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Density relaxation in conserved Manna sandpiles
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We study relaxation of long-wavelength density perturbations in a one-dimensional conserved Manna sand-
pile. Far from criticality where correlation length ξ is finite, relaxation of density profiles having wave numbers
k → 0 is diffusive, with relaxation time τR ∼ k−2/D with D being the density-dependent bulk-diffusion co-
efficient. Near criticality with kξ � 1, the bulk diffusivity diverges and the transport becomes anomalous;
accordingly, the relaxation time varies as τR ∼ k−z, with the dynamical exponent z = 2 − (1 − β )/ν⊥ < 2,
where β is the critical order-parameter exponent and ν⊥ is the critical correlation-length exponent. Relaxation
of initially localized density profiles on an infinite critical background exhibits a self-similar structure. In this
case, the asymptotic scaling form of the time-dependent density profile is analytically calculated: we find that,
at long times t , the width σ of the density perturbation grows anomalously, σ ∼ tw , with the growth exponent
ω = 1/(1 + β ) > 1/2. In all cases, theoretical predictions are in reasonably good agreement with simulations.
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I. INTRODUCTION

Sandpile models [1] were proposed to explain the ubiq-
uitous power-law correlations in slowly evolving natural
structures, such as mountain ranges [2], river networks [3],
and low-frequency “1/ f ” noise [4] and related dynamical
phenomena [5–12]. They are threshold-activated spatially ex-
tended discrete dynamical systems with lattice sites having
grains or particles, which diffuse in the bulk through cascades
of toppling events, called avalanches. In the original version
[1,13,14], the systems are driven by slow addition of grains,
which get dissipated at the boundaries. However, in the con-
served or fixed energy version [15], though the microscopic
dynamics in the bulk remains the same, there is no dissipation
and the total mass (number of grains) remains conserved in
the system. In this paper, we consider a stochastic variant of
conserved-mass sandpiles—the celebrated conserved Manna
sandpile [16–18], which constitutes a paradigm for nonequi-
librium systems undergoing an absorbing phase transition
[19,20]. That is, upon decreasing the global density below
a critical value, the system goes from a dynamically active
steady state to an absorbing state, devoid of any activity.

The conserved Manna sandpile has generated consider-
able interest in the past, especially concerning the questions
of the universality class and the formulation of the corre-
sponding field-theoretic description of the system [15,21–
24]. In fact, there are many universality classes in different
sandpile models, depending on the details of toppling rules.
While the questions concerning universality in sandpiles have
not been fully settled [25–27], other problems like charac-
terization of particle transport and dynamic correlations in
sandpiles [28–31] have not been explored much in the past.

*punyabrata.pradhan@bose.res.in

Although understanding spatial and temporal correlations in
various nonequilibrium natural systems was the original aim
of the “self-organized criticality” (SOC) hypothesis [1], sub-
sequent research on sandpile models has focused more on the
avalanche distributions, and the time-dependent properties of
sandpiles have been investigated much less [32–36]. Indeed,
even after three decades of intensive studies, there is only a
limited knowledge of the large-scale structure of sandpiles in
general, and the Manna sandpile in particular. For example, it
was realized only recently that the long-ranged correlations in
the critical state show hyperuniformity, and its theoretical un-
derstanding is still lacking [27,37–39]. Recently we proposed
a hydrodynamic theory of conserved stochastic sandpiles [40].
Using this theory, here we address the question “What is
the hydrodynamic time-evolution equation governing density
relaxations in the conserved Manna sandpile?”

Indeed, deriving hydrodynamics of a driven many-body
system is difficult in general [41,42]. Remarkably, hydro-
dynamics of a special class of sandpile-like models, having
a time-reversible dynamics and a steady-state product mea-
sure, has been previously derived [43]. The Manna sandpile,
however, lacks microscopic time reversibility and therefore vi-
olates detailed balance; consequently, its steady-state measure
is not described by the Boltzmann-Gibbs distribution and is a
priori unknown. Perhaps not surprisingly, a good theoretical
understanding of dynamical properties of the Manna sandpile
on macroscopic scales is still lacking.

In this paper, we study long-wavelength density relaxations
in the one-dimensional conserved Manna sandpile, which un-
dergoes an absorbing phase transition below a critical density
ρc. We consider a system on a ring of L lattice sites. We
denote a local density field, at a lattice point X and time
t , as ρ(X, t ), or, equivalently, the local excess density as
	(X, t ) = ρ(X, t ) − ρc. We consider the initial density profile
ρ(X, t = 0) = gin(X/L), where gin(x) with 0 � x � 1 is a
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piecewise continuous and smooth function, which describes
an initial coarse-grained density profile; unless stated other-
wise, we assume a periodic boundary condition. We take the
limit of large system size L → ∞ by keeping gin(x) fixed
and consider a time-dependent coarse-grained density profile
with small wave number k → 0; we consider cases where the
correlation length ξ in the system can be either finite or large.
In our study, we broadly identify the following regimes of
density relaxation.

Regime 1: Local density greater than ρc everywhere. We
consider relaxation of the local density profile with ρ(X, 0) >

ρc [or 	(X, 0) > 0]. There are two possibilities: local density
is (A) far from criticality (kξ � 1) or (B) near criticality
(kξ � 1).

In case A, the density profile is such that 	(X, t ) � ρc

and the system is supercritical everywhere. Then, provided
an initial profile ρ(X, t = 0) = gin(X/L), the time-dependent
density profile is of the form ρ(X, t ) = g(X/L, t/L2), where
the scaled density field g(x, τ ) satisfies a nonlinear diffusion
equation,

∂τ g(x, τ ) = ∂2
x a(g), (1)

where a(g) is the coarse-grained density-dependent steady-
state activity. This implies that long-wavelength density
perturbations having wave numbers k → 0 relax diffusively,
with a finite density-dependent bulk-diffusion coefficient
D(ρ) = da/dρ and the relaxation time τR(k, ρ) varies as
τR(k, ρ) ∼ k−2/D(ρ).

In case B, the system is invariant under rescaling of po-
sition X → λX , time t → λzt , (excess) density 	 → λ−χ	,
and bulk diffusivity D → λχ−αD, where the exponents z, χ ,
and α are the standard critical exponents. Consequently, the
transport becomes anomalous as the bulk-diffusion coefficient
diverges as D ∼ ξχ−α and the density profiles with wave
numbers k → 0 relax over a timescale τR ∼ k−z with z =
2 + α − χ < 2. Remarkably, the relaxation time is smaller
than that away from criticality. That is, for a fixed k, the
relaxation time τR(k, ρ) decreases as a function ρ and tends
to a nonzero finite value as ρ → ρ+

c . Note that, for an infinite
system, the relaxation time as k → 0 is still infinite at the
critical point.

Regime 2: Local density greater than ρc in some region
and equal to ρc elsewhere (ξ � 1, but kξ � 1). In this
case, we consider relaxation of a localized density perturba-
tion on infinite critical background. The system exhibits a
self-similar structure in the density range L−1/ν⊥ � 	 � 1,
where the activity a(ρ) � C	β has a power-law form with β

being the order-parameter exponent and C being the model-
dependent proportionality constant. The system is invariant
under rescaling of position X → λX , time t → λz′

t , and (ex-
cess) density 	 → λ−1	, implying the general solution for
the time-dependent density

	(X, t ) = 1

(Ct )ω
G
[

X

(Ct )ω

]
, (2)

with ω = 1/z′ = 1/(1 + β ). Here G(y) is a function of one
variable y and satisfies the differential equation

−ω

(
G + y

dG
dy

)
= d2Gβ

dy2
. (3)

Provided an initial delta perturbation 	(X, 0) = N1δ(X ), the
above differential equation has a solution

G(y) = (B0 + By2)−1/(1−β ), (4)

where the constants B0 and B can be determined in terms of
the exponent β and the initially added particle number N1.
In this case, the transport is anomalous and characterized by
the exponent z′ = 1 + β, which is, however, different from the
dynamic exponent z of regime (1.B); in general z′ 
= z (unless
ν⊥ = 1).

