “bz” (closed

boundary conditions); (a) free walk J =0, 6_ = 1.1 6, = 2.1; (b) trivial interface J = 05, 6_ = 0.5 6, = 1.2; (c) topologically nontrivial
interface J = 0.5,0_ = 1.1 6, = 2.1. Interface at x = 7 (|V| = 15).
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FIG. 17. Topology “t.” Spin density evolution. Top, trivial inter-
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FIG. 18. Topology “t.” Particle probability (a) at the origin xo =
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value.
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FIG. 19. Phase space. (a) Initial state “x,” (b) “z.” We use the
Kolmogorov-Smirnov distance to the uniform position distribution
to determine the localization degree; the threshold Dgxs = 1.5/100
roughly corresponds to Dxs = Dxs(m /4, 7 /2) for the initial condi-
tion “x.” Note that the scale of colors is not linear. (The scale of Dyg
is magnified by a factor 100).

and H is given by (35). Note that U is here the one-time step
operator, acting at time ¢ in which we replaced the operator
Hj of (12) by a particle operator, reducing the problem to a
self-consistent determination of the mean field s(¢): we do not
assume the splitting (38) holds for all times, but only over one
step on which we must update the mean field s(7). Actually,
in the continuous time limit the Heisenberg equation for the
time evolution of the expected value s(t) = (¢®V!) = (o) is

d J

7 (o) =5 (o x7); (40)
the approximation consists in replacing o by the mean field,
on the right-hand side:

d J
Es(t) = Es(t) x (1), 41

where (7) is computed from an appropriated evaluation of the
quantum state evolved with (38). Equation (41) is a simple
form of the Landau-Lifshitz equation, in which the magneti-
zation precession is driven by the exchange of torque with the
walker [90,91]:

(M) @)= YOIty @), (42)

s=§sx(r),

where | (¢)) is the system’s state at time 7, which must
be deduced from the Schrodinger equation with Hamiltonian
(39), and (7) is the effective particle “magnetic momentum.”
In brief, for homogeneous systems, the large timescale spin
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dynamics is supposed to be driven by the itinerant particle
spin and satisfies the Landau-Lifshitz equation; the interac-
tion is self-consistently computed solving the corresponding
Schrodinger equation at each time step.

We start with the lowest order solution (in powers of J), in
which we can solve the free particle dynamics, and apply the
corresponding state to the computation of the effective torque.
We determine first the eigenstates. To diagonalize the Dirac
walk Hamiltonian,

H() Zd(pﬂg) - T,

it is convenient to parametrize the vector d = Ed (36) that
actually we may consider to be arbitrary, by the spherical

angles (a, B):
d = |d|(sin cos B, sina sin 8, cos «),

functions of (p, 0); with this definition the wave function
Ye(x,t) of a free particle (in the positive energy band
of Hp) is,

1 ) )
(1) = =X (p, O)e Y, 43
Ip+(x ) m)@*([’ )e ( )
where
E. = +|d| (44)

are the positive and negative energy bands [cf. (36)], the
spinor of positive energy is

o
= cos
sin§ ¢ )

. o
.= sin &
—cosg el )’

and similar expressions for the negative energy wave
function .

We can now apply the solution (43) of the free Dirac walk
to the computation of (t). We readily obtain

1
() = YTy = o

which leads to the equation

. J

§ = 2|V|s x dy (45)
[the minus sign corresponds to our choice of the rotation
direction; see (44)]. This is an interesting result, it predicts that
in the homogeneous case the fixed spins will oscillate with a
period of T = 4m|V|/J, which we observed in (29). However,
this result supposes decoupling between the particle and spins,
as implied by the neglect of correlations in (42) and the free
particle state approximation. In particular, it cannot account
for the relaxation of the spin: note that the Landau-Lifshitz
equation preserves the norm of s(x, t).

