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Irreversible thermodynamics of multicomponent fluids and its statistical mechanics basis
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The irreversible thermodynamics of a multicomponent fluid is reviewed. This includes a discussion of the
role of individual component fluxes. It is argued that their differences vanish on the same time scale as
that which establishes local thermodynamic equilibrium and thus do not play an independent role in fluid
dynamics, but only arise in response to gradients in conserved thermodynamic variables. The contributions
to the energy flux are examined and it is argued that there should be explicit contributions associated with the
various component fluxes, which are not mentioned in standard kinetic theory presentations. Three different
thermodynamic perspectives are discussed as to their form, with the respective equations for the entropy flux
and production described and contrasted. The Onsager reciprocal relations are considered to be a consequence
of the single-valuedness of the entropy production with the chemical potential gradients as the driving forces
for diffusion. These are specialized to ideal gas mixtures using the component density gradients associated with
Fick’s laws and to using the mole fraction gradients that are standardly used in gas kinetic theory. The ideal gas
Onsager relations are identical to those deduced from the Boltzmann equation. Irving and Kirkwood’s statistical
mechanics treatment of the evolution equations of a one-component fluid [J. Chem. Phys. 18, 817 (1950)] is
generalized to multicomponent fluids and agrees with the thermodynamic perspective that treats the energy
transfers as reversible.
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I. INTRODUCTION

A. Background

Irreversible thermodynamics involves treating a system as
having thermodynamic properties which are, by definition,
in equilibrium and also as having time dependent properties
which are out of equilibrium. It is important to understand
how and under what conditions this dichotomy of properties
can occur in the real world. For gases, the classification of
three different distance scales for dynamical behavior (equiv-
alently time scales by using the mean particle speed to relate
distance and time scales) as elucidated by Bogoliubov [1]
(see also Uhlenbeck’s [2] presentation of Bogoliubov’s work)
provides a perspective for understanding how this can be. This
can also be adapted to liquids. Bogoliubov’s classification is
to contrast the range of a collision (which is of the order
of the range of the intermolecular potential, ≈3×10−8 cm
for N2) with the mean free path (distance traveled between
collisions ≈7×10−6 cm for N2 at 1 atm and 300 ◦K) and,
third, the fluid dynamic changes over the range of centimeters
to kilometers (such as the flow of air from a punctured balloon
to variations in the atmosphere). In liquids the difference
between the first two vanishes since the particles are always
interacting. But it is the large difference between the mean
free path and the fluid flow properties that allows collisions
to create a “local” thermodynamic equilibrium while the ther-
modynamic variables describing the local behavior can vary
from one position to another in the fluid. For a gas, this
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difference is well described by the Boltzmann equation and
its Chapman-Enskog solution to give the equations of fluid
dynamics [3–5]. The same difference is assumed to be valid
in liquids but there is no clear standard theory to use since
there are multiparticle collisions which defy simple analysis.
This difference in local equilibrium versus spatial variation is
fundamental to the description of fluid dynamics, specifically
that fluid flow properties are driven by spatial variations, in
particular by gradients of the parameters describing the local
equilibria, and where irreversible thermodynamics can be use-
ful in understanding its properties in laminar flow. Another
way of describing this situation is to identify the collisional
and between collisional motions as using individual particle
variables, which is thus microscopic motion, while the fluid
flow uses mean particle variables for their description and is
thus macroscopic motion.

Any fluid involves a tremendous number of particles; for
example, air under standard conditions has a density of ≈1019

molecules per cm3. Thus there are an enormous number of
variables for the particle description of the fluid. These vari-
ables can be organized in different ways into what variables
are treated as macroscopic, and which microscopic. This has
an advantage of allowing a more detailed or cruder description
of the system, but also the disadvantage of deciding what
variables give the best description. It is how a particular
variable varies with respect to the different distance scales
that determines whether that variable should be classified as
macroscopic or microscopic. Variables that undergo changes
during collisions vary on the short distance scale and get
averaged over by the large collision rate so these microscopic
variables have small average values. Those variables that
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do not vary during collisions then dominate the behavior of
the fluid at this scale. Another way of expressing this is to
recognize these are the variables that are conserved during
collisions. Since collisions involve particle dynamics, these
are also the variables that, when applied to all particles in the
system, are also conserved. This language emphasizes gas be-
havior, but in liquids the same type of behavior occurs, namely
that variables that are conserved in few-particle dynamics are
related to macroscopically conserved variables and it is these
variables that dominate fluid dynamic behavior.

Recent treatments of the irreversible thermodynamics of
multicomponent fluids [6,7] tend to add the component flow
velocities (vα for component α) as fluid variables. It is shown
in Sec. VI that collisions transfer momentum from one com-
ponent to another so that only the mean momentum remains
after the collision regime is passed and thus are averaged over
in the approach to local thermodynamic equilibrium at the
collision rate governed by the mean free path so the different
component velocities should not be treated as macroscopic
variables; rather only their average (the stream velocity) is a
macroscopic variable.

B. Methodology

In the absence of external forces the equations of fluid
dynamics are based on the conservation equations for mass,
momentum, and energy, and for multicomponent systems, on
the conservation of each chemical component, ignoring chem-
ical reactions. Chemical reactions add complications due to
the requirement that they need specification of the mechanism
for each chemical reaction, which varies greatly from one
reaction to another. Thus chemical reactions are best discussed
for each special case and thus not included in the general
presentation given here. As already mentioned, some presen-
tations of irreversible thermodynamics include the component
fluxes as thermodynamic variables. These are not conserved
since momentum is transferred from one component to an-
other and so do not fit into the above description of fluid
dynamics. That this transfer rate is of the same order as the
collision rate implies that such quantities arise only on a time
scale before local thermodynamic equilibrium is attained and
so are averaged over before the fluid dynamic time scale and
thus are irrelevant extra variables to be considered in the
fluid dynamics time scale. Such an argument is presented
in Sec. VI, based on a simple estimate using the Boltzmann
equation for a gas mixture. For this reason it is only the above
mentioned conserved variables that are treated in the bulk of
this paper.

The conservation equations are integrated together by as-
suming the fluid is in local thermodynamic equilibrium; that
is, the thermodynamic variables are position (r) dependent
and also time (t) dependent since the system is evolving with
time, so that the equations of thermodynamics can be applied
at each specific position and time. However, the conservation
equations involve the rate of change of the equilibrium ther-
modynamic variables and in general require nonequilibrium
variables for their description. Thus the description of the
fluid must involve both the (local) equilibrium variables and
nonequilibrium variables which are presumably small in some
sense to allow the local equilibrium thermodynamic relations

to be valid. That is, there is some sense of a fast time scale
to allow thermodynamic equilibrium to be locally attained
and of a slower time scale for the description of the transfer
of conserved variables between the different regions of the
fluid. It is an inherent assumption that such a distinction can
be made so that the equations of fluid dynamics have a local
equilibrium structure. Shock waves strain this assumption and
probably violate this separation of time scales. Here only the
laminar flow described by fluid dynamics is addressed.

The first law of thermodynamics states that energy is con-
served and attributes any change in the internal energy U
of a system to heat and/or work transferred to the system
from its surroundings. For a small volume of fluid in its rest
frame, hereafter referred to as an element of fluid, this means
the transfers of energy from its neighboring fluid elements.
Work is associated with changes in the mechanical properties
of the system while heat is associated with nonmechanical
changes, usually attributed to random motions (fluctuations)
or to changes in the probabilities of the states of the mechani-
cal energies constituting the physical nature of the system. For
a system in thermodynamic equilibrium, heat is related to the
entropy S change of the system. This relation is written

dU = T dS − PdV +
∑

α

μαdNα, (1)

where T , P, and V are the temperature, pressure, and volume
of the system while μα and Nα are the chemical potential and
number of molecules of component α. The volume and the
numbers of particles are mechanical variables so −PdV and∑

α μαdNα are elements of mechanical and chemical work
while T dS is heat. Fluid dynamics usually assumes that the
thermodynamics of the system is extensive, namely that U , S ,
and the Nα are proportional to the volume V . This allows the
first law to be rewritten as

d (ρU ) = T d (ρS) +
∑

α

μαdnα, (2)

where ρ is the mass density, U and S are the internal energy
and entropy per unit of mass, while nα is the number density
of component α. Note that now no PdV term appears since
this equation is for unit volume and the only work terms that
explicitly appear are the chemical work terms. Since the mass
density ρ plays a major role in fluid dynamics, Eq. (2) is the
appropriate form for the first law of thermodynamics when
discussing multicomponent fluids.

The equations of change are rationalized by the nature
of a typical conservation law in Sec. II. For mass, momen-
tum, and component densities the conservation equations are
straightforward and not controversial but the expression for
the energy flux is subject to different interpretations. Since the
fluid is in motion the energy of a fluid element has a kinetic
energy of motion (convective energy) as well as internal en-
ergy. The energy transferred by this motion from one position
of a fluid element to another is easily identified as associated
with the motion itself and with the momentum flux. These
convective dependent energy transfers are well recognized as
contributors to the energy flux. The conductive (convective
independent) energy transfers analogous to the changes in
internal energy changes of Eq. (2) are standardly lumped into
one contribution to the energy flux and usually labeled as heat.
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This mistreats the chemical work energy as a separate method
of energy transfer. It is the objective of this paper to identify
and consider the consequences of the energy carried by the
differing velocities of the components. These are referred to
as the chemical energy fluxes.