Regime 3: Local density greater than ρc in some region and
less than ρc elsewhere. In this case, initially the density profile
is not everywhere greater than critical density. For simplicity,
we consider the following initial profile: local density

gin(x) = ρc[1 + ε1(x)]

being greater than critical density in some region and

gin(x) = ρc[1 − ε2(x)]

being less than critical density elsewhere, with ε1, ε2 > 0.
After some time, when the activity has relaxed locally to the
value corresponding to local density, we have the system in
a mixed state, made up of active and inactive regions. The
active regions then slowly invade the inactive regions, and,
on large spatiotemporal scales, there is a discontinuity at the
boundaries between the active and inactive regions. There are
two possible final states: (1) the activity invades the entire
region and the system eventually becomes homogeneous or
(2) the system becomes frozen (inactive everywhere), where
the maximum density is ρc and some inactive regions remain
uninvaded.

In each of the above regimes, we consider various kinds of
initial profiles, which either have a finite number of discon-
tinuities (as in a steplike profile) or vary continuously. In the
latter case, density profiles can be smooth (as in a Gaussian
profile) or nonsmooth (as in a wedgelike profile). In all cases,
our theoretical predictions are in a reasonably good agreement
with simulations.

The paper is organized as follows. In Sec. II we define the
model of a conserved Manna sandpile and, in Sec. III, we
formulate the hydrodynamic theory for the system. In Sec. IV
we present the detailed predictions of the theory and compare
the theoretical results with simulations; we discuss the follow-
ing three density regimes: a far-from-critical density regime
in Sec. IV A 1, near-critical density regime in Sec. IV A 2,
and density relaxation on an infinite critical background in
Sec. IV B. In Sec. IV C we study density relaxation where the
initial local density is less than the critical density in some
region, and finally we summarize in Sec. V.

II. MODEL

We consider a variant of stochastic Manna sandpiles [16]
on a one-dimensional ring of L sites, where the system evolves
in continuous time and total mass is conserved. In the litera-
ture, this variant is known as the conserved Manna sandpile
(CMS) [17]. Any site X ∈ [0, 1, . . . , L − 1] is assigned an
unbounded integer variable, called the number of particles
(also called height) nX ∈ [0, 1, 2 . . . ]. When the particle
number nX at a site X is above a threshold value n∗ = 1, the
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FIG. 1. Schematic representation of one-dimensional conserved
Manna sandpile. Particles are represented by full circles; sites are
represented by thick black lines and indexed by X . The sites having
more than one particle are active (red particles with lighter shade);
otherwise they (blue particles with darker shade) are inactive. From
an active site, two particles are chipped off, and each of them is
independently transferred to one of the two nearest-neighbor sites
with equal probability 1/2.

site is called active. An active site topples by transferring two
particles, each of them independently, to the right or the left
nearest-neighbor sites with equal probability 1/2; see Fig. 1
for a schematic representation of the update rules. Sites are up-
dated with rate 1, which sets the timescale in the problem. The
total number of particles N = ∑L−1

X=0 nX remains conserved
with density ρ = N/L. The activity, which acts as an order
parameter for the system, is defined as the average density of
active sites

a(ρ) = 〈Na〉st

L
(5)

in the steady state, where Na is the total number of active sites
in the system at a particular time and the average 〈.〉st is taken
over the steady state. Note that the steady-state activity a(ρ)
is a function of density ρ, which is the only tuning parameter
in the system.

Upon tuning the global density ρ, the conserved Manna
sandpile undergoes an absorbing phase transition below a
critical density ρc. Near criticality, the system exhibits critical
power-law scaling: when the excess density 	 = (ρ − ρc) →
0+ approaches zero from above, the activity a(ρ) vanishes
as a(ρ) ∼ 	β , with β being called the order-parameter ex-
ponent, and the correlation length and the relaxation time
diverge as ξ ∼ 	−ν⊥ and τR ∼ 	−ν⊥z, respectively, where z is
the dynamical exponent. We shall use the following values of
the critical density and the critical exponents: ρc � 0.94885,
β � 0.42, and ν⊥ � 1.81 as previously estimated in Ref. [17].
Notably, as proposed in Ref. [40] and demonstrated in this
paper, the three exponents β, ν⊥, and z are not independent,
but related through a scaling relation [see Eq. (25)].

III. HYDRODYNAMICS

Let us consider the conserved Manna sandpile on a ring of
L lattice sites. At any lattice point X and time t , we can specify
the system, on an average level, by defining a local density
ρ(X, t ) = 〈nX (t )〉, the average of the particle number nX (t ) at
site X and time t , or, equivalently, by defining a local excess
density 	(X, t ) = ρ(X, t ) − ρc around the critical density ρc.
At time t = 0, we prepare the system in an initial state with a
slowly varying density profile ρ(X, t = 0). Now, on a lattice
of size L, the initial density at a site X can be written as a
function of scaled position x = X/L,

ρ(X, t = 0) ≡ ρin(X ) = gin

(
X

L

)
,

where the scaled initial density profile gin(x) is a piecewise
continuous and smooth function of the scaled position x =
X/L. The function gin(x) can have a finite number of discon-
tinuities: it may have a jump in the density value (such as in
a steplike density profile) or its derivatives may be discontin-
uous (such as in a wedgelike density profile) at some points.
We study relaxation of the initial density profiles, which can
be locally in three possible states:

(i) A supercritical state, where local density is greater than
the critical density

(ii) Or a critical state, where local density is equal to the
critical density

(iii) Or a subcritical state, where local density is less than
the critical density.

From the microscopic update rules described in the previ-
ous section, we can straightforwardly write the time-evolution
equation for the density field ρ(X, t ) at position X and time t
as given below [40]:

∂ρ(X, t )

∂t
= [a(X − 1, t ) − 2a(X, t ) + a(X + 1, t )]

≡ ∇2[a(X, t )], (6)

where a(X, t ) is the average local activity at position X and
time t and ∇2 is the discrete Laplacian. Note that the above
time-evolution equation for density field, which is locally
conserved, can be written in the form (discrete) of a continuity
equation,

∂ρ(X, t )

∂t
= J (X, t ) − J (X + 1, t ),

by defining a local current

J (X, t ) = a(X − 1, t ) − a(X, t ) ≡ −∇a(X, t ), (7)

which is written as a discrete gradient ∇ of activity a(X, t )
and can be identified as the local diffusive current.

Now let us consider the system which is initialized by
putting nX particles at site X , where nX is a Poisson distributed
random variable with mean gin(X/L). First, we consider the
simple case where we randomly distribute particles such that
the macroscopic state is homogeneous, i.e., gin(x) = const =
ρc(1 + ε) with ε > 0 finite. Then initially there is a lot of
activity, which relaxes to a steady-state value in time τact.
This typical time for relaxation of the activity, in the absence
of macroscopic density gradients, is finite. Therefore, we can
assume that the activity at all times t � τact is given by the
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steady-state value corresponding to the local coarse-grained
density,

a(X, t ) = 〈âX 〉st
ρ(X,t ) = a[ρ(X, t )],

where 〈.〉st
ρ denotes the steady-state average corresponding to

local density ρ(X, t ). Accordingly, the time evolution of the
density field, from a nonuniform initial profile, is described
by a nonlinear diffusion equation,

∂ρ(X, t )

∂t
= ∂2a[ρ(X, t )]

∂X 2
, (8)

where a(ρ) is the steady-state activity at density ρ. In other
words, on large spatiotemporal scales, where the density field
would vary slowly in both space and time, the coarse-grained
local activity is a function of the coarse-grained local density.
The above assumption is in the spirit of the assumption of lo-
cal equilibrium [44], e.g., in the Navier-Stokes hydrodynamic
equation, where the equilibrium equation of state connects
local pressure to local density and temperature.