To go further, we investigate the particle-spin coupling in
the homogeneous case, using the next order approximation
in the small J limit. We use the standard time-dependent
perturbation theory to find the J dependent correction to the
wave function of the free particle of momentum p. Taking H;
as the perturbation of the Dirac Hamiltonian Hy:

J
H:H()—Zsa)"l',

where the mean spin density is only time dependent, we may
compute the evolution of the state over one step Ar =1,
assuming that during this time the spin density is almost
constant. In the interaction representation we have

(@) =e ™ p1)) =D e E).  (46)

E

The correction to the wave function (43) of a particle of energy
E,, is then written as a superposition of amplitudes ¢g(t) =
(E|¢(t)), in the nonperturbed basis |E). We obtain, integrating
the Dirac equation over one step,

J t+At ,
Pt + A1) = r () — % ;/ di

x ETENE|s(') - TIE) ¢ (1), (47)

To solve this equation we observe that during one time step
the energy exchange E — E, ~ AE between the mean spin
field and the walker must be small, in accordance with the
slow variation of s(¢). The energy variation satisfies AE ~
J/2|V| < 1/At (the timescale of the typical spin oscilla-
tions). We assume that the state of the particle remains close to
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the unperturbed state characterized by the energy E,. There-
fore, to compute the transition amplitude between E, and E
we may assume that at time ¢ the amplitude within the integral
must be close to a state of energy E,, thus it should satisfy
o () ~ XE,OE'E,; in addition, within the time interval At,
we consider that the walker and the spin energy exchange
can be approximated by an essentially harmonic interaction
of frequency AE,

—iAEt

(Els@t') - T|Ep) ~ s(1) -do(Ep),

which we substitute into the integral (47) (the last approxima-
tion takes into account only the correction to the first order
inJ):

Adp = ¢p(t + At) — ¢p(r)
J
4V
Je A1) sin(wAt /2)
4v| w/2

t+At L
/ dr' e“'s(t) - do(E,) e,
t

s(t) -do(Ep)xe, — (48)

where w = E — E, — AE. The expected value of the parti-
cle’s spin, always to lowest order in J, is then

(AT) = f dEg(E)ApLTAQE

s sin?(wAt/2) 5

= W/dE g(E)(w/—Z)Z's(t)' do(Ep)
J2At )

= m|s(t)| dy(Ep), (49)

where we used the formula g(E') = |V|/mv,(E) for the den-
sity of states. We suppose that the transfer of torque from the
fixed spins to the walker giving raise to (At) is the source
of dissipation in the corresponding Landau-Lifshitz equation.
The form of the dissipation term D should then be [92,93]:

D= (s x At) = g (AT) x ({T) X 8). (50)
This term is similar to the relativistic correction introduced
by Landau and Lifshitz, but with the moment s replaced here
by (), which introduces a damping of the magnitude of s (it
has a component parallel to 5). The microscopic origin of the
dissipation is related to the leaking of torque from the fixed

spins to the particle’s “magnetic momentum,” which is here
a fast variable acting as a stochastic torque [94], effectively
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FIG. 22. Entanglement entropy S, of a set A of spins as a func-
tion of its size. S4 is compared to the entropy of a pure random state
Sg. Parameters: (a) (0.9 /2,27 /3) (red), and (7 /4, 7 /10) (blue),
“x”; (b) (r /4, 7 /2) (red), and (;r /4, 7 /10) (blue), “z.” The system’s
size is |V| = 15. For strong coupling the spin entanglement reaches
the random state value Sk (gray). Printed version: J = 2.1, 1.5 top,
J = 0.3 bottom.

giving the term (50). The Landau-Lifshitz equation becomes

. J
s=—=sx{(t)+D
2
3

2d d , 51
16|V|vg|s| o x (dog x8) (51

do +

——s X
2|V

where the precession term may include the correction term
(49) (1) =dy/|V|[1 + O(J?)] that we neglect in the numer-
ical evaluation of (51) (cf. Fig. 24). We show in Fig. 24 a
comparison of the Landau-Lifshitz approximation (51) with
the exact evolution of the homogeneous cases “ix”” and “iz.”
The approximation gives satisfactory qualitative results; in
particular it contains a mechanism to limit the relaxation to
finite values of the spin magnitude due to the presence of the
nonlinearity in |s|?> and the progressive alignment of s and d,.

