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The phenomenon of degeneracy of an N-plet of bound states is studied in the framework of the quasi-
Hermitian (a.k.a. PT -symmetric) formulation of quantum theory of closed systems. For a general non-Hermitian
Hamiltonian H = H (λ) such a degeneracy may occur at a real Kato’s exceptional point λ(EPN) of order N and
of the geometric multiplicity alias clusterization index K . The corresponding unitary process of collapse (loss
of observability) can be then interpreted as a generic quantum phase transition. The dedicated literature deals,
predominantly, with the non-numerical benchmark models of the simplest processes where K = 1. In our present
paper it is shown that in the “anomalous” dynamical scenarios with 1 < K � N/2 an analogous approach is
applicable. A multiparametric anharmonic-oscillator-type exemplification of such systems is constructed as a
set of real-matrix N by N Hamiltonians which are exactly solvable, maximally non-Hermitian, and labeled by
specific ad hoc partitionings R(N ) of N .
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I. INTRODUCTION

The experimentally highly relevant phenomenon of a
quantum phase transition during which at least one of the
observables loses its observability status is theoretically elu-
sive. In the conventional nonrelativistic Schrödinger picture,
for example, the observability of the energy represented by a
self-adjoint Hamiltonian H = H (λ) appears too robust for the
purpose. In phenomenological applications, for this reason,
the onset of phase transitions is simulated, typically, by an
abrupt, discontinuous change of the operators at λ = λ(critical)

[1,2].
In relativistic quantum mechanics the situation is, paradox-

ically, under better theoretical control. In the Klein-Gordon
equation with Coulomb potential, for example, the energy
levels can merge and complexify at a finite, dynamically de-
termined critical strength λ(critical) of the attraction [3].
The operator representing energy remains unchanged. One
must only reconstruct a correct, sophisticated, Hamiltonian-
dependent physical Hilbert space of states H = H(λ) offering
a consistent probabilistic interpretation of the system up to
λ(critical) [4].

The latter result is one of applications of the recent inno-
vative formulation of quantum theory in which a preselected
(i.e., relativistic as well as nonrelativistic) Hamiltonian H =
H (λ) need not be self-adjoint (concerning this theory we shall
add more details below; preliminarily, interested readers may
consult, say, one of reviews [5–9]). This means that even for
non-Hermitian Hamiltonians (with real spectra) and even in
the dynamical regime close to λ(critical), there exists a feasible
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strategy of making the evolution of the corresponding quan-
tum system unitary.

In our recent paper [10] we described a few basic as-
pects of implementation of the latter model-building strategy
in the case of quantum systems close to their phase transi-
tion. The key technical aspects of the theory were illustrated
using the N-by-N–matrix Hamiltonians H (N )(λ) for which
the critical parameter can be identified with a Kato’s [11]
exceptional point of order N (EPN; λ(critical) ≡ λ(EPN)). In
such an arrangement Hamiltonians H (N )(λ) possessed the real
and nondegenerate spectra at λ < λ(EPN) while exhibiting, in
the EPN limit, the characteristic phase-transition behavior (a
detailed explanation will be given in Sec. II below).

The method used in paper [10] was perturbative so that
the specification of the eligible non-Hermitian Hamiltonians
H (λ) was merely indirect. Thus, the results were comple-
mented by a subsequent technical paper [12] in which several
closed-form Hamiltonians were described. Unfortunately, in
another, purely numerical study of the phase-transition prob-
lem [13] it has been revealed that from the mathematical as
well as experiment-oriented points of view the class of models
considered in Refs. [10,12] must be declared too narrow. In
light of this observation the tone of the overall conclusions
was rather discouraging. The existence of “not quite expected
technical subtleties” has been emphasized, with the “word
of warning ...supported by an explicit ill-behaved illustrative
matrix model” [13].

In our present paper we will prolong the latter studies
but, first of all, we will strongly oppose the skepticism of
their conclusions. We will, first of all, broaden the class of
Hamiltonians in a way which will fill the gaps (see Sec. III).
As an unexpected mathematical by-product of these efforts, an
unusual exhaustive combinatorial classification of our class of
models will be formulated and summarized in Appendix.
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In Sec. IV we shall show that the family of our present
solvable anharmonic-oscillator-type benchmark models cov-
ers all of the mathematically admissible realizations of the
EPN-related quantum phase transitions. An explicit sample
of our exhaustive classification pattern will be presented, in
Sec. V, up to N = 8. The overall discussion (emphasizing,
e.g., that our classification is non-numerical, circumventing
all of the above-mentioned ill-conditioning dangers) and a
concise summary will be finally added in Secs. VI and VII.