Three different ways of thermodynamically treating the
conductive contributions to the energy flux are discussed.
Their subsequent consequences for the entropy equation of
change and entropy production are compared after all three
have been presented. Linear relations between fluxes and gen-
eralized forces lead to the entropy production being expressed
as a quadratic form in the generalized forces. The single-
valuedness of this quadratic form implies the proper form
for the Onsager relations, in particular between the different
diffusion coefficients. Section III specializes these relations
to ideal gas mixtures where the independent thermodynamic
variables are taken as the temperature, component densities,
and the stream velocity. Reference to the results obtained from
solving the Boltzmann equation [8] are made and shown to
be the same Onsager relations. Section IV continues with the
properties of an ideal gas, but uses the temperature, pressure,
mole fractions, and stream velocity as the independent vari-
ables. Again the properties of solving the Boltzmann equation
[3,4,8] are referred to and also compared to the Sec. III results.
It is shown that the two sets of diffusion constants are different
with different symmetry relations but consistent with each
other associated with their different definitions. Section V
extends the statistical mechanical derivation of the equations
of change of a fluid by Irving and Kirkwood [9] to multi-
component mixtures. This verifies that the proper form for
the energy carried by the chemical fluxes is obtained ther-
modynamically by treating the energy transfer as a reversible
process. A discussion of the consequences of this analysis is
given in Sec. VII. As already mentioned, Sec. VI presents an
estimate of the momentum transfer rate between components
and its consequences.

II. GENERAL IRREVERSIBLE THERMODYNAMICS
OF A FLUID SYSTEM

A. Conservation equations

If ρY is the density of a (mechanical) conserved quantity,
then the only way an amount of Y in a volume element can
change with time t is by means of the flux JY through the
surface of the volume element. Written in differential form,
the conservation equation for Y is

∂ρY

∂t
= −∇·JY . (3)

In the absence of external influences (gravity, electromagnet,
etc.) mass, momentum, and energy are conserved variables
in a fluid. Ignoring also the possibility of chemical reac-
tions, each component of a multicomponent mixture is also
conserved. The effects of any of these processes (external
influences and/or reactions) can be added but are not consid-
ered here. Angular momentum is another conserved quantity
but its treatment is complicated by the question of choosing
where the axis of rotation of the fluid is to be placed. Such
questions are of import when internal angular momentum
states (spin and/or molecular rotation) of the molecules are

present and will not be discussed here (see Refs. [10–12] for
initial treatments of such systems).

The flux of the mass density ρ(r, t ) at position r and time
t is the momentum density ρv0, which defines the stream
velocity v0. Thus the conservation equation of mass, also
known as the equation of continuity, is

∂ρ

∂t
= −∇ · (ρv0) or

Dρ

Dt
= −ρ∇ · v0, (4)

where v0 is the mass average (stream) velocity and

D

Dt
≡ ∂

∂t
+ v0 · ∇ (5)

is the substantial (barycentric) time derivative.
The mass density ρ(r, t ) as a function of the position r

and time t is a major property of a fluid. Relative to that, the
internal energy per unit volume is written here as ρU , with
position and time dependence understood but not explicitly
expressed. Assuming the fluid element can be considered in
local thermodynamic equilibrium, ρU (ρS, {nα}) is a thermo-
dynamic characteristic function of entropy per unit volume
ρS and the set of c (number of components) particle densities
{nα} with fundamental equation (2) defining the temperature
T and set of chemical potentials {μα}. Note that there is no
mechanical (PdV ) work term since this equation has been
written for unit volume of fluid while μαdnα is the element of
chemical work done on the system by inserting dnα molecules
of α per unit volume. T d (ρS) is the element of “reversible”
heat added to the system. Note also that only intensive vari-
ables are involved in this equation and ρU depends on c + 1
independent variables. On the basis that all thermodynamic
variables are either intensive or extensive, the identity∑

α

nαμα = ρ(U − T S) + P (6)

is valid. Note that the derivation of this last equation depends
on explicitly using the volume in order to integrate over the
extensive variables and thus is deduced from Eq. (1) rather
than from Eq. (2).

In the absence of chemical reactions, the number of par-
ticles of each component is conserved so each component
satisfies a conservation equation of the form (written here for
component α)

Dnα

Dt
= −nα∇ · v0 − ∇ · (nαVα ), (7)

with Vα known as the diffusion velocity of component α.
Identifying the mass density as

ρ =
∑

α

nαmα, (8)

the diffusion velocities satisfy the sum rule∑
α

nαmαVα = 0, (9)

and so describe the “conductive” motion of the components
relative to the “convective” velocity v0. The combination
nαVα will be variously labeled as the component flux, particle
flux, chemical flux, or material flux since these labels provide

032121-3



R. F. SNIDER PHYSICAL REVIEW E 103, 032121 (2021)

different associations as to what this flux represents in differ-
ent applications.

Momentum is also conserved, so its conservation equation
is

∂ρv0

∂t
= −∇ · [ρv0v0 + P], (10)

where the momentum flux is given as a sum of a convective
contribution ρv0v0 associated with the momentum carried by
the fluid flow (stream velocity) and a conductive contribution
P associated with the microscopic random motions of the
molecules. P is standardly referred to as the pressure tensor
and sometimes as (minus) the stress tensor. Another way of
writing the above equation is

ρ
Dv0

Dt
= −∇ · P. (11)

Finally there is the conservation of energy and this re-
quires some elaboration. First, the total energy per unit mass,
E = U + v2

0/2, involves the convective as well as the internal
energy. It is the total energy that is conserved so its equation
of change is of conservation type,

∂ρE

∂t
= −∇ · JE , (12)

namely, the energy density changes only via energy flux from
other elements of the fluid via work done on the system or heat
transferred from its surroundings (namely, the neighboring
fluid elements). The following describes three thermodynamic
perspectives of how this can be written.

1. All purely conductive energy flux is heat

Convection (equivalently, the mass flux) carries energy so
the energy flux due to convection is ρEv0. The momentum
flux also carries energy via the force transferred to the surface
of a fluid element. But since the convective contributions to
the energy flux have already been accounted for, it is only the
conductive part of the momentum flux that should be added,
namely, with a contribution P · v0. Note the v0 arises as the
rate of change of convective energy with respect to the mo-
mentum, namely, (∂ρv2

0/2/∂ρv0)ρ . These are the only energy
flux contributions that involve v0; hence other contributions
are conductive and labeled as q. This is the symbol standardly
used for heat flux so this association is inherently made. Some
presentations explicitly make this association whereas others
carefully avoid this name and consider that q can include
many different contributions. But if all conductive energy
fluxes are lumped together then the entropy flux and produc-
tion also have all these contributions lumped together rather
than playing different roles in the approach to equilibrium, in
effect acting as if they are heat (see Sec. II B). Thus the term
heat is used here as a simple label and the total energy flux
vector in this perspective is written as

JE = ρEv0 + P · v0 + q. (13)

This is the expression for the energy flux that appears in most
of the literature, in particular Refs. [3–5,11].

An elegant method of obtaining this result is described by
McLennan [12]. He examines the changes to the equations of
change (4), (10), and (12) due to Galilean transformations and

the particular relation between them in the laboratory frame
and in the rest frame moving with the stream velocity. He
also specializes these to the case where the latter is in thermal
equilibrium and identifies which quantities have nonvanishing
equilibrium values and those which do not. In particular the
diffusion velocities and the heat flux (which he only identifies
as the energy flux in the local rest frame rather than calling it
heat) vanish at equilibrium. The pressure tensor has both an
isotropic equilibrium pressure and nonequilibrium contribu-
tions.

2. Energy flux has chemical work contributions

The first perspective makes no explicit reference to the
energy carried by the different components. Since different
components have different thermal energies and moreover
move at different diffusion velocities, the energy flux should
be dependent on how the internal energy U is affected by the
changing composition during fluid flow. An obvious way of
accounting for these effects is to look at Eq. (2). The entropy
change is associated with reversible heat while the energy
change due to composition changes depend on the chemical
potentials. Thus Eq. (13) is replaced by

JE = ρEv0 + P · v0 +
∑

α

μαnαVα + q (14)

since nαVα is the conductive flux of component α. The quan-
tities dependent on the stream velocity remain the same while
the heat flux is now associated with the entropy change. This
is what the author used in Ref. [8].