C. Small gradients

We may extend the analysis of the homogeneous system to
the case of small gradients; we naturally have a microscopic
scale Ax = 1 and a macroscopic one, given by the size of the
system |V |; hence small gradients mean spatial variation £ of
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FIG. 23. Group velocity as a function of p = k — /2 (a) and 6
(b). Printed version: p = w /2, /4, 0.1 top, middle, bottom.

the spin distribution satisfying 1 < £ < |V|. If the homoge-
neous case is characterized by a momentum p, the presence of
fluctuations at £ scale can be taken into account by introducing
a modulation Ap of the wave function: p — p+ Ap. We
can thus associate the momentum modulation with the spatial
gradient, Ap — —id,. The splitting of the one step operator is
straightforwardly generalized to the position dependent case,
giving the new mean field s = s(x, 7):

H=Hy+H;, H= —%s(x,t)-t, (52)

and H the corrected to first order in A p particle Hamiltonian:

Hy=E(p,0)dy-1+ Apd; - 1, (53)

where Hj is the homogeneous Hamiltonian (35) in terms of p,
cos E = cos psind,

is the energy dispersion relation,

| — sin pcos 6
o=————| cospcost |,
SINE(p, )\ _sin psing

the mass term coefficient, and

E(p. 0 cos p cos 6
= (p. 0) sinpcos@ |,
SINE(p, 0) \ cos psin 6
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FIG. 24. Landau-Lifshitz approximation. Spin oscillations damping in the case of “ix” (a, b) and “iz” (¢, d) compared to (51) (dashed
lines). Parameters 1,0.4, N = 13. The energy of the initial condition corresponds to a wave number of p = 67 /13. Printed version: (a) 5, top
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the coefficient of the momentum term. We remark that H
reduces to the continuum limit of the Dirac walk when p = 0
and the energy is supposed to be small EAt — 0 [95], which
is different to the present approximation around a uniform
distribution defined by a plane wave of arbitrary momentum p
and energy E. Up to a global rotation transformation, (53) is
a Dirac Hamiltonian with mass term d( and kinetic term d.
Within this “hydrodynamic”-like approximation, we actually
neglect the distinction between the node and link operators,
which will give higher order corrections to the one step evo-
lution operator. One might expect that the validity of the
hydrodynamic approximation will be better in the parame-
ter range where the coupling constant is small and particle
propagation dominates over localization. The model (52) is
reminiscent of the so-called sd Hamiltonian which describes
the magnetic interaction between independent spins mediated
by itinerant electrons [68]. The difference here is that the
particle is governed by a massive Dirac equation whose mass
and velocity parameters depend on the angle 6, instead of the
usual kinetic energy, quadratic in momentum.

In contrast to the homogeneous case, when gradients in the
spin distribution mediated by the running particle are present,
the system’s dynamical properties (oscillations, relaxation,
and entanglement growth) change qualitatively. For instance,
a linear increase of the spin entanglement arises for times
shorter than the relaxation time, in the propagation-dominated
case. An asymptotic relaxation towards a zero spin state is

also observed, while persistent oscillations prevailed in the
homogeneous case (for similar parameters). An illustration is
given in Fig. 25, where we picture the spin entanglement of a
set of |A| = 6 spins in a system of |V | = 13 sites. We fit the
linear part of the entanglement growth by the interpolation
formula,

12

Sat) = vgt, vy =—,
14

(54)