II. QUANTUM PHASE TRANSITIONS

The main weakness of the models of quantum phase tran-
sitions as presented in our preceding papers [10,12] lies in
a restriction of their scope to a fairly small subset of the
mathematically admissible scenarios. An explanation of this
restriction becomes facilitated when one turns attention to the
models which are exactly solvable.

A. Exceptional points of order N in solvable
non-Hermitian models

In the simplest example taken from [12] the overall dis-
cussion of the phase transition processes was based on
a detailed analysis of the N-by-N tridiagonal-anharmonic-
oscillator (TAO) Hamiltonians

H (N )
(TAO)(λ)

=

⎡
⎢⎢⎢⎢⎢⎣

1 − N b1(λ) 0 · · · 0

− b1(λ) 3 − N . . .
. . .

...

0 −b2(λ) . . . b2(λ) 0
...

. . .
. . . N − 3 b1(λ)

0 · · · 0 −b1(λ) N − 1

⎤
⎥⎥⎥⎥⎥⎦.

(1)

Such a model can be interpreted, after an inessential shift
of the origin of the energy scale, as an antisymmetric-matrix
perturbation of a truncated diagonal matrix form of harmonic
oscillator. In the weak-coupling limit the spectrum is known
of course. In the opposite, strongly anharmonic dynamical
regime the localization of the spectrum becomes, in gen-
eral, numerical. The Hamiltonian becomes dominated by its
off-diagonal part which is chosen real, antisymmetric (i.e.,
maximally non-Hermitian) and, for the reasons explained in
[14], PT symmetric, i.e., symmetric with respect to the sec-
ond diagonal.

For the purposes of study of the mechanisms of a unitary
passage of quantum systems through their EPN singularities
the latter tridiagonal models proved particularly suitable be-
cause in a broad range of matrix element functions b j (λ)
their spectra remained real. After a more restricted choice of
functions b j (λ) these spectra appeared real up to λ = λ(EPN)

(cf. [15]). At the critical value of λ(EPN) all of the N energy
levels merged while they ceased to be real beyond λ(EPN).

From our present point of view the most relevant feature
of the model is that at any integer N � 2 the Hamiltonians
degenerate, in the phase-transition EPN limit, to the respec-
tive nondiagonalizable but elementary, closed-form N-by-N

matrices

H (2)
(TAO)(λ

(EP2)) =
[ −1 1

− 1 1

]
,

H (3)
(TAO)(λ

(EP3)) =
⎡
⎣ −2

√
2 0

− √
2 0

√
2

0 −√
2 2

⎤
⎦,

H (4)
(TAO)(λ

(EP4)) =

⎡
⎢⎢⎢⎣

−3
√

3 0 0

−√
3 −1 2 0

0 −2 1
√

3

0 0 −√
3 3

⎤
⎥⎥⎥⎦,

H (5)
(TAO)(λ

(EP5)) =

⎡
⎢⎢⎢⎢⎢⎣

−4 2 0 0 0

− 2 −2
√

6 0 0

0 −√
6 0

√
6 0

0 0 −√
6 2 2

0 0 0 −2 4

⎤
⎥⎥⎥⎥⎥⎦, (2)

etc. [12]. The respective spectra degenerate to a single real
value,

lim
λ→λ(EPN)

En(λ) = η, n = 1, 2, . . . , N. (3)

This is precisely the mathematical feature of the spectrum
which finds its physical interpretation of an instant of quantum
phase transition [16].

In our particular models the value of η = 0 remains N
independent. The complete EPN degeneracy of energies (3)
proves accompanied by the complete degeneracy of all of the
related eigenvectors,

lim
λ→λ(EPN)

|ψ (N )
n (λ)〉 = |χ (N )(λ)〉, n = 1, 2, . . . , N. (4)

For our forthcoming analysis of the mechanisms of the limit-
ing loss-of-the-observability transition it will be vital to know
that all of the matrix limits (2) can easily be transformed to
their unique, “canonical,” N-by-N Jordan-matrix respective
forms

J (N )(η) =

⎡
⎢⎢⎢⎢⎢⎣

η 1 0 · · · 0

0 η 1 . . .
...

0 . . .
. . .

. . . 0
...