The time evolution equation (8) is invariant under scale
transformation X → λX and t → λ2t . It implies that the gen-
eral solution of (8) has the following scaling form:

ρ(X, t ) = g

(
X

L
,

t

L2

)
, (9)

and we arrive at the hydrodynamic time evolution of the scaled
density field g(x, τ ),

∂g(x, τ )

∂τ
= ∂2a[g(x, τ )]

∂x2
, (10)

where rescaled space x ∈ [0, 1] and time τ ∈ [0,∞] vary
continuously in the limit of large L and a(g) is a nonlinear
function of the rescaled coarse-grained density g. The nonlin-
ear diffusion equation (10) has a unique solution, provided a
fixed initial condition ρ(x, 0) ≡ gin(x) and a periodic bound-
ary condition.

The form of the local current as given in Eq. (8) [or,
equivalently, Eq. (7)] helps one to immediately identify the
bulk-diffusion coefficient in the system. Writing the time
evolution equation (8) as a continuity equation for locally
conserved density field ρ(X, t ),

∂ρ(X, t )

∂t
= −∂J[ρ(X, t )]

∂X
, (11)

we obtain the local diffusive current given by Fick’s law,

J (ρ) = −∂a(ρ)

∂X
= −D(ρ)

∂ρ(X, t )

∂X
, (12)

with the density-dependent bulk-diffusion coefficient

D(ρ) = da(ρ)

dρ
. (13)

Far from criticality, where the correlation length ξ is finite,
the bulk-diffusion coefficient is also finite and the density
perturbations having small wave numbers k → 0 relax over
a timescale τR ∼ k−2/D(ρ) [equivalently, τR ∼ L2/D(ρ) in a
system of size L]. However, when the density ρ → ρ+

c , the
bulk-diffusion coefficient diverges as D(ρ) ∼ (ρ − ρc)β−1 be-
cause near-critical activity a(ρ) ∼ (ρ − ρc)β has a power-law

form with exponent β < 1 and, consequently, the transport
becomes anomalous.

IV. COMPARISON BETWEEN HYDRODYNAMIC
THEORY AND SIMULATIONS

It is useful to directly verify the “local equilibrium” as-
sumption in simulations of the conserved Manna sandpiles.
Accordingly, in this section, we compare the theoretical pre-
dictions of Eqs. (8) and (10) with microscopic simulations in
various regimes of density relaxation. We consider relaxation
of density profiles, which evolve on a large macroscopic scales
and are thus typically characterized by small wave numbers
k � 1; also, depending on the density, the correlation length
ξ in the system can be finite or large. We first consider re-
laxation of steplike initial density profiles, though other initial
conditions, such as Gaussian and wedgelike density profiles,
are also studied in a few cases.

A. Local density greater than ρc everywhere

1. Relaxation far from criticality

Here we study relaxation of the long-wavelength density
perturbations where the correlation length ξ is finite (kξ �
1). That is, in this regime, the system everywhere remains far
from criticality with 	(X, t )/ρc ∼ O(1) where excess local
density 	(X, t ) = ρ(X, t ) − ρc. In simulations, we generate
random initial configurations such that the ensemble average
over the configurations corresponds to a given initial density
profile. Now, to obtain the density profile at a given final time,
we let the system evolve from a particular initial configuration
up to that time and perform averaging over the random initial
configurations as well as the stochastic trajectories.

To numerically integrate the hydrodynamic equation (10),
we use the standard Euler method, where we discretize space x
and time τ in steps of δx = 10−3 and δτ = 10−7, respectively.
We have checked that the integration method conserves the
total particle number in the system. Furthermore, as the right-
hand side of the nonlinear diffusion equation (10) is expressed
in terms of a nonlinear function a(ρ), we first require that one
explicitly determine the steady-state (quasi-) activity a(ρ) as
a function of density ρ. The functional form a(ρ) is readily
generated through microscopic simulations, where we mea-
sure the steady-state activity for various densities, taken in
small steps of δρ = 10−2. We perform linear interpolation to
calculate activity a(ρm) at any intermediate density ρm, lying
within a density interval [ρ, ρ + δρ].

Relaxation of localized density perturbations on a finite
domain: First, we consider relaxation of localized density pro-
files on a uniform background for large position and time in a
system with correlation length ξ finite (kξ � 1). We compare
the time-evolved density profiles obtained by integrating the
hydrodynamic equation (10) and that obtained from Monte
Carlo simulations for a steplike initial localized density pro-
file,

ρin(X ) =
{
ρ1 + ρ0 for L

2 − δ
2 < X < L

2 + δ
2

ρ0 otherwise
, (14)

where the step height is ρ1 = 4.0. We take system size L =
1000, and the width of the profile is chosen to be δ = 40,
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FIG. 2. Verification of Eq. (10) for localized steplike initial density
perturbations on a uniform background. Scaled density (shifted)
field g(x, τ ) − ρ0, measured around a uniform background density
ρ0 = 1, is plotted as a function of shifted scaled position variable x
where we set the origin x = 0 such that the peak is centered at the
origin. We plot the density profiles at various hydrodynamic times
τ = 10−3 (blue squares), 5 × 10−3(red circles), and 10−2 (black tri-
angles), where lattice position X and time t are scaled as x = X/L
and τ = t/L2. We consider a steplike initial profile (14). System size
L = 1000 and global density ρ̄ = 1.16; lines, theory [numerically
integrated Eq. (10)]; points, Monte Carlo simulations.

where δ/L � 1 being small, implying that the initial density
perturbation is well localized on the macroscopic scale. The
initial density perturbation is generated by adding N1 = 160
particles over a uniform background having density ρ0 = 1.0.
Note that, throughout the paper, we denote the global density
as ρ̄, which, for large L, can be written as the spatially aver-
aged scaled local density,

ρ̄ = 1

L

L∑
X=1

ρ(X, t ) ≡
∫ 1

0
g(x, τ ) dx.

In this particular case, we take the global density ρ̄ = 1.16.
In Fig. 2 we plot the scaled shifted density field g(x, τ ) −

ρ0, measured around the background density ρ0, as a function
of the shifted rescaled position x at various hydrodynamic
times τ = 10−3 (blue squares), 5 × 10−3 (red circles), and
10−2 (black triangles) for the steplike initial profile (14); lat-
tice position X and time t in simulations are related to the
hydrodynamic (shifted) position and hydrodynamic time x =
X/L − 1/2 and τ = t/L2, respectively; in simulations, we
perform averages over 2 × 104 random initial configurations
and trajectories to obtain density profiles at the final times. We
numerically integrate the nonlinear diffusion equation (10),
using the Euler method, up to hydrodynamic times τ = 10−3

(blue lines), 5 × 10−3(red lines), and 10−2 (black lines), from
the initial condition (14); in Fig. 2 we also plot the numerically
integrated shifted scaled density profiles g(x, τ ) − ρ0 as a
function of scaled position x for various hydrodynamic times
τ . One can see that the density profiles obtained from numer-
ically integrated Eq. (10) (lines) are in quite good agreement
with that obtained from simulations (points), almost over a
couple of decades of the density values. We have also studied
other initial profiles, such as wedgelike and Gaussian profiles,
and find a nice agreement between hydrodynamic theory and

 0

 0.3

 0.6

 0.9

-400 -200  0  200  400

ρ
(X

,t)
-ρ

0

X

t=0
t=2x103

t=5x103

t=1x104

t=2x104

t=4x104

FIG. 3. Base density of initial step profile greater than the critical
density (ρ0 > ρc). Excess densities, evolved from step initial con-
dition Eq. (15) in simulations, are plotted as a function of position
k at various times t = 2 × 103 (blue asterisks), 5 × 103 (pink open
squares), 104 (sky-blue filled squares), 2 × 104 (gray open circles),
and 4 × 104 (black filled circles). We choose ρ0 = 1 and ρ1 = 2 in
the initial profile (15).

simulations (not presented here). As the width of the initial
profiles in all cases is small compared to the system size,
the initial density profile on the hydrodynamic scale can be
approximated as the Dirac delta function; consequently the
time-evolved profiles at large times are independent of the
exact shape of the initial profiles and depend only on the
strength of the delta function (i.e., the initially added number
of particles).