4,
- J=01
2 J=02
924 J=03
J =04
J =106

|

1000

0 200 400 600 800
time

FIG. 25. Behavior of the spin set entropy S, for |A| =6, as a
function of the coupling constant: J = 0.1, 0.2,0.3,0.4,0.6 and 6 =
/2, “x.” The straight lines fit the slope with formula (54). Printed
version: J = 0.1, ..., 0.6 from right to left.
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which holds for time ¢ larger than the initial transitory, whose
duration is of the order of the system’s size ¢ > |V|, and
time ¢ smaller than the characteristic saturation time ¢ << 1/v;.
[We may think that the slope in (54) depends on |A|, but for
the moment we stress only its quadratic dependence on J].
We are interested in deriving a Landau-Lifshitz equation for
the spin dynamics taking the influence of the gradients into
account, in particular to explain the origin of the J?/|V| effec-
tive parameter (54). To this goal we proceed, as we did in the
homogeneous case, with a kind of linear response calculation
based on a multiscale expansion.

We write the approximate solution of the Dirac equation
of Hamiltonian (52), for a time of the order of one time step
(t,t + At), as a spatially modulated plane wave,

Yx, 1) = e ETG(X, 1), (55)

where ¢ varies significantly over a spatial scale X ~ 1/Ap ~
£. The form (55) separates fast and slow variables as in the
Krilov-Bogoliubov-Mitropolsky method used in dynamical
systems [96,97]. The evolution equation of the modulation is
then given by

id—¢ +idx(d, - 1¢) = —{s(X, T)-to, (56)
dt 4

where we explicitly put the slow variables dependence of the
spin density, with the slow time scale T ~ 1/AE. We obtain
the solution of (56) to first order in J in terms of the Fourier
transform:

J dE dAp e*l’E[JriApX

Xt)y=—— | —
oX.1) 4./V| 2 27 E—Apd; -t

SATX,

(57)
where s is the Fourier transform of the spin field. We are
interested only in the effect of the gradient; using the inverse
of the matrix,

1 E+Apd, -t

E—Apd; -t  E*—Ap*d,|*’
to first order in A p, we obtain
J / dE e~ 'Et
4/V1J 2mi E?

dA .
X/ zpiApe’APX(d1~r)<sA-r>x. (58)
T

PX.1) =

Over the time At the spin density s is almost constant (At <
1/AFE), we can then evaluate the energy integral to get the
final result,

(X, At) A [(dy-0:s)+do- (di X 0,5)] (59)

) = L - 0xS 0 (@1 X 0xS)IX
SVIVI

(the momentum integral gives the gradient) where we used
x tx =dy. We apply now (59) to calculate the response of
the particle’s spin to the spin density gradient:

(AT) = (Ve (x, 0)|T|y(x, At))
_ AL L o) L do - (dy x 9us)ld 60
—m[(rxs)-i- 0 (dy x 0:8)]do, (60)

where we substituted (43) and (55) and (59) to i, and ¥,
respectively (note that in the homogeneous case this first-order

contribution to the torque vanished, giving rise to a higher
order correction). Within the same order we compute the
correction to the interacting energy,
J2
E. = —
nt 32|V|

/dx (s -do)(d; - 8u8) +do - (d) X D.5)].
61)

Finally, after computing the functional derivative of (61),

SE;,
§ =28 X <——[), (62)

o8

we can write the modified Landau-Lifshitz equation:

2

. J JoAt
§ = —ms x do+ W[(do xdy+dyx (dyxdp)]

X (§ X 0,8) + D, (63)
which contains a correction to the precession frequency,

J J J2At
— +
VI 2iv 4V
and a correction to the effective applied field,
J2At
41V

and where we added a dissipation term D, which should also
be of order O(J?) [cf. (50) with the particle spin given by
(60)]. Therefore, within this approximation, the effect of the
gradient translates into a nonlinear shift of the precession fre-
quency, which contributes to an anharmonic evolution of the
spin oscillations, together with a first order in the spin gradient
force, whose common physical origin is the scattering of the
walker wave function off the mean field spin inhomogeneities.
We note a fundamental difference with respect to the usual
exchange interaction, which is proportional to the second
derivative of the magnetization; the added force is reminiscent
to the spin-orbit terms found in some materials [98,99].