3. Energy flux is reversible

As mentioned in the Introduction, the fluid is assumed to
be in local thermodynamic equilibrium with a small nonequi-
librium aspect. Thus the major effects are to be carried out in
a reversible manner, and nonequilibrium aspects only arise in
allowing changes to occur. Within this approach the surface
of a fluid element and the contact between fluid elements are
to be treated as if they are in thermodynamic equilibrium,
namely, at constant temperature, pressure, and chemical po-
tentials since these define thermal, mechanical, and chemical
equilibrium. The stream velocity is also constant since this
defines the particular local rest frame. The manner in which
the energy density varies with component density is then(

∂ρE

∂nα

)
T,P,{μα},v0

=
(

∂ρU

∂nα

)
T,P,{μα}

= T

(
∂ρS

∂nα

)
T,P,{μα}

+μα = T sα + μα = hα. (15)

This has dropped the convective energy density and then used
Eq. (2) with the identification of the partial molar entropy sα

and enthalpy hα . Thus the “conductive” energy flux carried by
the component α flux is ∑

α

nαhαVα. (16)
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Combining these contributions together and adding the heat
flux q gives the energy flux as

JE = ρEv0 + P · v0 +
∑

α

nαhαVα + q. (17)

With this form for the energy flux, the equation for the
conservation of energy (12) can be written in terms of the
substantial time derivative of U as

ρ
DU

Dt
= ρ

DE

Dt
− ρv0 · Dv0

Dt

= −P : (∇v0)t − ∇ ·
[∑

α

nαhαVα + q

]
, (18)

where superscript t denotes the transpose of the second-order
tensor. The analogous equations for the other perspectives for
the energy flux are obtained by setting hα = 0 for the first
perspective and hα = μα for the second.

B. Entropy equation of change and the
phenomenological equations

The rate of change of the entropy per unit mass, S, is related
to the internal energy change via Eq. (2), which is expressed
in terms of the substantial time derivatives as

ρT
DS

Dt
= ρ

DU

Dt
+ (U − T S)

Dρ

Dt
−

∑
α

μα

Dnα

Dt

= ρ
DU

Dt
+

[∑
α

nαμα − P

]
1

ρ

Dρ

Dt

−
∑

α

μα

Dnα

Dt
, (19)

with the second form using Eq. (6). Inserting the results of
Eqs. (4), (11), and (18) into this equation and extensive rear-
rangement lead to

ρT
DS

Dt
= −(P − PU) : (∇v0)t

−∇ ·
[∑

α

nα (hα − μα )Vα + q

]

−
∑

α

nαVα · ∇μα, (20)

where U is the second order tensor identity. With the help of
the relation μα = hα − T sα , the equation for the time depen-
dence of the entropy can be expressed as

ρ
DS

Dt
= −∇ ·

[∑
α

nαsαVα + q
T

]
+ σ3, (21)

representing the entropy transferred through the boundary of a
fluid element in terms of the sum of the component entropies
transferred due to the chemical fluxes plus the standard ex-
pression for the entropy change as the heat flux divided by the
temperature. The entropy production σ3 (labeled with 3 since

this arises from perspective 3 for the energy flux) is given by

T σ3 = −
[∑

α

nαsαVα + q
T

]
· ∇T −

∑
α

nαVα · ∇μα

− (P − PU) : (∇v0)t . (22)

Lavenda [13] has an equation similar to Eq. (21) but with a
notation based on a different background so its equivalence is
not clear.

For perspective 1 for the energy flux, the time dependence
of the entropy is

ρ
DS

Dt
= −∇ ·

[
q − ∑

α nαμαVα

T

]
+ σ1 (23)

with

T σ1 = −
(

q −
∑

α

nαμαVα

)
· ∇ ln T

−
∑

α

nαVα · ∇μα − (P − PU) : (∇v0)t . (24)

This is equivalent to the form appearing in Ref. [11].
For perspective 2 for the energy flux, the time dependence

of the entropy is

ρ
DS

Dt
= −∇ · q

T
+ σ2 (25)

with

T σ2 = −q · ∇ ln T −
∑

α

nαVα · ∇μα

−(P − PU) : (∇v0)t . (26)

This is what was considered in Ref. [8].
Clearly the entropy flux (the term whose divergence is

taken in the entropy equation) differs due to the different
versions of the energy flux as does the term involving the
temperature gradient in the entropy production. But the purely
convective term (proportional to ∇v0) and the purely diffu-
sion terms (proportional to ∇μα) in the entropy production
are the same for all versions. As to the structure of the en-
tropy production, this has the well known form of being a
sum of products of fluxes times gradients, the latter acting
as generalized forces for the fluxes. Standard practice is to
assume that the fluxes are linearly dependent on the forces
while Curie’s principle [11] states that the (transport) coef-
ficients (being the linear coefficients in this relation) must
have the symmetry (under space inversion as well as rota-
tional properties) of the fluid. Here the fluid is taken as being
in isotropic equilibrium, so this means any relation between
flux and force must be rotationally invariant. If the fluid is
acted upon by an external force (for example, by gravity or
magnetic field) then its associated symmetry must be taken
into account. Here these possibilities are ignored. Since the
convective term involves second order tensors while all of the
other fluxes and forces are vectors, this leads to an immediate
separation between these two sets of quantities. In particu-
lar, the nonequilibrium part of the pressure tensor has the
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form

P − PU = −2η[∇v0](2) − κ∇ · v0U, (27)

where η and κ are the shear and bulk viscosities while
[∇v0](2) ≡ (1/2)[∇v0 + (∇v0)t ] − (1/3)∇ · v0U is the sym-
metric traceless part of the stream velocity gradient. The
separation into two terms is associated with irreducible
representations of the three-dimensional rotation group,
equivalently into quadrupole and scalar parts of ∇v0. Group
theory-wise, there could also be an antisymmetric part of
∇v0 which is proportional to the vorticity ∇×v0, but this
arises only when angular momentum is important, as in rota-
tional relaxation problems or turbulence, and is not considered
here. References [10–12] have some discussion about the
former.

The other fluxes and forces appearing in the entropy pro-
duction are all vectors so the heat and chemical fluxes are

coupled. Emphasizing perspective 3, the phenomenological
equations are written

nαVα = −
∑

β

Dαβ∇μβ − DT
α ∇ ln T (28)

and

q +
∑

α

nαT sαVα = −λμ∇T −
∑

α

DT
α ∇μα. (29)

Note that the notation parallels that used in Ref. [8] and the
diffusion constants appearing here do not have the standard
units since the chemical potential gradients appear rather than
the particle density gradients in these equations. Connection
to the standard density gradients and Fick’s law is made in
Sec. III when discussing an ideal gas as the fluid, while here
it is the natural set of variables that is used for describing
thermodynamic equilibrium. From Eq. (22) the entropy pro-
duction is

T σ =
[
λμ∇T +

∑
α

DT
α ∇μα

]
· ∇ ln T +

∑
αβ

Dαβ∇μβ · ∇μα +
∑

α

DT
α ∇μα · ∇ ln T + [

2η[∇v0](2) + κ∇ · v0U
]

: ∇v0

= λμ

T
(∇T )2 + 2

T

∑
α

DT
α ∇μα · ∇T +

∑
αβ

Dαβ∇μβ · ∇μα + 2η[∇v0](2) : [∇v0](2) + κ (∇ · v0)2. (30)

The second law of thermodynamics states that entropy
increases for spontaneous processes, and implies that the en-
tropy increase drives spontaneity. Thus the entropy production
must be positive. Since the above equation is quadratic in the
gradients, the square terms must have positive coefficients,
implying that λμ, η, and κ must be positive, and the diffusion
matrix Dαβ is required to be positive. It is also possible to
write the first three terms as a sum of two square terms, which
implies a constraint on the c-dimensional vector DT

α . Since the
entropy production determines the nature of how spontaneity
occurs, the symmetry of the purely diffusion quadratic form
implies that the matrix Dαβ is symmetric. This is one of
the Onsager relations [14]. Another symmetry relation is that
DT

α determines both the thermal diffusion as in Eq. (28) and
the diffusion thermal effect in Eq. (29) since there is equal
contribution to the entropy production from these processes.
Of course, that they appear with equal coefficients has been
helped by the choice of how the phenomenological relations
have been written and is predicated on the uniqueness of the
entropy production in that it can have only one set of terms
that are proportional to each of ∇μα · ∇ ln T . It is also of
importance to note that Eqs. (9) and (28) imply that both the
diffusion and thermal diffusion constants satisfy sum rules,
namely,

∑
α

mαDα,β = 0,
∑

α

mαD
T
α = 0. (31)

For perspective 1 for the energy flux, the linear relations
between the vectorial fluxes and forces can be written as

Eq. (28) for the diffusion velocities and

q −
∑

α

nαμαVα = −λμ∇T −
∑

α

DT
α ∇μα. (32)

The same phenomenological coefficients are used here as for
perspective 3, but their meanings are to be associated with the
definitions used in perspective 1. Interestingly, the equation
for the entropy production is identical to Eq. (30). Perspective
2 has a similar result, with phenomenological equations (28)
and

q = −λμ∇T −
∑

α

DT
α ∇μα, (33)

also resulting in Eq. (30) for the entropy production.
Thus all versions have the same properties for the

phenomenological coefficients and it is only the different
equations for the heat flux that occur, and then only how q
varies with the diffusion velocities. Further discussion on the
various ways of expressing the energy flux is given in Sec. VII.