Relaxation of step profile on infinite supercritical back-
ground: Next we consider relaxation of a steplike density
profile spreading on an infinite supercritical background. We
create an initial density perturbation, on the left half of the
origin X = 0, in the form of steps over a uniform background
having density ρ0 = 1.0 > ρc and study how the density per-
turbation propagates into the domain on the right side of the
origin. The initial steplike density profile is given by

ρin(X ) =
{
ρ1 + ρ0 for − ∞ < X � 0
ρ0 otherwise , (15)

where ρ1 and ρ0 are the height and the base density of the step
profile, respectively.

As the local density in this case remains far from criticality
(ξ finite), the diffusion coefficient remains finite throughout in
the space and time domain considered here and the transport
is therefore diffusive in nature. In Fig. 3 we plot the shifted
density profile ρ(X, t ) − ρ0 as a function of position X at
various times t = 2 × 103 (blue asterisks), 5 × 103 (pink open
squares), 104 (sky-blue filled squares), 2 × 104 (gray open cir-
cles), and 4 × 104 (black filled circles). We then compare the
density profiles obtained from simulations with that obtained
by numerically integrating the nonlinear diffusion equation
(8). We find excellent agreement between hydrodynamic the-
ory (lines) and simulations (points).

Verification of diffusive scaling of Eqs. (9) and (10): In
this section, we directly verify the diffusive scaling limit,
which has been used to obtain the time evolution equation
(10). In this scaling regime, we plot the scaled time-dependent
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density profiles ρ(X = xL, t = τL2) ≡ g(x, τ ) as a function
of the scaled position x = X/L for different system sizes L and
different times t by keeping the hydrodynamic time τ = t/L2

fixed. Then, according to the diffusive scaling as in Eq. (9),
different curves should collapse onto each other. Moreover,
the collapsed profiles at the fixed hydrodynamic time τ should
be described by the nonlinear diffusion equation (10), inte-
grated up to time τ from a given initial density profile.

We now check the above assertions in simulations for two
different initial conditions: steplike and wedgelike profiles
and for various system sizes L = 200, 400, 600, and 1000.
The scaled steplike initial profile is chosen as

ρ

(
X

L
= x, t = 0

)
≡ gin(x) =

{
ρ1 + ρ0 for 0 < x < x1

ρ0 otherwise .

(16)

The above profile is generated by distributing N1 = L(ρ̄ − ρ0)
number of particles in a box of width x1 = 1/4 and height
ρ1 = 4.0 over a uniform background having density ρ0 = 1.0
so that the global density ρ̄ = 2.0. A wedgelike initial profile
is chosen as

gin(x) =
⎧⎨
⎩

ρ0 + 2ρ1(x − x1)/δ for x1 < x < x2

ρ0 + 2ρ1(x3 − x)/δ for x2 < x < x3

ρ0 otherwise
. (17)

The wedge is centered around x = x2 = 1/2, has a width δ =
1/2, ranging from x = x1 = (1 − δ)/2 to x = x3 = (1 + δ)/2,
and has a height ρ1 = 4.0. As in the previous case, N1 =
L(ρ̄ − ρ0) number of particles are distributed over the uni-
form background having density ρ0 = 1.0, by keeping global
density ρ̄ = 2.0. In simulations, we take the final hydrody-
namic time τ = 0.5, and each system is allowed to evolve
up to time t = τL2, depending on the respective system size
L. In Fig. 4 we plot the scaled density profile g(x, τ ) − ρ̄,
measured around the spatially averaged (global) density ρ̄ =∫ 1

0 g(x, τ ) dx, as a function of the rescaled position x = X/L
at different times: t = 2 × 104 for L = 200 (pink squares),
t = 8 × 104 for L = 400 (black circles), t = 1.8 × 105 for
L = 600 (green asterisks), and t = 5 × 105 for L = 1000
(blue triangles); we perform simulations for the steplike initial
profile [Eq. (16)] in Fig. 4(a) and for the wedgelike initial
profile [Eq. (17)] in Fig. 4(b). We perform averages over
2 × 105 random initial configurations and trajectories. We ob-
serve reasonably good scaling collapse of all density profiles,
obtained at four different times and system sizes. Next, we
numerically integrate the time evolution equation (10), from
the above two initial conditions as in Eqs. (16) and(17), up
to hydrodynamic time τ = 0.5, using the Euler method and
plot in Fig. 4 the scaled density g(x, τ = 0.5) as a function
of scaled position x. Indeed, we find the hydrodynamic theory
(red lines) in reasonably good agreement with the collapsed
density profiles obtained from simulations (points).

2. Near-critical density relaxation

Here we study relaxation of long-wavelength density per-
turbation having wave numbers k → 0 in a system where
the correlation length ξ � 1 is also large, keeping kξ finite.
This regime essentially corresponds to the very small excess
local density ρ(X, t ) − ρc ≡ 	(X, t ) ∼ L−1/ν⊥ such that the
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FIG. 4. Verification of diffusive scaling in Eq. (10). Scaled density
profile g(x, τ ) − ρ̄, measured around the spatially averaged density
ρ̄, is plotted as a function of rescaled position x = X/L at differ-
ent times: t = 2 × 104 for L = 200 (pink squares), t = 8 × 104 for
L = 400 (black circles), t = 1.8 × 105 for L = 600 (green aster-
isks), and t = 5 × 105 for L = 1000 (blue triangles), by keeping
the hydrodynamic time τ = t/L2 = 0.5 fixed. Simulation points at
different times collapse onto each other reasonably well. We take
two sets of initial density perturbations gin(x), with 0 � x � 1 and
periodic boundary condition, over a uniform background having
density ρ0 = 1.0: a steplike perturbation of height 4.0 [Eq. (16)] in
panel (a) and a wedgelike perturbation of width 1/2 [Eq. (17)] in
panel (b); the spatially averaged (global) density ρ̄ = 2.0 is same for
all plots. Insets: The initial scaled density profiles gin(x) are plotted as
a function of scaled position x. Lines, theory [numerical integration
of Eq. (10)]; points, Monte Carlo simulations.

correlation length becomes of order system size (ξ ∼ L). In
this case, the hydrodynamic equation (10), where we have
used diffusive time scaling, is not expected to hold, and
therefore it cannot describe the density relaxation in the sys-
tem. The physical origin of the breakdown of the diffusive
scaling is perhaps not difficult to understand. The activity,
which behaves near criticality as a power law a(ρ) ∼ 	β

with β < 1, has a singularity at the critical point 	 = 0,
and, consequently, its derivative with respect to the density
diverges, leading to a diverging bulk-diffusion coefficient
D(	) ∼ 	β−1 ∼ ξ (1−β )/ν⊥ [see Eq. (13)]. That is, the trans-
port in the system near criticality becomes “superdiffusive” or
anomalous.
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Indeed, one can make the argument more precise in terms
of a finite-size scaling analysis. In the conserved Manna sand-
piles near criticality, where 	 ∼ L−1/ν⊥ � 1, the activity in
the system is known to have the following finite-size scaling
form [17]:

a(	, L) = L−β/ν⊥A(L1/ν⊥	), (18)

where β is the order-parameter exponent, the exponent ν⊥
characterizes the diverging correlation length, and A(L1/ν⊥	)
is the scaling function; note that, for large y � 1, A(y) ∼ yβ ,
and we recover the power law scaling of activity a(	) ∼ 	β .
Accordingly, the near-critical bulk-diffusion coefficient has
the following scaling form:

D(	, L) = da

d	
= L(1−β )/ν⊥A′(L1/ν⊥	). (19)

Now, by substituting Eq. (19) into the continuity equation (11)
through Eqs. (12) and (13) and then changing variable from
density ρ(X, t ) to excess density 	(X, t ) = ρ(X, t ) − ρc, we
have

∂	(X, t )

∂t
= ∂

∂X

[
L(1−β )/ν⊥A′(L1/ν⊥	)

∂	

∂X

]
. (20)

Indeed, the time-evolution equation (20) can be recast in a
compact form,

∂G(x, τ )

∂τ
= ∂2A(G)

∂x2
, (21)

by performing a scale transformation of excess density 	,
position X , and time t to a rescaled excess density G(x, τ ),
rescaled position x, and rescaled time τ , respectively, as

G(x, τ ) = L1/ν⊥	(X, t ), (22)

x = X

L
, (23)

τ = t

Lz
, (24)

where the dynamical exponent z can be expressed in terms of
the two static exponents β and ν⊥, through a scaling relation

z = 2 − 1 − β

ν⊥
. (25)

The above relation was first proposed in Ref. [40]. However,
the finite-size scaling arguments given above, and the subse-
quent derivation of the time-evolution equation (21) for the
near-critical density field, are new to the best of our knowl-
edge and can be directly tested in simulations.

We verify the hydrodynamic time evolution of the rescaled
excess density field G(x, τ ) by comparing the time-evolved
density profile obtained from numerically integrating Eq. (21)
and that obtained from simulations. For the purpose of the
numerical integration of Eq. (21), one needs to know A(G)
as a function of G. The scaling function A(G) was previ-
ously calculated numerically in Ref. [17] and can be quite
well described by the functional form A(G) = c0(1 + c1G)β ,
where c0 � 0.18 and c1 � 7.0. This particular form can be
understood from the fact that the power-law dependence of the
near-critical activity a ∝ 	β is cut off at a very small excess
density 	 ∼ L−1/ν⊥ . Consequently, as the excess density (or

density) approaches zero (critical density), the scaling func-
tion A does not actually vanish and takes a finite value c0.
In the numerical integration and simulations, we consider a
steplike initial profile Gin(x) ≡ G(x, τ = 0) for the rescaled
excess density,

Gin(x) =
{
ρ1 for x1 � x � x2

0 otherwise . (26)

Here we set x1 = 1/2 − δ/2 and x2 = 1/2 + δ/2, with ρ1 �
6.69 and δ = 1/4 being the height and the width of the ini-
tial step profile, respectively; the profile is created over a
uniform critical background having density ρc � 0.94885. In
simulations, to generate the above initial density profile, we
uniformly distribute an appropriate number of particles in a
domain of size L/4, over uniform critical background con-
figurations. We generate critical background configurations
by using a standard algorithm for generating one-dimensional
quasiperiodic strings of 0’s and 1’s of size L, by ensuring that
the system has a fixed background density ρc [45].

First, we verify the “superdiffusive” scaling as in
Eqs. (22)–(24), which have been used to obtain the hydrody-
namic time-evolution equation (21). In this way, we can test
the scaling relation as given in Eq. (25). We take four systems
of sizes L1 = 1500, L2 = 2000, L3 = 2500, and L4 = 5000,
which are allowed to evolve from the steplike initial density
profile (26) up to times t1 = τLz

1, t2 = τLz
2, t3 = τLz

3, and t4 =
τLz

4, respectively, with τ fixed; here the value of the dynamic
exponent z � 1.68 is calculated using the scaling relation
(25), where we use the previously estimated values of the
exponents β � 0.42 and ν⊥ � 1.81 for the conserved Manna
sandpile [17]. According to the time scaling in Eq. (24),
the above three time-evolved density profiles should collapse
onto each other. In Fig. 5 we plot the scaled excess density
G(x, τ ) ≡ L1/ν⊥	(X, t ) as a function of the scaled position
x = X/L for the four systems at the following times: t1 =
59 286 for L1 = 1500 (pink squares), t2 = 96 128 for L2 =
2000 (black circles), t3 = 139 849 for L3 = 2500 (blue tri-
angles), and t4 = 448 116 for L = 5000 (sky-blue asterisks),
where we take τ = t/Lz � 0.27; we perform averages over
2 × 105 random initial configurations and trajectories. We
observe a quite good scaling collapse of the final scaled excess
density profiles. Also, according to the theory, the collapsed
density profiles should be described by the time-evolution
equation (21), which is integrated up to hydrodynamic time
τ � 0.27 using the initial condition as in Eq. (26). In Fig. 5
the numerically integrated scaled excess density G(x, τ ) at
τ � 0.27 is plotted as a function of position x (red line); in in-
set, scaled initial excess density profile G(x, τ = 0) ≡ Gin(x)
is plotted as a function of scaled position x. We find that
the theory (red line) is in a quite agreement with simulations
(points).

B. Local density greater than ρc in some region
and equal to ρc elsewhere

Here we consider relaxation of density profile on infinite
critical background having density ρc. We initially create a
density perturbation in some region (finite or infinite), where
the local density at t = 0 is greater than the critical density; at
later times t > 0, the density profiles start spreading over the
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FIG. 5. Verification of anomalous scaling in Eq. (21). Scaled local
excess density G(x, τ ) ≡ L1/ν⊥	(X = xL, t = τLz ) is plotted as a
function of scaled position x at different times and system sizes:
t = 59 286 for L = 1500 (pink squares), t = 96 128 for L = 2000
(black circles), t = 139 849 for L = 2500 (blue triangles), and t =
448 116 for L = 5000 (sky-blue asterisks), where we have kept the
hydrodynamic time τ = t/Lz � 0.27 fixed; here we have calculated
z � 1.68 by using Eq. (25), where we have used β � 0.42 and
ν⊥ � 1.81 [17]. Points obtained from simulations at different times
and system sizes collapse onto each other reasonably well. The red
line corresponds to the numerical integration of Eq. (21). Inset:
Initial scaled excess density profile Gin(x) ≡ L1/ν⊥	(X = xL, t = 0)
is plotted as a function of scaled position x = X/L.

critical background. We study below the time evolution of the
profiles on large spatiotemporal scales.

1. Relaxation of localized density perturbation
on infinite critical background

First, we study the time evolution of an initially localized
density profile on infinite critical background. Indeed, in this
case, we can analytically calculate the asymptotic scaling
form of the time-dependent density profile. We study relax-
ation of the localized density perturbation on large space and
time scales, and the system is not far from criticality (i.e., in
the long-wavelength regime where ξ � 1, but kξ � 1). Here
the time-evolved excess density field 	(X, t ) = [ρ(X, t ) −
ρc] is still quite small, but much larger than O(L−1/ν⊥ ). In
other words, our analysis is valid for the relaxation of density
profiles, for which the local excess density 	(X, t ) remains
in the range of L−1/ν⊥ � 	 � 1. In this regime, the activity is
known to have a power-law dependence on excess density and
is given as

a(	) � C	β, (27)

where C is a model-dependent proportionality constant. Now,
by substituting the above power-law form of the activity in
the diffusion equation (8) and changing variable to 	(X, t ) =
ρ(X, t ) + ρc, we obtain the time-evolution equation for the
excess density field 	(X, t ),

∂	(X, t )

∂t
= C

∂2[	(X, t )]β

∂X 2
. (28)