In a system of only a dozen sites it is difficult to compare
quantitatively (63) with the exact evolution of the interacting
walk (gradients extend over a few nodes); however, it is pos-
sible to test the parameter dependency in J? (already observed
in Fig. 25). We compare the uniform and nonuniform time
evolution of the spin density and spin entanglement entropy
in Fig. 26. It is remarkable that the simple multiplication
(J/2)v;, with v; = J?/|V| (the natural factor coming from
the Landau-Lifshitz equation), fits so well the homogeneous
case, comforting the relevance of the second-order correction.
In the same figure we show 5, for “x,” which relaxes faster
than the “ix” case, in agreement with the behavior of S4. In
addition, the anisotropy of the oscillation (for instance, the
z component stay at zero in Fig. 2) is a consequence of the
anisotropy of the unit vector d =d( (x and y components
vanish for 6 = 7 /2).

Equation (63) can describe the oscillation-relaxation
regime in an effective external field which to lowest order
T ~d is constant, and whose corrections are perturbative in
the coupling J. The large J regime would need a different
approximation approach, for instance, a kind of adiabatic ap-
proximation in which the particle’s torque follows the spin’s.
We leave this investigation for future work.

J
(dy - 9s) + Edo (dy x 0y8), (64)

do—)d()—

[di+ (do xd)](dy - 0,8),  (65)
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FIG. 26. Comparison of the homogeneous 9, = 0 and inhomo-
geneous d, # 0 evolution of the spin 5, (a) and spin entanglement
Sa (b). Parameters (1.5,0.3), “x” (0 # 0) and “ix” (0 = 0), |A| = 6,
|V | = 13. The dashed lines are linear fits with slope v; = J?/|V| ~
J?[3; # 0, (54)], and (J/2)v; ~ J? (3, = 0). Printed version: (a) 3 #
0, 9 = 0 bottom, top; (b) d # 0, 3 = 0 top, bottom.

V. CONCLUSIONS

In this paper we investigated a generalization of the quan-
tum walk to a many-body interacting system, in order to build
an entangled state from the dynamics of a walker coupled
to a network of spins. This approach may be compared with
the usual adiabatic model of quantum computing [100-103].
Instead of adiabatically evolving a quantum system from an
initial Hamiltonian whose ground state is a product of basis
states to a useful entangled ground state of another Hamilto-
nian, we obtain the resource state from the unitary evolution
of the system towards a stationary state (stationary in the sense
of its observables properties: magnetization, entanglement,
probability distribution). In its generality the model is imple-
mented on an arbitrary (simple) graph, in which the walker
wanders between neighboring nodes interacting with fixed
spins located in the links. The fixed spins are then coupled
through the particle’s degrees of freedom, position and coin
values. The coin degree of freedom represents internally the
connectivity of the graph. This model, loosely inspired by the
condensed matter magnetic metals in which the interaction is
of the RKKY type governed by a sd-Hamiltonian, is charac-
terized by an exchange interaction between the coin values of
the two nodes of a link and the local spin. This interaction
differs from the more usual Ising-type interaction used to

build cluster states, because it depends on the angle between
the particle and local spin magnetic moments. In addition, the
coin operator that modifies the particle’s internal degrees of
freedom introduces an anisotropic redistribution of the state
amplitudes between the incoming edges of a vertex. This
anisotropy has important consequences for the dynamics of
the system. Another motivation for the present model comes
from the experiments in which an entangled state of local
spins (nitrogen vacancies in diamond or magnetic moments of
trapped cold atoms, for instance) is obtained by an interaction
mediated by a nonlocal moment [61,104], or by the interaction
with the environment in a spin chain [105], which can be
useful for the construction of quantum networks [60,106].