It is noted that the diffusion constants are standardly de-
fined in terms of the particle flux being driven by density
gradients or mole fraction gradients rather than by the gradi-
ents of the chemical potentials. This requires expanding the
chemical potential gradients in terms of either temperature
and density gradients or temperature and mole fraction gradi-
ents. Such expansions are not done here in general but the two
following sections do this for an ideal monatomic gas mixture
and make connections to the kinetic theory of ideal gases and
the standard Boltzmann equation.
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III. TEMPERATURE, DENSITY VARIABLES FOR
AN IDEAL MIXTURE OF MONATOMIC GASES

For an ideal monatomic gas mixture, the chemical potential
of component α is

μα = kT ln

(
nαh3

(2πmαkT )3/2

)

= kT ln

(
nα

n

Ph3

kT (2πmαkT )3/2

)
, (34)

where h is Planck’s constant and k is Boltzmann’s constant.
The first version is appropriate when the temperature and
the particle densities are independent, whereas the second
version is expressed for the case in which the pressure and
temperature are both treated as independent variables, with
the mole fraction giving the concentration dependence. It is
the first form that is emphasized in this section and has the
advantage that all components are treated equally and that
diffusion is described by Fick’s laws, whereas when using
the mole fractions, one component must be chosen to have
its mole fraction dependent on the mole fractions of the oth-
ers. The standard presentations of gas kinetic theory [3–5]
only cursorily mention irreversible thermodynamics so no
connection to an analysis like that given in Sec. II appears.
Rather the emphasis is on the Boltzmann equation and its
solution. Section IV uses the second form (using the mole
fractions) and makes connection to the formalism used in
these presentations which arises naturally when solving the
Boltzmann equation for the transport coefficients. Here the
first form of Eq. (34) is used so that the independent variables
are T, {nα}. This set of variables was first introduced (as best
as this author knows) in Ref. [8]. That paper is on solving
the Boltzmann equation and both sets of variables are used
in that paper to obtain molecular expressions for the various
transport coefficients. Since Sec. V shows that perspective 3
for the energy flux is what statistical mechanics predicts, both
Secs. III and IV are restricted to using only that choice. Since
Ref. [8] uses perspective 2 for the energy flux there are minor
differences between what is presented here and what appears
in that paper. Section IV also discusses the relation between
the two different sets of diffusion coefficients associated with
the different sets of independent variables, namely, the com-
ponent densities versus the mole fractions.

From the first form of Eq. (34), the gradient of the chemical
potential is

∇μα =
(

μα

T
− 3

2
k

)
∇T + kT

nα

∇nα (35)

and the entropy production for the vectorial fluxes is, from
Eq. (22),

T σ = −
[

q +
∑

α

nα

(
hα − 3

2
kT

)
Vα

]
· ∇ ln T

− kT
∑

α

Vα · ∇nα. (36)

Again T σ is a sum of products of fluxes times forces, which
identifies the combinations of terms which are to be the fluxes
corresponding to the generalized forces being the temperature

and component density gradients. The corresponding linear
phenomenological equations for these fluxes are written as

qn ≡ q +
∑

α

(
hα − 3

2
kT

)
nαVα

= −λn∇T − kT
∑

α

DT
α ∇nα (37)

and

nαVα = −nαDT
α ∇ ln T −

∑
β

Dα,β∇nβ. (38)

The phenomenological coefficients associated with the cross
effects between diffusion and heat conduction have been writ-
ten as nαDT

α in order to conform with more standard notation,
as have the diffusion constants Dαβ corresponding to Fick’s
first law. In comparison with the formulas of the last section
emphasizing the chemical potential gradients, these quantities
are

nαDT
α = DT

α +
∑

β

Dα,β

(
μβ − 3

2
kT

)
(39)

and

Dαβ = kTDαβ

nβ

. (40)

Since Dαβ is symmetric, this implies

Dαβnβ = kTDαβ = kTDβα = Dβαnα, (41)

which is also equivalent to

1

nα

Dαβ = 1

nβ

Dβα (42)

as the Onsager reciprocal relations for the diffusion co-
efficients. Reference [8] shows that this symmetry is also
obtained when calculating the gas transport coefficients from
the Boltzmann equation. Note that the only difference be-
tween what is written here and in Ref. [8] is that hα here is
replaced by μα there in Eqs. (36) and (37). Thus in particular,
all properties of the diffusion matrix are the same. These
phenomenological coefficients also satisfy the sum rules∑

α

nαmαDT
α = 0 and

∑
α

mαDαβ = 0, (43)

arising from the sum rule of Eq. (9). Note that the diffusion
matrix Dαβ is not symmetric whereas Dαβ is. The contribu-
tions to the thermal conductivity are related according to

λn = λμ + 2

T

∑
α

DT
α

(
μα − 3

2
kT

)

+ 1

T

∑
α,β

(
μα − 3

2
kT

)
Dαβ

(
μβ − 3

2
kT

)
. (44)

In terms of these phenomenological coefficients, the entropy
production is

T σ = λn

T
(∇T )2 + 2η[∇v0](2) : [∇v0](2) + κ (∇ · v0)2

+ kT
∑
α,β

Dαβ

nα

∇nβ · ∇nα + 2k
∑

α

DT
α ∇nα · ∇T
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= λn

T

[
∇T + kT

λn

∑
α

DT
α ∇nα

]2

+ kT
∑
αβ

[Dαβ

nα

− k

λn
DT

αDT
β

]
∇nα · ∇nβ

+ 2η[∇v0](2) : [∇v0](2) + κ (∇ · v0)2. (45)

The positivity of the entropy production shows that λn must
be positive and that the matrix Dαβ/nα − kDT

αDT
β /λn must

be symmetric positive semidefinite. Analogous conditions are
applicable to the quantities in the previous section, but were
not written out there. Other comments on the properties of the
phenomenological coefficients can be found in Ref. [8].

IV. TEMPERATURE, MOLE FRACTIONS, AND PRESSURE
VARIABLES FOR AN IDEAL GAS MIXTURE

From the second version of Eq. (34) the gradient of the
chemical potential is

∇μα =
(

μα

T
− 5

2
k

)
∇T + kT ∇ ln xα + kT ∇ ln P, (46)

where xα ≡ nα/n is the mole fraction of component α. The
standard method of gas kinetic theory [3–5] introduces the
quantities

dα ≡ ∇xα + (xα − ρα )∇ ln P (47)

as the driving forces for diffusion, where ρα = mαnα/ρ is
the mass fraction of component α. Following this method
of treating mixtures, the gradient of the chemical potential
is expressed in terms of the dα instead of the mole fraction
gradients, thus

∇μα =
(

μα

T
− 5

2
k

)
∇T + kT

xα

dα +
(

kT ρα

xα

)
∇ ln P

=
(

μα

T
− 5

2
k

)
∇T + kT

xα

dα + mα

ρ
∇P. (48)

Substituting this into the entropy production, Eq. (22), gives

T σ = −
[

q +
∑

α

nα

(
hα − 5

2
kT

)
Vα

]
· ∇ ln T

− P
∑

α

Vα · dα − (P − PU) : ∇v0. (49)

The sum rule (9) eliminates the ∇P term arising from the
chemical potential gradients. This is appropriate since ∇P
is one of the driving forces for the stream velocity (see the
momentum conservation equation), whereas the variables re-
sponsible for irreversibility are all conductive, namely, relative
to the motion of the fluid as a whole. The above expression
for the entropy production is linear in the gradients ∇ ln T ,
dα , and the stream velocity gradient with corresponding fluxes
involving q, nαVα and P − PU. The linear phenomenological
equations relating fluxes to forces are written here for an
energy flux including both the heat flux q and an appropriate
energy flux carried by the particle fluxes

qP ≡ q +
∑

α

nα

(
hα − 5

2
kT

)
Vα = −λP∇T − P

∑
α

DT
α dα,

(50)

the conductive particle fluxes

nαVα = −nα

∑
β

Dαβdβ − nαD
T
α ∇ ln T, (51)

and Eq. (27) for the pressure tensor. The choice of prefactors
in these equations is so that they conform to the usage in
Ref. [4]. For an ideal monatomic gas, the molar enthalpy
is 5kT/2 so the term added to the heat flux vanishes and
makes qP = q. Thus there is a formal difference with what
is given in Ref. [8] for q for this set of variables. With the
above expressions for the fluxes the entropy production is the
quadratic in gradients expression

T σ = λP

T
(∇T )2 + P

∑
αβ

Dαβdα · dβ + 2P

T

∑
α

DT
α dα · ∇T + 2η[∇v0](2) : [∇v0](2) + κ (∇ · v0)2. (52)

Now it would be nice to predict properties of the transport
coefficients from the required (by the second law of thermo-
dynamics) positivity of the entropy production but it is noted
that

∑
α dα = 0 implies that the dα are not all independent

so that the (c × c)-dimensional diffusion matrix is multiplied
by a matrix dα · dβ which is equivalent to a matrix with at
most only (c − 1) × (c − 1) independent elements. Thus not
all elements of the D matrix appear in the entropy production.
Similarly, not all elements DT

α of the component vector DT

appear. This leaves a question as to what properties can be
deduced from the entropy production.

Actually the situation is a bit more complicated than what
was given above. The sum rule, Eq. (9), implies the sum rules

∑
α

nαmαD
T
α = 0,

∑
α

nαmαDαβ = 0. (53)

Thus as component vectors, d and DT are orthogonal to differ-
ent vectors, and so are d and the diffusion matrix. This does
not help to clarify what properties can be deduced from the
entropy production.