We note that the above equation is invariant under a scale
transformation of position, time, and density field,

X → λX,

t → λz′
t, (29)

	 → λ−χ ′
	,

provided that the following relation is satisfied:

χ ′ + z′ = χ ′β + 2. (30)

Here we are interested in studying how a localized initial den-
sity perturbation having a finite width would relax on infinite
critical background on large spatiotemporal scales. To this
end, we specifically consider the Dirac delta initial condition

	(X, t = 0) = N1δ(X ), (31)

where N1 is the strength of the delta function, i.e., the num-
ber of particles added at the origin as an initial perturbation
over the critical background. Interestingly, in this case, the
time-dependent density profile 	(X, t ), which is governed by
the nonlinear diffusion equation (28), can be exactly solved,
provided that the solution satisfies the boundary condition
	(x = ±∞, t ) = 0. Due to the scale-invariant structure of
Eq. (28), one would naturally expect a scale-invariant solution
for the excess density 	(X, t ). We proceed with the following
scaling ansatz:

	(X, t ) = 1

(Ct )ω
G
[

X

(Ct )ω

]
, (32)

where G(y) is the scaling function of a single scaling variable
y = X/(Ct )ω. Now, under the scale transformation of Eq. (29),
the density field and the scaling variable in Eq. (32) transform
as 	 → λ−z′ω	 and y → λ1−z′ωy, respectively. By identify-
ing z′ω = χ ′, putting 1 − z′ω = 0 (which leaves the scaling
variable y invariant), and substituting z′ = 1/ω and χ ′ = 1 in
Eq. (30), we exactly determine the growth exponent

ω = 1

1 + β
. (33)

Moreover, the differential equation satisfied by the scaling
function G(y) can be straightforwardly written as

−ω

(
G + y

dG
dy

)
= d2Gβ

dy2
, (34)

which, for the delta function initial perturbation [Eq. (31)] on
infinite background, has the following solution:

G(y) = 1[
gβ−1

0 + ω(1−β )
2β

y2
]1/(1−β ) . (35)

Here we have used the boundary conditions

G(y = 0) = g0;

[
dG
dy

]
y=0

= 0, (36)

where the constant g0 is fixed by the normalization condition∫ ∞
−∞ g(y) dy = N1, the number of particles added in the sys-

tem at t = 0.
We now verify in simulations the analytically obtained

scaling function in Eq. (35). To this end, we consider an
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FIG. 6. Verification of the scaling solution in Eq. (35). Scaled ex-
cess density profile (Ct )ω	(X, t ), where 	(X, t ) = [ρ(X, t ) − ρc],
is plotted as a function of the scaling variable X/(Ct )ω for three
different times t = 5 × 103 (pink squares), 104 (black circles), and
2 × 104 (blue triangles). The initial density profile is chosen to be
the Gaussian one as given in Eq. (37) with N1 = 150. Red line, theory
[Eq. (35)]; points, Monte Carlo simulations.

initially localized Gaussian density profile,

	(X, t = 0) = N1
1√

2πδ2
e−X 2/2δ2

, (37)

where δ = 10 and N1 = 150 are the width and the strength
of the profile, respectively. In simulations, we distribute N1 =
150 particles, according to the above initial condition, over a
critical background configuration of density ρc. We distribute
an appropriate number of particles to generate critical back-
ground configurations, having density ρc � 0.94885 [45]. We
run simulations up to three different, but large, times and,
in each case, we obtain the excess density profile 	(X, t )
at the final time by averaging over 2 × 105 random initial
configurations and the corresponding trajectories. Note that,
on large spatiotemporal scales X � δ and t � 1, the initially
localized density profile can be thought of as a Dirac delta
initial condition, which has been used to derive the scaling
function G(y) of Eq. (35). In Fig. 6 we plot the scaled excess
density profile G(y) ≡ (Ct )ω	(X, t ) as a function of the scal-
ing variable y = X/(Ct )ω for three different times t = 5 × 103

(pink squares), 104 (black circles), and 2 × 104 (blue trian-
gles). In the same figure, we also compare the simulation
results with the analytically obtained scaling function G(y)
as in Eq. (35) (red line); here we have used β � 0.42 and
C � 0.45, estimated from simulations. We find theory and
simulations in quite good agreement over several decades of
the scaled excess density values. The deviations at the tails are
somewhat expected as the scaling solution (35) is not valid in
this region due to the breakdown of the assumed power-law
scaling of activity [Eq. (27)], which is cut off at very small
densities O(ξ−1/ν⊥ ).

2. Relaxation of step profile on infinite critical background

Next we study relaxation of a steplike density profile on
infinite critical background. To this end, we consider the initial
profile as given in Eq. (15) with the base density ρ0 = ρc

and the height of the profile ρ1 = 1.0. In Fig. 7(a) we plot
the excess density ρ(X, t ) − ρc as a function of position X
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FIG. 7. Base density of initial step profile equals the critical
density (ρ0 = ρc). Excess densities, evolved from step initial con-
dition Eq. (15), are plotted as a function of position k at various
times t = 2 × 103 (blue asterisks), 5 × 103 (pink open squares), 104

(sky-blue filled squares), 2 × 104 (gray triangles), and 4 × 104 (black
circles). The base density of the step profile is ρ0 = ρc � 0.94885.
(a) The excess density profiles vs position are plotted in normal
scale. (b) The same as in panel (a) is plotted in log-log scale. (c) The
scaled excess density tω	(X, t ) is plotted as a function of the scaled
position X/tω. Lines, theory [time-integrated Eq. (8)]; points, Monte
Carlo simulations.

for various times t = 2 × 103 (blue asterisks), 5 × 103 (pink
open squares), 104 (sky-blue filled squares), 2 × 104 (gray
triangles), and 4 × 104 (black circles). In Fig. 7(b) we plot
the same in log-log scale and observe that the excess density
decays with distance from the origin as a power law. Indeed,
on large spatiotemporal scales (X, t � 1), the density field
is expected to be described by the scale-invariant solution as
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given in Eq. (32). In Fig. 7(c) we plot the scaled excess density
tω[ρ(X, t ) − ρc] as a function of the scaled position X/tω

in a log-log scale, where ω = 1/(1 + β ) [see Eq. (33)] with
β � 0.42. Indeed one could see a reasonable scaling collapse,
almost over a decade, where the scaled excess density decays
with the scaling variable y as a power law y−2/(1−β ) [shown
by the red guiding dashed line in panel (c)]. However, there
is some deviation from scaling at the tails for large times
t � 4 × 104 as the simulations have been done on a large but
finite-size system with a periodic boundary condition. From
the knowledge of the activity as a function of density, we
numerically integrate the nonlinear diffusion equation (8) to
plot the density profiles in Figs. 7(a) and 7(b) at the above
mentioned times; we find a quite good agreement between our
theory (lines) and simulations (points).

C. Density relaxation on subcritical background

In this section, we consider relaxation of density profiles,
where the local density is greater than the critical density in
some region, but is less than the critical density elsewhere.
We have studied the following three cases: (1) The density re-
laxation happens on an infinite subcritical background, where
the active region keeps invading the inactive region, with the
invasion fronts, separating the active and inactive regions,
moving with some velocity. (2) Next we consider relaxation
process on a finite subcritical background. The global density
ρ̄ of the initial density profile is taken so that ρ̄ < ρc and the
system eventually reaches a frozen state, where the maximum
local density in the system is ρc in some region and the rest
of the system remains uninvaded. (3) In the third case, we
consider relaxation on a finite subcritical domain, but now the
global density ρ̄ of the initial profile is taken so that ρ̄ > ρc

and the active region eventually invades the whole system,
which becomes supercritical everywhere.