The present work focused on the simplest geometry, the
one-dimensional lattice with closed or periodic boundary con-
ditions. Nevertheless, we observed a fairly rich dynamical
phenomenology even for this simple case in which we con-
sider the Dirac walker coupled to noninteracting spins through
its internal degrees of freedom. We could exhibit a variety of
behaviors, reminiscent to a magnetic chain in which, taking
into account that the motion of the walker is correlated to
its internal state, a magnetic interaction arises mediated by
a kind of spin-orbit coupling. We determined using direct
numerical computation by successive application of the one
step evolution operator, the parameter phase space regions
of localization and propagation, and explored the weak and
strong coupling regimes, the regular and irregular dynamics as
well as the influence of the interaction on the walk topological
properties. We found that the magnetic dynamics, for homo-
geneous and weakly inhomogeneous states, is well described
by a quasiclassical mean field Landau-Lifshitz equation with
dissipation, nonlinear frequency shift and torques proportional
to the magnetization gradient [cf. Eq. (63)]. Both, dissipation
and nonlinear torques, arise from the scattering off on the
fixed spins of the walker wave function; the hydrodynamic
like approximation applies when the temporal and spatial
scales characteristics of the walker and the edge spins can
be well separated. Let us mention that as a by-product of the
low energy approximation we generalized the usual method to
derive the continuum limit of the free quantum walk, Eq. (53).

We found that the interacting many-body quantum walk
leads for a large range of parameters, to highly nonlocal
entangled states, with an entropy proportional to the size of
the entangled region. In particular, we demonstrated that it
gives rise to localized edge states at the interface between
topologically different phases, in contrast to the free walk.
The entanglement dynamics and its structure are governed
by the interplay of the local degrees of freedom, the fixed
spins, and the global one, the walker whose distribution is
delocalized over the entire system. We may conclude that
this system has properties that are relevant to the quantum
simulation of condensed matter systems as well as to the build
up of entangled states of interest as a quantum computational
resource.
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Numerical calculations used python with the libraries numpy
and scipy. Figures were produced with matplotlib [107].

lattice. Let |1) be a general state,

= xcs s ves € C. Al
APPENDIX A: THE ONE-STEP OPERATOR U V) XX”: Vies lecs) v &
In this Appendix we will exhibit the structure of the one
step operator U by applying it to the canonical basis of the =~ We compute Uly)=VU)MCI|¥), using the
Hilbert space |xcs) € Hg, in the case where G is a linear definitions (6)—(13),
|
Uly)=VdJ) 2(0089 Vo5 — Sin6 Yis) |x 4 1 1s) 4 (sin € Yrxos + cos 0 Yuis) [x — 1 0s) (A2)

XS

where we used the rotation matrix (7) and the definition of the motion operator (6) (for the one-dimensional case). The action of
V (J) is conveniently expressed in the edge basis (10), we introduce then the notation s, (0) for the set of spins s = 1, ..., 2IFl — 1
with the label s, = 0 [corresponding to the edge e = (x, x + 1)], idem s, = 1:

Ul =e "y " {e?(sin6 Yres105,0) + €080 Yot 16,0)) X 05:(0)

X,8

+ [isin(J/2)(cos 0 Y05, 0) — SINO Y 15,0))

+c08(J/2)(Sin 6 Yrs105,(1) + €08 O Yyt 15,(1)) | [¥0s:(1))

+ [cos(J/Z)(cosO Yy 05,(0) — SINO Yy lxx(O))

+isin(J/2)($in 6 Yy 105,01y + €080 Yert 15,1) ] [ + 1 15:(0))

+e"72(cos 0 Yreos,1) — SINO Yo 1,1y 1x + 1 Ls (1)} (A3)

We observe that each term of the sum contains the basis vectors of the edge (11) with coefficients depending on the eight
amplitudes corresponding to the two nodes and edge spin, therefore, coupling effectively the edge e, with its two neighbors
ex+1.- One may condensate this structure into a formula which gives the amplitudes of edge e, in terms of the amplitudes of its
neighbors:

[Vers,(t + 1)) = AlWe,_, 5, (1)) + B [We, 5. (0)) + C [We,, 5, (1)) s (A4)
where
WY 00,
_ | ¥xon,
[Veus) = Vet 10,
Yeri1,
and the matrices (A, B, C) are given by
0 O 0 0
_ 0 0 —isin(J/2)sin(@) 0
_ tJ/4
A= 0 0 —cos(J/2)sin(6) 0 : (A5)
0 0 0 —e/25in(9)
elr? sm(@) 0 0 0
_ i cos(J/2)sin(@) 0 O
isin(J/2)sin@) 0 0| (A6)
0 0 0
and
0 0 e’/* cos(6) 0
B il isin(J/2)sin(0) 0 0 FQS(J/Z) cqs(@) : (A7)
cos(J/2)cos(0) 0 0 isin(J/2)sin(6)
0 ¢is cos(0) 0 0

note that the spin index is local to the e, edge. The fact that the spin in e, appears in the terms of the A and C matrices, associated
respectively to the e,_; and e,_; neighbors, shows the typical mixing of amplitudes of a unitary operator. Two adjacent spins are
indirectly coupled by the coin values of their common node, which splits between both and forbids writing U in a simple block
form.
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APPENDIX B: |V| =2, FULL COUPLING

To enlighten the structure of the operator U defining the step of the interacting walk (17), and to study the mechanisms
underlying the particle-spin entanglement it is convenient to reduce the system to its simplest nontrivial form. In this Appendix
we investigate the |V | = |E| = 2 case, which can be worked out analytically for a few steps.

The Hilbert space dimension is 2 x 2 x 22 = 16. The explicit expression of U in the |xcs) basis is useful for the computation
of the observables, but do not highlight the interaction structure which is related to the edges. In the edge basis,

0000 0010
0001 0011
6()(0) = 1100 5 6()(1) = 1110 )
1101 1111
1000 1001
1010 1011
i@ =1g100]° D= {0101 | (B1)
0110 0111

where each line consists in a set of four labels,
ec(s) = {xcsps1}, x=0,1, ¢c=0,1, s=0,1

[compare with (11)], U can be build up form blocks of 4 x 4 matrices.
To construct the operator U we use the method of Appendix A. We write the recurrence (A4) in the mixed base e, (s) and
e,(5), where 5, = s, is a edge vector with the spin of the next edge:

eo(0) e1(0) eo(0)
eo(D) ] _ ei(l) eo(1)
Vil ey | =AU e | HEV @) | B2
ei(1) eo(1) er(1)
where we used the periodicity of the chain. Now the problem is to express e,(5) in the edge basis:
e1(0) = Mooe, (0) + Mojei (1),
er(1) = Mype1(0) + Mijei (1),
_ (B3)
e0(0) = Mooeo(0) + Moreo(1),
eo(1) = Mipeg(0) + Miieo(1),
where the transformation matrices My, are given by
1 0 0 O 0 0 0 O
0 0 0 O 1 0 0 O
Mo=10 o0 1 o] M1 =fo 0 o of
0 0 0 O 0 0 1 O
and
0 1 0 O 0 0 0 O
0 0 0 O 0 1 0 O
Mo=10 0 o 1] M={0o 0 0 o
0 0 0 O 0 0 0 1
Substituting this transformation into (B2) we obtain an expression in the edge basis, with U:
B 0  Ap Ao
U= 0 B Ay Ay (B4)

Ap A B (U

where
Axx = (A + C)Mv,n

and A, B, C are defined in (A5)—-(A7). We have, on the diagonal, the (nonunitary) matrix B proportional to cos 8, and off diagonal
matrices A, C, proportional to sin 6: this block three diagonal form become much more cumbersome for an arbitrary number of
nodes (in the sense of Appendix A); it reflects the locality of the original operators, and implies that at each step two new edges
enter into play.
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The eigenvalues of U are readily computed:

P (BS)

—iJ/4

V2

A==

where each A is four fold degenerated, and each A, (withn =
——, —+, +—, ++) is twice degenerated. Note that 6 =0
gives a trivial system (off diagonal terms vanish), but 6 = /2
contains information about the interaction. In Fig. 27 we plot
the argument of the eigenvalues (quasienergies £ = arg 1) of
U, as a function of the parameters; the interaction partially
lifts the degeneracy creating gaps that grow with both 6 and
J. In this simple limit levels do not cross at finite values of the
interaction, therefore, the long time behavior of the |V | =2
system is essentially quasiperiodic, with a basic period of
T = 8w /J [in accordance with (29)].

We compute now the entanglement entropy and a spin
correlation function, in order to investigate the way in which
the particle-spin interaction propagates. We take the particle
initially on the node 0 and the spins in the state |+) (“x” initial
condition):

l¥(0)) =(1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)".

0 -— 72 3n/4 M
(b) J

FIG. 27. Spectrum (B6) of the |V|=2 one step operator.
(a) arg A as a function of 6 for J = 1 (the dashed lines correspond
toJ = 0); (b) arg A as a function of J for & = 1. The curves are sym-
metric with respect to the vertical axes @ = 0 and J = 0, respectively.

\/ 2 —sin®(J/2)sin® @ % i| sin(J/2) sin9|\/4 — sin?(J/2)sin® 0, (B6)

[
After one time step the state becomes
V(D) =U [y (0)),

and the corresponding density matrix p = |¢ (1)) (¥ (1)],
from which we compute the partial trace over the particle
degrees of freedom:

ps(1) =Trep, x=0,1, ¢c=0,1

to get the spin state density matrix. For example, putting 6 =
/2, we find the eigenvalues of p; to be

ro=0, rx = 1+ 1v4 —sin® J{1 — 2sin[2J — arg(8/)]};

the first eigenvalue is twice degenerated. The corresponding
entropy is

Sy ==Y rulogry, (B7)

111 - »

/
0.41 / 3
//
0.0 / : :
0 /4 /2 3m/4 T
(a) J
03]
—— 0=31/8
— 0=7/8
0.2 /
e
= 014
o
0.0 \\
—0.11 S

0 T/d w2 3n/4 M
(b) J

FIG. 28. Spin correlation. (a) Particle-spin entropy; (b) spin cor-
relation, as a function of the coupling constant for two angles 6 =
/8, 3w /8. Parameters t = 2, “x,” |V| = 2. Printed version: (a) 6 =
37 /8, 7 /8 top, bottom; (b) bottom, top.
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which vanishes for J = 0, 7, and has a maximum for J =
7 /2: the number of maxima increases with 7, and the shape
of S; may become highly oscillatory for large 1. However, we
are interested only in the properties of the case |V| = 2 that
may be useful to understand larger systems. What we see is
that after a step particle and spins become entangled, but the
entanglement is a nontrivial function of (6, ¢).

To assert the spin-spin effective interaction we compute
the correlation function (in the form of an interaction energy
between adjacent spins):

G(0.J)=(01-02) = (01) - (02), (B8)

where the expected value refers to (---) = Tr[p,(¢)- - - ]. For
the first time step it gives

sin*(26) .
—Fsi

16

which has a maximum C; = 1/16 for (68 =n/4,J = /2);
significant correlation is obtained with # = 2, once the particle
amplitudes were distributed over the two sites (initially the
amplitudes on node 1 are 0). In Fig. 28 we show (B7) and
(B8) for t =2, computed numerically. The entropy is not a
monotone function of J, as explained before; idem for the
correlation function, which also is strongly dependent on the
coin angle. We note that, for small J, the correlation behaves
as C ~ J%, which is consistent with the mediated character of
the spin-spin interaction.

Ci(6,)) = n’J, (B9)
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