That the dα are not independent causes problems in solving
the Boltzmann equation for the transport coefficients. Wald-
mann [3] solved this, and Chapman and Cowling [4] copied
his method, by rewriting dα as

dα = 1

P
(∇Pα − ρα∇P) = 1

P

∑
β

(δαβ − ρα )∇Pβ (54)

and using the partial pressures Pα = xαP as c independent
quantities. This method is equivalent [8] to the independent
particle density approach to solving the Boltzmann equation,
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which is based on the variables introduced in Sec. III, and
the solution shows that D is a symmetric matrix. Here the
same rewriting of dα is applied to the phenomenological
equations and to the equation for the entropy production.
From Eqs. (50) and (51) the phenomenological equations
are

qP = −λP∇T −
∑

α

DT
α ∇Pα, (55)

which uses one of the sum rules (53) and

Vα = − 1

P

∑
β

Dαβ[∇Pβ − ρβ∇P] − DT
α ∇ ln T . (56)

Since the total pressure should not affect the conductive
fluxes, the ∇P term is nonphysical and thus set equal to zero!
This is equivalent to assuming

∑
β Dαβnβmβ vanishes, which

is equivalent to assuming that the matrix D is symmetric in re-
gards to the second sum rule of Eq. (53). As a consequence of
these forms for the phenomenological equations, the entropy
production is

T σ = −qP · ∇ ln T −
∑

α

Vα · ∇Pα − (P − PU) : ∇v0

= λP

T
(∇T )2 + 1

P

∑
αβ

Dαβ∇Pβ · ∇Pα + 2
∑

α

DT
α ∇Pα · ∇ ln T + 2η[∇v0](2) : [∇v0](2) + κ (∇ · v0)2. (57)

Writing the first three terms as a sum of squares shows
that λP is positive for a spontaneous process and Dαβ −
PDT

α D
T
β /(λPT ) must be a symmetric positive matrix, again

for a spontaneous process. The latter is a stronger constraint
on the diffusion matrix D than merely being symmetric, as
required to eliminate the ∇P term in Eq. (56). As was men-
tioned earlier, the symmetry of the diffusion matrix D was
noted [3,4,8] as a result when solving the Boltzmann equation.

Comparison of Eqs. (38) and (56) with the expansion
Pβ = nβkT shows that the diffusion and thermal diffusion
coefficients of Secs. III and IV are related by

Dαβ = xαDαβ and DT
α = DT

α +
∑

β

Dαβxβ. (58)

These relationships were also found [8] when solving the
Boltzmann equation. Similarly a comparison of Eqs. (37) and
(55) shows that the thermal conductivities are related by

λP = λn − k
∑

α

nα

(
2DT

α −
∑

β

Dβα

)
(59)

and also confirms the relationship between the thermal dif-
fusion coefficients. This relation also appears in Ref. [8],
where λP is labeled as λ′. Thus the phenomenological co-
efficients are the same in that paper as what appears here
but the difference arises in the meaning of q, namely, there
qthere = qhere + ∑

α nαT sαVα , corresponding to perspective 2
for the energy flux that is used there, whereas perspective 3 is
used here [note the difference in entropy equations (25) and
(21)]. See Sec. VII for further discussion of the differences.

V. CONSERVATION EQUATIONS
VIA STATISTICAL MECHANICS

A. General comments and notation

The time evolution of the appropriate classical mechan-
ical observables are presented first. Connection with the
time evolution of the expectation values of these observables
requires a choice of distribution function. The connection
with irreversible thermodynamics implies that an equilibrium

distribution function should be dominant, but the time de-
pendence also requires a nonequilibrium contribution which
is added to the equilibrium distribution function as a per-
turbation. This reflects the nature of the local equilibrium
and the linear (hence relatively small) position gradients that
drive a fluid’s motion in laminar flow. On the basis that the
particles interact with only pair additive forces, only one and
two-particle distribution functions are needed with appropri-
ate perturbation functions to account for the nonequilibrium
aspects of the fluid motion.

The one-component analog of this presentation was given
by Irving and Kirkwood [9] based on the Liouville equation
for the time dependence of the N-particle distribution func-
tion. An extension to the multicomponent case was attempted
by Bennett and Curtiss [15] but emphasizing Bogoliubov’s
[1] treatment for extending the Boltzmann equation to include
density corrections. Their treatment thus assumes that the pair
distribution factors into a product of singlets, which is not
assumed here. Their treatment is also questionable since they
use the relative and mean positions of a pair of particles rather
than the relative and center of mass positions when referring
to the dynamics of a pair of particles.

Since the objective here is to relate to the irreversible
thermodynamic treatment of the fluid, the densities of pair
particle observables such as the potential energy are attributed
to lie equally divided at the positions of the two particles. In
contrast, Irving and Kirkwood [9] place all the density at the
center of mass position. The reason for the present choice
is that thermodynamics emphasizes the properties (such as
energy) of the system as attributed to the individual particles
and where they are in the fluid; thus the present assignment
of where a potential resides is closer to the thermodynamic
assignment.

Individual particles are labeled numerically: 1, 2, . . ., or
in general by j, k, . . .. A lot of the general formalism needs
no further designation as to the nature of the particles. The
components are labeled by lower case greek letters, as in
the previous sections, and to apply the general formalism to
a multicomponent system requires designating a component
label to each particle. This is done with a component identifier
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such as Pα
1 , which says that particle 1 is of component α. Only

translational degrees of freedom are used in this paper, with
r j, p j labeling the position and momentum of particle j and
its mass by mj , needed because of the different masses of the
different components. When it comes to pairs of particles, the
total mass of the pair is designated by Mjk = mj + mk while
the relative mass is μ jk = mjmk/Mjk . Correspondingly, the
center of mass position and momentum are denoted by

R jk ≡ mjr j + mkrk

Mjk
, P jk ≡ p j + pk, (60)

while the relative position and momentum are denoted by

r jk ≡ r j − rk, p jk ≡ mkp j − mjpk

Mjk
. (61)

B. Conservation equations

The mass density ρ(r) at macroscopic position r is the
expectation value

ρ(r) =
〈∑

j

m jδ(r j − r)

〉
. (62)

Its time dependence is obtained using Newton’s equations in
the form

∂ρ

∂t
=

〈[∑
k

(
pk

mk
· ∂

∂rk
+ Fk · ∂

∂pk

)] ∑
j

m jδ(r j − r)

〉

=
〈 ∑

j

p j · ∂

∂r j
δ(r j − r)

〉

= −∇ ·
〈 ∑

j

p jδ(r j − r)

〉
≡ −∇ · (ρv0), (63)

where ∇ ≡ ∂/∂r is the derivative with respect to the macro-
scopic position and v0(r) is identified as the mass average
(stream) velocity at r. The time dependence of these variables
is not indicated, but understood, while the r dependence is
also often not explicitly indicated. Fk is the intermolecular
force acting on particle k. In the following this is assumed
to be from pair particle interactions through the potentials
ϕk(rk) between molecules k and  and dependent on the dis-
tance rk between the centers of mass of the pair of molecules.

The number density nα of a typical component α at r is
similarly expressed as

nα (r) =
〈 ∑

j

Pα
j δ(r j − r)

〉
, (64)

where Pα
j is the selection operator that selects only those

molecules j which are of component α. Its time dependence
is obtained in the same way as above, namely,

∂nα

∂t
=

〈[∑
k

(
pk

mk
· ∂

∂rk
+ Fk · ∂

∂pk

)]∑
j

Pα
j δ(r j − r)

〉

=
〈 ∑

j

Pα
j

p j

m j
· ∂

∂r j
δ(r j − r)

〉

= −∇ ·
〈 ∑

j

Pα
j

p j

m j
δ(r j − r)

〉

≡ −∇ · (nα[v0 + Vα]), (65)

with the diffusion velocity Vα used to describe the velocity
of component α relative to the stream velocity. The above
conservation equations are the same as discussed in Sec. II
and have the same properties as discussed there while giving
the particle interpretation of them.

The rate of change of momentum density ρv0 is obtained
in a similar manner but now involves a role for the intermolec-
ular forces. The obvious first step is

∂ρv0

∂t
=

〈[∑


p

m

· ∂

∂r

+
∑
,k

Fk · ∂

∂p

]∑
j

p jδ(r j − r)

〉

= −∇ ·
〈 ∑

j

p jp j

m j
δ(r j − r)

〉

+ 1

2

〈∑
j

F j[δ(r j − r) − δ(r − r)]

〉
. (66)

This uses the antisymmetry of the force, namely, that the force
on particle  due to interaction with particle j is minus the
force on particle j due to interaction with particle , specif-
ically F j = −F j. The macroscopic position of the pair j
is placed at the position of one of the particles, so expanding
the difference in delta functions about this reference position
gives

δ(r j − r) − δ(r − r) = δ(r j − r) − (r j + r j − r)

= r j · ∇δ(r j − r) + O(∇2), (67)

which leads to the equation for the conservation of momen-
tum,

∂ρv0

∂t
= −∇ · (ρv0v0 + P). (68)

The momentum flux has been written as the sum over the con-
vective momentum flux ρv0v0 and the conductive momentum
flux

P(r) ≡
〈 ∑

j

[
(p j − mjv0)(p j − mjv0)

mj

]
δ(r j − r)

+ 1

4

∑
j

r jF j[δ(r j − r) + δ(r − r) + O(∇)]

〉
,

(69)

commonly referred to as the pressure tensor. Note that the
potential contribution has been written so as to reflect the
symmetry between the two interacting particles. This ex-
pression for the pressure tensor, and the heat flux vector
to be presented in the following, is an extension of the
treatment by Irving and Kirkwood [9] to use the particle
positions as where the quantity is placed macroscopically.
Details of the separation of the kinetic contribution to the
momentum flux into convective and conductive contributions
involves adding and subtracting mjv0 to each momentum and
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reorganizing the result, namely,

〈∑
j

p jp j

m j
δ(r j − r)

〉
=

〈∑
j

(p j − mjv0 + mjv0)(p j − mjv0 + mjv0)

mj
δ(r j − r)

〉

=
〈∑

j

(p j − mjv0)(p j − mjv0)

mj
δ(r j − r)

〉
+

〈∑
j

m jv0v0δ(r j − r)

〉

+
〈∑

j

[(p j − mjv0)v0 + v0(p j − mjv0)]δ(r j − r)

〉
(70)

with the terms in the last line vanishing on identifying the expectation values. Note that there is no need to introduce component
labels in the equation of change for the momentum so the expressions are relatively simple.