1. Relaxation on an infinite subcritical background

First, we consider relaxation of an initial steplike profile
on an infinite domain, where there are jump discontinuities
initially in the local density value at the junctions between
active and inactive regions. The steplike density profile at t =
0 is given by

ρin(X ) =
{
ρ1 + ρ0 for 0 � X < δ

ρ0 elsewhere , (38)

where the height and the width of the step initial profile are ρ1

and δ, respectively; the step profile is generated on a uniform
background having density ρ0 = 0.5 < ρc (the same base
density is considered in the rest of the paper). In simulations,
we take L, δ � 1 to study the density relaxation in an infinite
domain. In Fig. 8(a) we plot the excess density ρ(X, t ) − ρc,
measured around the critical density, as a function of position
X at various times t = 2 × 103 (blue asterisks), 5 × 103 (pink
open squares), 104 (sky-blue filled squares), 2 × 104 (gray
open circles), and 4 × 104 (black filled circles). At later times
t > 0, the density profile develops a boundary layer, which
decays over a finite length scale from the critical background
density to the base (background) density. The boundary layer
can be characterized by an invasion front, located at position
X∗(t ) at time t , which moves forward with a time-dependent

-0.3

 0

 0.3

 0.6

 0.9

-400 -200  0  200

�(
X

,t
)-
� c

X

(a)

t=0
t=2x10

3

t=5x10
3

t=1x10
4

t=2x10
4

t=4x10
4

 0.01

 0.1

 1

 10  100

�(
X

,t
)-
� c

X*(t)-X

(b)

t=2x10
3

t=5x10
3

t=1x10
4

t=2x10
4

t=4x10
4

 10

 100

 1000  10000

X
*
(t

)-
X

*
(0

)

t

(c)

t
1/2

FIG. 8. Evolution of density profiles on infinite domain, with the
base (background) density of the profiles below the critical density
(ρ0 < ρc). Excess density profiles ρ(X, t ) − ρc, evolved from the
steplike initial profile [Eq. (15)], are plotted as a function of position
X at various times t = 2 × 103 (blue asterisks), 5 × 103 (pink open
squares), 104 (sky-blue filled squares), 2 × 104 (gray open circles),
and 4 × 104 (black filled circles). (a) Normal scale and (b) log-log
scale. (c) Displacement X∗(t ) − X∗(0) of the invasion front is plotted
as a function of time t . The base, or the background, density of
the step profile is ρ0 = 0.5. Lines, theory [numerically integrated
Eq. (8)]; points, simulations.

velocity. Here the invasion front is operationally defined to
be the position where the density profile falls off to the value
ρ(X = X∗, t ) = ρ0 + (ρc − ρ0)/2 (i.e., the midpoint between
the critical density and the base, or the background, density).
In Fig. 8(b) we plot the excess density ρ(X, t ) − ρc as a
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function of a shifted position variable δX = X∗(t ) − X , which
is measured from the position of the propagating front. One
can see that the density profile ρ(X, t ) − ρc ∼ (δX )γ grows
with the shifted position δX as a power law, where the expo-
nent is estimated to be γ � 1.5 from simulations. In Fig. 8(c)
we plot the position of the invasion front X∗(t ) as a function
of time t and find that the front moves with a time-dependent
velocity v∗(t ) = X∗(t )/t . In fact, the position of the density
front X∗(t ) ∼ tα grows sublinearly with time t where the
exponent α � 1/2 [shown by the red dashed guiding line in
Fig. 8(c)].

To compare the above simulation results with the theory,
we numerically integrate the nonlinear diffusion equation (8),
which should describe the large-scale spatiotemporal evolu-
tion of the density field. Now, to integrate Eq. (8), we require
explicit functional dependence of activity a(ρ) on density ρ,
which is determined from simulations; note that, for subcrit-
ical density ρ < ρc, we use a(ρ) = 0 in Eq. (8), which is
the case in the inactive regions (absorbing phase), where the
bulk-diffusion coefficient vanishes. In Fig. 8 one can see that
the numerically integrated density profile (lines) obtained by
integrating Eq. (8), with the above functional form of the
activity not only captures quite nicely the simulation results
(points) almost over a couple of decades of the density values,
but also predicts the position of the moving density front quite
precisely. Note that the boundary layers around the invasion
fronts get smeared, and their exact functional forms are not
captured by our theory, which predicts a sharp discontinuous
jump in densities at the front positions. However, as the width
of the boundary layer should not increase with system size
L, we expect to recover the discontinuous jump in density in
the limit of large L. The above results remain qualitatively the
same also for a wedgelike profile, which is not presented here.

2. Relaxation to frozen state: Global density ρ̄ < ρc

Next we consider density relaxation on a finite domain. We
consider two kinds of initial density profiles: a steplike profile
as in Eq. (38) with a finite width δ and a wedgelike density
profile given by

ρin(X ) =
⎧⎨
⎩

ρ0 + ρ1(X − X1)/δ for X1 � X < L/2
ρ0 + ρ1(X2 − X )/δ for L/2 � X < X2

ρ0 otherwise
. (39)

The wedgelike initial profile is centered at X = L/2 and has
a width δ and height ρ1; we set X1 = (L − δ)/2 and X2 =
(L + δ)/2. The wedge profile is generated over a uniform
background having density ρ0 < ρc. We fix the width δ = 200
for both profiles and the height ρ1 = 1.5 for the step profile
and ρ1 = 3.5 for the wedge profile. We set the global density
ρ̄ = 0.8 < ρc below the critical density so that the system
eventually evolves to a frozen (absorbing) state. We generate
initial density profiles by randomly distributing N1 = L(ρ̄ −
ρ0) = 300 number of particles over a uniform background
having density ρ0 and over a domain −δ/2 < X < δ/2. In
Fig. 9(a) we plot the density profile ρ(X, t ) as a function of
position X at various times t = 103 (blue asterisks), 5 × 103

(pink open squares), 104 (sky-blue filled squares), 2 × 104

(brown filled triangles), 4 × 104 (black filled circles), and 105

(green crosses). In Fig. 9(b) the density profiles are plotted at

 0.5

 1

 1.5

 2

-400 -200  0  200  400

�(
X

,t
)

X

(a)
t=0

t=1x10
3

t=5x10
3

t=1x10
4

t=2x10
4

t=4x10
4

t=1x10
5

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-400 -200  0  200  400

�(
X

,t
)

X

(b) t=0
t=5x10

3

t=1x10
4

t=2x10
4

t=4x10
4

t=1x10
5

FIG. 9. Relaxation to a fully absorbing state, from initial profiles
made of active and inactive regions. Time-dependent density profiles
are plotted for (a) step and (b) wedge initial profiles, having a uni-
form base (background) density ρ0 = 0.5 < ρc and height ρ1 = 2.0
(step) and 3.5 (wedge). (a) Density profiles are plotted at times
t = 103 (blue asterisks), 5 × 103 (pink open squares), 104 (sky-blue
filled squares), 2 × 104 (brown filled triangles), 4 × 104 (black filled
circles), and 105 (green crosses). (b) Density profiles are plotted at
times t = 5 × 103 (blue asterisks), 104 (pink open squares), 2 × 104

(sky-blue filled squares), 4 × 104 (brown filled triangles), and 105

(black filled circles). Global density ρ̄ = 0.8 < ρc. Points, Monte
Carlo simulations; lines, theory.