. . . 0 η 1
0 · · · 0 0 η

⎤
⎥⎥⎥⎥⎥⎦ . (5)

The transformations are mediated by the Schrödinger-like
equation

H (N )
(TAO)(λ

(EPN)) Q(N ) = Q(N ) J (N )(η). (6)

For models (2), all of the transition matrices Q(N ) defined by
this equation are available in closed form (see [12]).

B. Numerical models and clustered non-Hermitian degeneracies

The empirical observations published in the strictly numer-
ically oriented paper [13] indicate that the tridiagonal-matrix
choice of models (1) may be over-restrictive. Such a suspi-
cion results from the completeness of the degeneracy (4) of
the eigenvectors. Indeed, from the point of view of linear
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algebra or functional analysis such a type of degeneracy rep-
resents a special case [11]. In general one can only expect a
weaker form of such a degeneracy in which the eigenvectors
|ψ (N )

n (λ)〉 of the Hamiltonian would form a K-plet of clusters
of the degenerating eigenvectors with the set of subscripts n =
1, 2, . . . , N decomposed into K nonoverlapping subsets Sk ,

lim
λ→λ(EPN)

|ψ (N )
nk

(λ)〉 = |χ (N )
k (λ)〉, nk ∈ Sk, k = 1, 2, . . . , K.

(7)
In light of this observation the results of papers [10,12]
must be reinterpreted as covering only a subfamily of all
of the possible EPN-related quantum phase transitions. Any
complete set of benchmark Hamiltonians H (N )(λ) must
contain matrices which are more general than tridiagonal.
In what follows our attention will be, therefore, redirected
to the full real matrices of an analogous, antisymmetrically
perturbed general anharmonic oscillator (GAO) form

H (N )
(GAO)(λ)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − N b1(λ) c1(λ) d1(λ) · · · ω1(λ)

− b1(λ) 3 − N b2(λ) c2(λ) . . .
...

− c1(λ) . . .
. . .

. . .
. . . d1(λ)

− d1(λ) . . . −b3(λ) N − 5 b2(λ) c1(λ)
...

. . . −c2(λ) −b2(λ) N − 3 b1(λ)
− ω1(λ) · · · −d1(λ) −c1(λ) −b1(λ) N − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)

Our present paper could be read, in this light, as a continuation
and as an ultimate completion of the project of Ref. [13]. A
priori, one might be critical towards such a project. Indeed,
from the numerical experiments as performed in [13] it can be
deduced that at the larger dimensions N the work with tridiag-
onal Hamiltonians is the only constructively tractable option.
In other words, the study of the EPN-supporting toy-model
Hamiltonians H (N )(λ) should work either with the general
tridiagonal matrices as sampled above, or with some of their
nontridiagonal generalizations defined at a few smallest ma-
trix dimensions N (thus, e.g., the “easily tractable” maximum
was found at N = 6 in [13]). In our present paper we will just
describe a new, third option showing that an amended and
universal EPN-related model-building strategy does exist.

Our results will be based on the use of nontridiagonal
matrices which are sparse, rendering the implementation of
the strategy feasible in applications. The presentation of the
idea may start from the replacement of the special condition
of Eq. (6) by the generalized, standard relation

H (N )
(GAO)(λ

(EPN)) Q(N ) = Q(N ) J [R(N )](η). (9)

The superscript R(N ) denotes here one of the partitions of
N = N1 + N2 + · · · + NK that do not contain 1 as a part (and
are such that, say, N1 � N2 � · · · � NK � 2; see [17] or Table
1 in [18]). The integer K represents the above-mentioned
clusterization index alias geometric multiplicity of the EPN
degeneracy [11].

As long as the first two partitions R(2) = 2 and R(3) = 3
are unique (for both of them the geometric EPN multiplic-
ity K is equal to 1), Eqs. (6) and (9) remain the same at
N = 2 and N = 3. The difference reflecting the existence of

nontrivial multiplicities K > 1 only emerges at N = 4 where
we can have R1(1) = 4 (i.e., K = 1) and R2(4) = 2 + 2 (i.e.,
K = 2). Thus, in our present amended model-building recipe
we choose any N � 4, pick up one of the partitionings R(N ),
skip the K = 1 cases (which are well known), and define the
block-diagonal matrix J [R(N )](η) in the form of the direct
sum of a K-plet of elementary Jordan blocks,

J [R(N )](η) = J (N1 )(η) ⊕ J (N2 )(η) ⊕ · · · ⊕ J (NK )(η). (10)