Last, there are the expressions for the energy density and its rate of change. The expectation value for the energy is calculated
from the expression

ρE (r) ≡ ρ

(
U + 1

2
v2

0

)
=

〈∑
j

p2
j

2mj
δ(r j − r) + 1

4

∑
jk

ϕ jk (r jk )[δ(r j − r) + δ(rk − r)]

〉
. (71)

As for the pressure tensor, the potential contribution is written so as to be symmetric in the two interacting particles. Note that
different components may generally have different potential expressions, hence the labeling of the potential ϕ, but all components
have the general expression for the energy so no component labeling is required at this point. Also note that the kinetic part of
the energy density can be written as〈∑

j

p2
j

2mj
δ(r j − r)

〉
=

〈∑
j

(p j − mjv0)2

2mj
δ(r j − r)

〉
+ 1

2
ρv2

0, (72)

following the same procedure as used in the expression for the kinetic part of the momentum flux to separate into conductive
and convective contributions. The rate of change of energy density is given by

∂ρE

∂r
=
˝[∑



p

m

· ∂

∂r

+
∑
,h

Fh · ∂

∂p

]⎡
⎣∑

j

p2
j

2mj
δ(r j − r) + 1

4

∑
jk

ϕ jk (r jk )[δ(r j − r) + δ(rk − r)]

⎤
⎦
˛

= −∇ ·
〈[∑

j

p j

m j

p2
j

2mj
δ(r j − r) + 1

4

∑
j

ϕ j

(
p j

m j
δ(r j − r) + p

m

δ(r − r)

)]〉

+ 1

4

〈∑
j

∂ϕ j

∂r j
·
(

p j

m j
− p

m

)
(δ(r j − r) + δ(r − r))

〉
+

〈∑
j

F j · p j

m j
δ(r j − r)

〉
. (73)

In the divergence term an initial separation into convective and conductive contributions is accomplished by adding and
subtracting v0 from the vectorial velocities while particle symmetrization of the last term and combining it with the second
to last term allow that combination to be expanded to first order in ∇, specifically

∂ρE

∂t
= −∇ ·

[
ρEv0 +

〈∑
j

p j − mjv0

mj

p2
j

2mj
δ(r j − r) + 1

4

∑
j

ϕ j

(
p j − mjv0

mj
δ(r j − r) + p − mv0

m

δ(r − r)

)〉]

−∇ ·
〈

1

4

∑
j

r jF j ·
(

p j

m j
δ(r j − r) + p

m

δ(r − r)

)〉
. (74)

This shows that the equation of change for the energy is in the form of a conservation equation.
The purely kinetic energy term in the expression for the energy flux can be rewritten〈∑
j

p j − mjv0

mj

p2
j

2mj
δ(r j − r)

〉
=

〈∑
j

p j − mjv0

mj

[
(p j − mjv0)2

2mj
+ (p j − mjv0) · v0 + 1

2
mjv2

0

]
δ(r j − r)

〉

=
〈∑

j

p j − mjv0

mj

(p j − mjv0)2

2mj
δ(r j − r)

〉
+

〈∑
j

(p j − mjv0)(p j − mjv0)

mj
δ(r j − r)

〉
· v0,

(75)
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with the v2
0 term vanishing on taking expectation values since

it has the structure
1

2
v2

0

∑
j

〈(p j − mjv0)δ(r j − r)〉 = 1

2
v2

0[ρv0 − ρv0] = 0

(76)
according to Eqs. (62) and (64) while the term linear in v0 is
recognized as the kinetic contribution to the pressure tensor
times the stream velocity, PK · v0 [see Eq. (69)]. The remain-
ing term in Eq. (75) is cubic in p j − mjv0 and vanishes in
thermal equilibrium (a Maxwellian in how the velocity differs
from the stream velocity); thus it represents a nonequilibrium
effect.

So far, no detail of the form of the distribution functions
used to evaluate the expectation values has been made since
the previously mentioned expectation values are all assigned
by definition. But now some knowledge of their form is
needed. Essentially the fluid dynamic system is assumed to
be in local equilibrium with small deviations associated with
the gradients of the densities of mass, temperature, stream
velocity, and the component densities. For the energy equa-
tion, and also the pressure tensor, only one- and two-particle
properties are involved. Thus it is the singlet and pair distribu-
tion functions that are needed. At equilibrium, these are well
known, being the Maxwellian for a singlet and the product of
Maxwellians times the radial distribution function for a pair,
specifically

f (1,0)α
1 (r1, p1) = nαPα

1

(2πm1kT )3/2
e−(p1−m1v0 )2/2m1kT (77)

and

f (2,0)αβ

12 (r1, r2, p1, p2) = f (1,0)α
1 f (1,0)β

2 g12(r12, T ), (78)

where the component densities, temperature, and stream ve-
locity are position dependent at the corresponding particle
position and also assumed time dependent. Technically, the
radial distribution function g(r) should be the sum of two
terms, each localized at the position of one of the parti-
cles with a factor of 1/2. The diffusion velocities vanish at
local equilibrium so there needs to be (small) nonequilib-
rium perturbation terms added to these distribution functions,
namely,

f (1)α
1 = f (1,0)α

1

[
1 + φα

1 (r1, p1)
]

(79)

and

f (2)αβ

12 = f (2,0)αβ

12

[
1 + φα

1 + φ
β

2 + �
αβ

12 (r1 · · · p2)
]
. (80)

Note that the dependence on the temperature, stream veloc-
ity and component densities, and/or their gradients are not
explicitly displayed in these perturbation terms. These expres-
sions reflect the form of the distribution functions, and only
those aspects of these quantities needed for identifying the
various contributions to the energy flux are discussed here.
Specifically no attempt is made to formulate a theory for the
calculation of the perturbations. In this regard, for an ideal gas
only the singlet is needed and the perturbation can be calcu-
lated by an appropriate solution of the Boltzmann equation
[3–5,8]. The author knows of no calculation of �.

To connect the distribution functions with the expectation
formalism used to derive the conservation equations, the phase

space functions are expressed in the expectation formalism as

f (1)α
1 (r1, p1) ≡

〈∑
j

Pα
j δ(r1 − r j )δ(p1 − p j )

〉
(81)

and

f (2)αβ

12 (r1r2p1p2) ≡
〈 ∑

j

Pα
j P

β

 δ(r1 − r j )δ(p1 − p j )

× δ(r2 − r)δ(p2 − p)

〉
. (82)

Note that the sums over particles of each component
are reflected in the densities appearing in the f (1,0)’s of
Eq. (77).

Since the diffusion velocities are nonequilibrium one-
particle properties they must be determined by the perturba-
tions φα

j ; specifically this perturbation must contain a term

that is “equivalent” to [(p j − mjv0)/kT ] · Vα since the expec-
tation value from Eq. (68) is

nαVα =
〈∑

j

Pα
j

(
p j

m j
− v0

)
δ(r j − r)

〉

=
∫∫

Pα
1

(
p1

m1
− v0

)
δ(r1 − r) f (0)α

1 [1 + φα
1 ]dr1dp1

=
∫∫

Pα
1

(
p1

m1
− v0

)
δ(r1 − r) f (0)α

1

× p1 − m1v0

kT
· Vαdr1dp1 = nαVα. (83)

The sum over j is inappropriate when using the distribution
function since the density appears explicitly as nα in the dis-
tribution function so the count over the number of particles of
component α is already taken into account. Note that this does
not evaluate the perturbation, or Vα , but only indicates what
term is needed in order to make the perturbation consistent
with the presence of a finite diffusion velocity.

In the actual calculation of the diffusion velocities the per-
turbations do not contain the diffusion velocities themselves
but rather have terms proportional to the chemical potential
gradients and the temperature gradient which contribute to
the diffusion velocities. The above “equivalence” shows that
such contributions are linear in the respective (p j − mjv0)/kT
multiplying the appropriate gradient. As is now to be dis-
cussed is the separation of the conductive energy flux into
that carried by the diffusion fluxes and by the heat flux, these
must be independent and thus the part of the perturbations that
contribute to the heat flux must be appropriately orthogonal to
the part that contributes to the diffusion fluxes. This is what is
done when solving the Boltzmann equation for the transport
coefficients but is only hinted at in this presentation.