times t = 5 × 103 (blue asterisks), 104 (pink open squares),
2 × 104 (sky-blue filled squares), 4 × 104 (brown filled trian-
gles), and 105 (black filled circles). The gray horizontal line
denotes the critical density ρc � 0.94885. From the above
plots, it is observed that, irrespective of the shapes of the
initial profiles, the time-evolved density profiles eventually
become equal to the critical density ρc and get frozen as the
systems move into an absorbing state everywhere. In Fig. 9
we have also compared the density profiles obtained from
simulations with that obtained by numerically integrating the
nonlinear diffusion equation (8). According to the theory, we
expect that the density at long times should be equal to the
critical density in any region that initially started active or got
invaded to become active. On the other hand, in the uninvaded
region, the density remains equal to the initial density. We
do not exactly see this behavior in simulations as the size of
the invaded regions fluctuates from sample to sample and is
actually ranging over a finite region of space, thus smearing
out the theoretically predicted discontinuity in simulations.
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FIG. 10. Relaxation to a fully supercritical state from initial
profiles made of active and inactive regions. Time-dependent pro-
files are plotted for (a) step and (b) wedge initial profiles, having
a uniform base or background density ρ0 = 0.5 < ρc and height
ρ1 = 2.0. (a) Density profiles are plotted at times t = 103 (blue
asterisks), 5 × 103 (pink open squares), 104 (sky-blue filled squares),
and 2 × 104 (black filled circles); global density is ρ̄ = 1.85 > ρc.
(b) Density profiles are plotted at times t = 103 (blue asterisks),
5 × 103 (pink open squares), 104 (sky-blue filled squares), 2 × 104

(brown filled triangles), 4 × 104 (black filled circles), and 6 × 104

(green crosses); global density is ρ̄ = 1.175 > ρc. Points, Monte
Carlo simulations; lines, theory.

However, the smeared invasion front gets arbitrarily sharp on
the macroscopic scales, upon increasing the initially added
particle number.

3. Relaxation from subcritical to supercritical state:
Global density ρ̄ > ρc

Finally we consider relaxation of initial density profiles
where the global density ρ̄ is chosen such that ρ̄ > ρc. There-
fore, in this case, the system finally evolves to an active or
supercritical state everywhere. The width of the initial density
profiles is taken to be δ = 900, and the initial piles are formed
over a uniform background having density ρ0 = 0.5 (which
is much below the critical density). In Fig. 10(a) we plot the
density profile ρ(X, t ) as a function of position X at various
times t = 103 (blue asterisks), 5 × 103 (pink open squares),
104 (sky-blue filled squares), and 2 × 104 (black filled circles)
for step initial profile. In Fig. 10(b) we plot the density profiles

at times t = 5 × 103 (blue asterisks), 104 (pink open squares),
2 × 104 (sky-blue filled squares), 4 × 104 (brown filled trian-
gles), and 6 × 104 (black filled circles). The gray horizontal
line denotes the critical density ρc. In the case of a steplike ini-
tial profile, N1 = L(ρ̄ − ρ0) = 1350 particles, and, in the case
of a wedgelike initial profile, N1 = L(ρ̄ − ρ0) = 675 numbers
of particles are distributed over an uniform background den-
sity ρ0, keeping the height of the step and the peak of the
wedge at ρ1 = 1.5; we take L = 1000. The global density ρ̄

is kept at 1.85 for the step profile and 1.175 for the wedgelike
profile.

From the above plots, we observe that, for both initial
profiles, the regions of the density profiles, which were be-
low critical density ρc and therefore were in the frozen state
initially, gradually become active due to the invasion of the
active regions into the inactive ones. Eventually, the inactive
regions are lifted above the critical density, and the sys-
tems become active everywhere. This happens because the
global density ρ̄ is chosen to be greater than the critical
density ρc � 0.94885. We find that, for the steplike profile,
the inactive region becomes active at a comparatively smaller
time (∼2 × 104) than the time (∼6 × 104) required for the
wedgelike initial profile. We have compared the above den-
sity profiles obtained from simulations with that obtained by
numerically integrating the nonlinear diffusion equation (8).
We find an excellent agreement between the theory (lines)
and simulations (points), except at the boundary layer regions
around the invasion fronts, where the density discontinuities
predicted by our theory get smeared in the actual simulations.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we study density relaxation in the Manna
sandpile with conserved mass and continuous-time dynamics.
We recently proposed a theory for large-scale (hydrodynamic)
time evolution of density perturbations in conserved stochas-
tic sandpiles in Ref. [40]. Using these ideas and through direct
Monte Carlo simulations, here we investigate in detail the den-
sity relaxations in different situations in the conserved Manna
sandpiles. We consider density perturbations typically having
small wave numbers k → 0 and relaxing on finite (periodic)
as well as infinite domains.

Far from criticality, where the correlation length ξ is fi-
nite [i.e., in the density regime 	(X, t ) = ρ(X, t ) − ρc � 1],
relaxation of long-wavelength density perturbations in the
limit of kξ � 1 is diffusive in nature. Indeed, the time evo-
lution of initial density profiles in this case is governed by a
nonlinear diffusion equation (10), with a density-dependent
bulk-diffusion coefficient D(ρ) = da(ρ)/dρ, where a(ρ) is
the steady-state activity and is a nonlinear function of
coarse-grained density ρ. Consequently, the relaxation times
for the long-wavelength density perturbations vary as τR ∼
k−2/D(ρ), i.e., in a system of size L, relaxation time τR ∼
L2/D(ρ).

Near criticality where correlation length ξ � 1 large and
kξ � 1 [i.e., in the density regime 	(X, t ) ∼ ξ−1/ν⊥ � 1], the
diffusive scaling breaks down as the bulk-diffusion coefficient
diverges as D ∼ ξ (1−β )/ν⊥ . Consequently, particle transport
becomes anomalous, leading to the relaxation times for long-
wavelength density perturbations varying as τR ∼ k−z, where

032122-12



DENSITY RELAXATION IN CONSERVED MANNA SANDPILES PHYSICAL REVIEW E 103, 032122 (2021)

the dynamic exponent z = 2 − (1 − β )/ν⊥ < 2 is determined
in terms of the near-critical order-parameter exponent β and
correlation-length exponent ν⊥. Note that the relaxation time
at the critical point is still infinite for infinite systems as the
critical exponent z is defined in the limit of wave number
k being small, by keeping 	 fixed at a very small value.
Interestingly, for a small fixed k, the relaxation time is smaller
than that away from criticality; that is, the relaxation time
decreases as 	 decreases.

In the density regime where ξ � 1, but kξ � 1 [i.e., when
L−1/ν⊥ � 	(X, t ) � 1], relaxation of an initially localized
density perturbation on an infinite critical background ex-
hibits a self-similar structure on large space and time scales
X, t � 1. In this case, we exactly determine, within our hy-
drodynamic theory [see Eq. (28)], the asymptotic scaling
form G(y) ∝ (B0 + By2)−b [see Eq. (35)] for the scaled time-
dependent (excess) density profile t−ω	(X, t ) as a function
of the single scaling variable y ∼ X/tω, with the exponents
ω = 1/(1 + β ) > 1/2 and b = 1/(1 − β ); here B0 and B are
two integration constants, which can be determined from the
normalization condition and in terms of the exponent β.

We have also studied the cases where local density can be
less than the critical density in some regions and greater than
the critical density elsewhere. The active region invades the
inactive regions, and, eventually, the system goes to either a
frozen (absorbing) state (ρ̄ < ρc) or a supercritical state (ρ̄ >

ρc), depending on the global density ρ̄. In these cases, the
predictions of our hydrodynamic theory are in an excellent
agreement with simulations, except at the regions around the
invasion fronts, where the front of the invaded region leads to
a smeared profile, while the theory predicts a discontinuity in
the infinite L limit. However, the jump in the density will get
sharper in the reduced variable x = X/L as the system size L is
increased, and we would expect to recover the discontinuous
jump in the limit of L being large.

We believe that these studies of density relaxation in con-
served Manna sandpiles more generally would provide some
useful insights into the exact hydrodynamic structure of sand-
piles. Indeed, the hydrodynamic theory developed here could
open up an exciting avenue for characterizing fluctuations not
only in the conserved version, but also in the “self-organized
critical” (SOC), or the driven dissipative, version of sandpiles.
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