But the calculation of the expectation value of the energy
flux is affected by the presence of this perturbation of the
local equilibrium distribution function. Specifically, the cubic
term in the kinetic energy flux, Eq. (75), has the contribution
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to its α component

∫∫
Pα

1
(p1 − m1v0)(p1 − m1v0)2

2m2
1

δ(r1 − r) f (0)α
1

[
1 + p1 − m1v0

kT
· Vα

]
dp1dr1 = 5

2
nαkT Vα. (84)

It is noted that this flux is proportional to the component’s kinetic part of the enthalpy. This term should be subtracted from the
cubic term before associating the remainder with the kinetic heat flux qK . Collecting together the various contributions from the
purely kinetic energy flux gives〈∑

j

p j − mjv0

mj

p2
j

2mj
δ(r j − r)

〉
=

〈 ∑
j

p j − mjv0

mj

[
(p j − mjv0)2

2mj
− 5

2
kT

]
δ(r j − r)

〉
+

∑
α

5

2
nαkT Vα + PK · v0

= qK +
∑

α

5

2
nαkT Vα + PK · v0. (85)

The first term can be recognized as the typical kinetic contribution to the heat flux qK when calculating the thermal conductivity
from the Boltzmann equation [3–5].

The third term in the expression for the energy flux in Eq. (74) is recognized as the potential energy flux. Use of the above
discussed contribution to the one-particle perturbation evaluates the momentum dependence of the expression for the potential
energy flux, leaving the remaining position dependence to be evaluated to its local equilibrium value as long as that exists. For
particle j,

ϕ j = 1

2

∫∫
ϕ j(r j)g j(r j)δ(r j − r)dr jdr (86)

is its mean particle potential energy due to its interaction with particle  with the 1/2 associated with giving particle j half of the
potential energy, and positioned at the position of particle j. Note that the potential and radial distribution function are particle
labeled since these functions are dependent on the component labels of the particles which are assigned to the particle label. The
contribution to the energy flux from such terms is the sum over all pairs of particles,∑

α

nαϕαVα =
∑

α

∑
j

Pα
j ϕ jVα. (87)

Note that the sum over  includes all particles of all components.
The remaining part of the third term in Eq. (74) contributes to the heat flux. This involves the correlation of position and

momentum so is determined by the pair perturbation �. But the form for the dynamical function for this must not contribute to
the particle flux contributions, Eq. (87), since these are already accounted for. This can be ensured by subtracting out the mean
potential energy, in a form equivalent to what is done for the kinetic energy. But this is complicated by the varied behavior of ϕ

associated with the different components. Thus this contribution to the heat flux is identified as

qϕ1 ≡ 1

2

〈 ∑
α

∑
j

Pα
j [ϕ j − ϕ j]

(
p j

m j
− v0

)
δ(r j − r)

〉
. (88)

Finally there is the second line in Eq. (74). It is first noticed that v0 should be subtracted and added to each momentum
vector with the separate v0 term immediately recognized as involving the potential part of the pressure tensor, Eq. (69), so
that contribution to the energy flux is Pϕ · v0. The remainder involves the combination p j − mjv0 type of terms, which has
contributions proportional to the diffusion velocities, typically for component α through a φ perturbation according to the
following:

1

2

∑
αβ

Pα
1 P

β

2

∫∫∫∫
r12F12 · p1 − m1v0

m1
δ(r1 − r) f (2,0)αβ

12

p1 − m1v0

kT
· Vαdr1dr2dp1dp2

= 1

2

∑
αβ

Pα
1 P

β

2 nαnβ

∫∫
r12F12gαβ (r12)δ(r1 − r)dr1dr2 · Vα =

∑
α

Pα
ϕ Vα (89)

with Pα
ϕ the potential contribution to the pressure associated

with component α, the equilibrium part of the α component
part of the pressure tensor. Subtracting the above terms from
the energy flux given by the second line of Eq. (74), it is
recognized that there is also a contribution to the heat flux

given by

qϕ2 = 1

2

〈∑
α

∑
j

Pα
j r jF j ·

(
p j − mjv0

mj
− Vα

)
δ(r j − r)

〉
.

(90)
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Combining together the various contributions to the energy
flux of Eq. (74), the total energy flux is

ρEv0 + P · v0 +
∑

α

[
5

2
nαkT + nαϕα + Pα

ϕ

]
Vα + qK

+ qϕ1 + qϕ2 = ρEv0 + P · v0 +
∑

α

hαVα + q, (91)

where the various heat flux contributions have been combined
into q while the partial molar enthalpy hα is the sum of the
(per particle) kinetic contributions 5kT/2 (associated with the
kinetic internal energy 3kT/2 and kinetic pressure kT ) plus
the potential internal energy ϕα and the potential contribution
to the partial pressure Pα

ϕ . This is perspective 3 in Sec. II,
Eq. (17), for the energy flux JE .

VI. COMPONENT MOMENTUM EVOLUTION
VIA THE BOLTZMANN EQUATION

This discussion is based on the Boltzmann equation keep-
ing only those terms which are considered as representing
the meaning and evolution of the mean momentum of the
individual components. Explicitly, the local equilibrium mo-
mentum distribution function for component α describes the
probability per unit volume of a particle’s momentum. It is
written here as

f (1,0)α
1 = nαPα

1

(2πm1kT )3/2
e(p1−m1vα )2/2m1kT (92)

rather than Eq. (77), having the component velocity vα rather
than the stream velocity v0. In particular the momentum den-
sity of component α is

ραvα ≡ nαmαvα =
∫

p1 f (1,0)α
1 dp1. (93)

This is the interpretation that this paper uses as to the meaning
that each component has its own mean velocity, as used in
Refs. [6,7] in the treatment of extended irreversible thermo-
dynamics. It implies that each component separately reaches
a local thermodynamic equilibrium; but if that was the case,
should each component have its own particular temperature
as well? The object of this section is to argue that this is
inconsistent with local equilibrium, specifically that different
components collide and thus transfer momentum and energy
between the different components, with the consequence that,
since collisions dominate the approach to thermal equilibrium,
there is only one local (stream) velocity and temperature for a
gas that is in thermal equilibrium. Nonequilibrium properties
driven by inhomogeneities [specifically by the gradients in
the (local) thermodynamic variables] arise in fluid flow and
perturb the component velocities as well as their densities

and energies from their local equilibrium values and it is the
competition between the inhomogeneities and the collisions
that is reflected in the equations of fluid flow. It is not the
purpose of this section to discuss the latter (aspects of that
are addressed in the previous sections of this paper), but the
last comment was added to emphasize the perspective of the
difference played by the collisions and the inhomogeneities.

The Boltzmann equation describes the evolution of the
one-particle distribution function due to free motion and
binary collisions. Explicitly this is written for classical me-
chanics as

Pα
j

[
∂ f j

∂t
+ p j

m j
· ∇ f j

]

=
∑

β

Pα
j Pβ

k

∫∫∫
[ f ′

j f ′
k − f j fk]

p jk

μ jk
bdbdεdpk, (94)

where collisions of particle j of component α with a typical
particle k of component β, for all β, including β = α, are
included. A prime designates the incoming momenta p′

j, p′
k

for a binary collision, while p j, pk are the corresponding out-
going momenta. See one of the classic references [3–5] for
more information on the meaning and structure of the Boltz-
mann equation. b is the impact parameter (the miss distance
in relative coordinates between the centers of mass of the
particles if there was no interaction between the particles) and
ε is the angle of orientation of b around the outgoing relative
momentum p jk . b (as a two-dimensional vector) lies in the
plane perpendicular to p jk . The relative and center of mass
momenta are related to the individual particle momenta by

p jk = mkp j − mjpk

Mjk
and P jk = p j + pk, (95)

where Mjk = mj + mk is the total mass of the pair of particles
while μ jk = mjmk/Mjk is the reduced mass of the pair. It may
also be of use to note that, due to conservation of angular
momentum, the collision occurs in the plane determined by
p jk and b.

On multiplying Eq. (94) by p j and integrating over p j , the
equation of change for the momentum density of α can be
written as

∂ραvα

∂t
+ ∇ · (nαkT U + ραvαvα ) =

∑
β

Cαβ. (96)

The free motion contribution is analogous to the free motion
part of Eqs. (82)–(86) and using Eq. (92) while the collision
integral Cαβ describes the transfer of momentum between
components. In detail the collision integral for components
α and β is

Cαβ = Pα
j Pβ

k

∫∫∫∫
p j[ f ′

j f ′
k − f j fk]

p jk

μ jk
bdbdεdpkdp j = Pα

j Pβ

k

∫∫∫∫
1

2
(p j − p′

j )[ f ′
j f ′

k − f j fk]
p jk

μ jk
bdbdεdpkdp j,

where the second form has made use of the collision inversion symmetry of the Boltzmann collision kernel (which is due to the
time reversal and spatial inversion symmetry of classical mechanics) which interchanges the incoming and outgoing momenta.
Since the center of mass momentum P jk is unaffected by the collision it is appropriate to change the momentum integrals into
those for the center of mass and relative motion. This involves the relation for the differentials dpkdp j = dP jkdp jk and for the
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energy factors that appear in the exponents in the distribution functions:

(p j − mjvα )2

2mj
+ (pk − mkvβ )2

2mk
= (P jk − mjvα − mkvβ )2

2Mjk
+ (p jk − μ jk[vα − vβ])2

2μ jk
. (97)

The inversion of the momentum relations (95) implies p j = p jk + (mj/Mjk )P jk and since P′
jk = P jk by momentum conservation,

the factor p j − p′
j reduces to p jk − p′

jk . Thus Cαβ becomes

Cαβ = Pα
j Pβ

k

nαnβ

2(2πmjkT )3/2(2πmkkT )3/2

∫∫∫
(p jk − p′

jk )[e−(p′
jk−pαβ )2/2μ jkkT − e−(p jk−pαβ )2/2μ jkkT ]

× p jk

μ jk
bdbdεdp jk

∫
e−(P jk−mj vα−mkvβ )2/2MjkkT dP jk, (98)

where pαβ ≡ μαβ (vα − vβ ) is introduced as a convenient notation. The separation of the center of mass integral from the others
is done since it is the same for the incoming and outgoing factors in the collision integral and thus factors out from the other
terms. Its integral is evaluated as (2πMjkkT )3/2.

A more elaborate estimation of this integral can be made but for simplicity only the small mean velocity difference case is
considered here, that is, to terms linear in pαβ . Thus to first order in pαβ and using the conservation of energy in a collision,
equivalently that (p′

jk )2 = (p jk )2, the momentum transfer collision integral simplifies to

Cαβ = Pα
j Pβ

k

nαnβ

2(2πμ jkkT )3/2

[∫∫∫ (p jk − p′
jk )(p′

jk − p jk )

μ jkkT
e−(p jk )2/2μ jkkT p jk

μ jk
bdbdεdp jk

]
· pαβ. (99)

By spherical symmetry, since the integral now involves no vector that is not integrated over, the integral must be rotationally
invariant and thus proportional to the rotational identity U. This allows Cαβ to be written as

Cαβ = −pαβPα
j Pβ

k

nαnβ

6μ2
jkkT (2πμ jkkT )3/2

∫∫∫
(p′

jk − p jk )2e−(p jk )2/2μ jkkT p jkbdbdεdp jk ≡ −pαβCαβ. (100)

Note the minus sign and the introduction of the positive scalar
collision integral which is also symmetric to the exchange of
α and β. Now the square of the momentum difference is

(p′
jk − p jk )2 = 2p2

jk (1 − cos χ ), (101)

where χ is the angle of deflection (the angle between incom-
ing and outgoing relative momenta) and the conservation of
energy has been used to get only one relative momentum
magnitude. The integral over the impact parameter b can be
replaced by an integral over χ , specifically bdb = σ sin χdχ ,
where σ is the differential cross section. This simplifies the
collision integral to

Cαβ = Pα
j Pβ

k

nαnβ

3μ2
jkkT (2πμ jkkT )3/2

∫∫∫
p2

jk (1 − cos χ )

× e−(p jk )2/2μ jkkT p jkσ sin χdχdεdp jk . (102)

This is valid for any interaction potential and has used only
the approximation that this is first order in pαβ as well as the
interpretation that it is the distribution function of Eq. (92)
that represents the assumption of having local component
momentum densities.

The hard sphere is the simplest potential to use to evaluate
the collision dynamics since its differential cross section is
σ = a2

αβ/4, where aαβ is the mean diameter of the pair of
colliding particles, equivalently the sum of their radii, and the
total cross section is πa2

αβ . Analytically evaluating the fivefold
integral (there are two angles and a magnitude to integrate for

the vector p jk), the collision integral reduces to

Cαβ = 4nαnβπa2
αβ

3

√
8kT

πμαβ

. (103)

This can be recognized as 4/3 times the collision rate between
particles α and β.

Dropping the gradient terms in Eq. (96) and recognizing
that ρα changes only due to gradient terms [compare Eq. (68)],
the rate of change of vα is determined by

ρα

∂vα

∂t
=

∑
β

Cαβ = −
∑

β

pαβCαβ. (104)

The analogous equation for component β is

ρβ

∂vβ

∂t
= −

∑
γ

pβγCβγ =
∑

γ

pγ βCγ β . (105)

The last term reflects the component antisymmetry of pγ β and
symmetry of Cγ β . Rather than attempt to organize all the gains
and losses of component mean velocities, consider a binary
mixture having only components α and β. Then the rate of
change of the difference in mean component velocities is

∂ (vα − vβ )

∂t
= −

[
1

ρα

+ 1

ρβ

]
pαβCαβ

= −4(ρα + ρβ )πa2
αβ

3Mαβ

√
8kT

πμαβ

(vα − vβ )

≡ − (vα − vβ )

ταβ

. (106)
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Thus the difference in mean velocity components decays with
a rate constant 1/ταβ determined as the product of an effective
density (ρα + ρβ )/Mαβ , a total cross section πa2

αβ , and the
mean relative speed of the colliding pair of particles. This rate
constant is 4/3 times the collision rate of α with β except for a
difference in which density is relevant for which equilibration
process.

Since collisions determine whether a local thermodynamic
equilibrium is obtained, part of this local equilibrium state
is the equality of all component mean velocities, specifically
then at the local stream velocity.

VII. DISCUSSION

It has been emphasized how important the different dis-
tance scales (equivalently time scales since these are related
by the mean particle speed) are in describing the dynamics of
a fluid. Specifically the collision rate is much faster than the
evolution of the fluid flow which is driven by the gradients
of the thermodynamic variables that parametrize the local
equilibrium state of the fluid. It is the fast collision rate that
is responsible for the local thermodynamic equilibrium. This
analysis was first emphasized by Bogoliubov [1] but does not
appear to be generally appreciated. In particular, many authors
(e.g., Refs. [6,7]) consider that the mean component velocities
should play a detailed role in fluid dynamics, but these are
all equilibrated to the stream velocity by collisions so it is
argued here that only the stream velocity is of importance
in the analysis of the fluid flow regime. Section VI gives an
explicit derivation of how this equilibration occurs. This is
also consistent with the notion that only collision invariants
are of importance in describing the state of local thermody-
namic equilibrium. Note that it is these same variables that are
conserved for fluid motion as a whole (ignoring interactions
with any surroundings) and used as the base for the equations
of fluid dynamics.

The conservation equations for mass, momentum, energy,
and components have been reviewed with an examination of
what contributes to the fluxes of these conserved quantities.
It is only the form of the energy flux that is questioned with
the notion that energy is mechanically carried by the fluxes
of mass, momentum, and components as well as transferred
by a heat flux. This is where the difference between heat and
work comes in, with the latter associated with mechanical
motion while the former is associated with nonmechanical
energy changes, usually attributed to changes in the proba-
bilities of the different states of the particles making up the

system. Mass and momentum are immediately identified as
mechanical quantities, but changing the number of particles
of a component is also a mechanical change, often thought
of as a chemical change, but still of a mechanical nature.
Unfortunately the energy carried by component fluxes is usu-
ally not identified as such but considered as a form of heat.
This appears inconsistent in concept. From an irreversible
thermodynamic viewpoint the amount of energy carried by
a component flux should be decided by a thermodynamic
argument. A thermodynamic argument used by the author in a
previous paper gave this as the chemical potential. It was the
object of verifying this that the general statistical mechanical
formulation of a multicomponent mixture was examined, as
done in Sec. V. This shows that the appropriate quantity is
the partial molar enthalpy rather than the chemical potential.
On rethinking the thermodynamic situation, the notion that
treating the fluxes from one fluid element to another as being
reversible processes gives this result. It is believed that this
thermodynamic rationale is true and has not been explicitly
stated previously. The consequences of the differing thermo-
dynamic arguments have been contrasted for the form of the
equation for the entropy density, Sec. II B. If one looks at the
solution of the Boltzmann equation for the heat flux as carried
out in the classic literature [3–5], one of the terms is the
component sum of 5kT/2 times the particle flux. This factor
is there identified as the enthalpy and consequently used in
engineering applications [16] and often referred to as enthalpy
diffusion. Its importance in contributing to the energy flux has
recently been emphasized [17]. The above arguments imply
that this quantity is mislabeled and should be treated as a
form of work flux rather than as part of the heat flux. It is
also acknowledged that if the equations of change for the
independent component fluxes are considered, these lead to
an explicit enthalpy diffusion contribution to the energy flux
as clearly done by Ramshaw [6], but these equations are an
unnecessary detail for describing the subsequent evolution of
the fluid.

The gradients of the chemical potential are used for the
general treatment of diffusion but for an ideal gas mixture
these are specialized to the concentration gradients and Fick’s
law in Sec. III, and to the dα involving mole fraction and/or
partial pressure gradients in Sec. IV. These give rise to dif-
ferent sets of diffusion constants with different symmetry
properties but are shown to be transformable into each other,
respecting their different definitions and manner of applica-
tion.

The data that support the findings of this study are available
within the article and the references.
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