The first alternative options emerge at N = 4 = 2 + 2 and
at N = 5 = 3 + 2, with the following two new, K = 2 direct
sums of the Jordan blocks,

J [2+2](η) =

⎡
⎢⎣

η 1 0 0
0 η 0 0
0 0 η 1
0 0 0 η

⎤
⎥⎦

and J [3+2](η) =

⎡
⎢⎢⎢⎣

η 1 0 0 0
0 η 1 0 0
0 0 η 0 0
0 0 0 η 1
0 0 0 0 η

⎤
⎥⎥⎥⎦. (11)

We are now prepared to turn our attention to the construction
of multidiagonal GAO models with the full-matrix structure
(8) of their Hamiltonians, and with the general direct-sum
structure (10) of their canonical representation in the EPN
limit.

III. SYSTEMS WITH PENTADIAGONAL-MATRIX
HAMILTONIANS

A. Elementary one-parametric model

A few simulations of dynamics near EPNs using multidi-
agonal N-by-N matrix Hamiltonians were presented in paper
[13]. The scope of the study was restricted, due to the appar-
ently purely numerical nature of the problem, to the smallest
matrix dimensions N � 6. Such a restriction helped to keep
the necessary evaluations of the spectra non-numerical. Inci-
dentally, the latter decision was a bit unfortunate because, as
we will see below, the next option with N = 7 would have
been perceivably more instructive. Still, the key message of
the study remains significant: the search for anomalous K >

1 EPN singularities with optional geometric multiplicities
should be based on a systematic analysis of nontridiagonal,
multidiagonal matrix models.

In light of this experience let us now turn our attention to
the following pentadiagonal-matrix example with N = 7:

H (toy)(λ)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
√

3g 0 0 0 0

0 3 0
√

2g 0 0 0

−√
3g 0 5 0 2g 0 0

0 −√
2g 0 7 0

√
2g 0

0 0 −2g 0 9 0
√

3g

0 0 0 −√
2g 0 11 0

0 0 0 0 −√
3g 0 13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)
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The unperturbed truncated harmonic-oscillator spectrum is
kept unshifted, the anharmonicity is antisymmetric, and the
freedom of the λ dependence of the off-diagonal elements of
the perturbation is reduced to a single function g = g(λ). Such
a simplification implies that the related Schrödinger bound-
state problem

H (toy)(g) |ψn(g)〉 = En(g) |ψn(g)〉 (13)

becomes solvable exactly,

E0(g) = 7, E±1(g) = 7 ±
√

4 − g2,

E±2(g) = 7 ± 2
√

4 − g2, E±3(g) = 7 ± 3
√

4 − g2.

The model exemplifies the system in which the conventional
self-adjoint harmonic-oscillator dynamics is realized at g = 0,
and in which the small perturbations, in spite of their maximal
non-Hermiticity, keep the spectrum real and, hence, observ-
able, in principle at least.

1. Strong-coupling dynamical regime

The above-listed explicit formulas demonstrate that the
whole spectrum of our toy model remains real up to the EP7
limit of g → g(EP7) = 2. The bound-state energies remain real
and well separated along a path connecting the weakly anhar-
monic (WA) and the strong-coupling (SC) ends of the open
interval of the values of g ∈ (0, 2). Even when one decides
to consider a nontrivial function g = g(λ) of parameter λ

which would not deviate too much from the linear one, one
can still deduce that there exists a fairly broad corridor of
unitarity which connects the harmonic-oscillator and the EP7
dynamical extremes.

In the WA regime the optional auxiliary (and, say,
monotonously increasing) function g(λ) is to be kept small.
Then, the anharmonicity will remain easily tractable by the
standard Rayleigh-Schrödinger perturbation methods. Near
the opposite SC boundary where g � 2 the EPN degeneracy
(3) is reached. The reality of the spectrum becomes mathe-
matically fragile. Whenever the value of the coupling exceeds
its critical value of g(EPN) = 2, the whole spectrum becomes
complex.

The latter form of the EPN-related instability is a real,
measurable phenomenon. Its possible detection appeared to
be a true challenge during the popular experimental simula-
tions of quantum dynamics via nonquantum systems (cf., e.g.,
extensive reviews of this point in [19,20]). Fortunately, it has
recently been clarified that in the genuine closed quantum sys-
tems living in an EPN vicinity an experimental realization of
the similar instabilities in the laboratory would be much more
complicated if not even impossible [21]. The subtle reasons
of the existence of such a paradox were briefly explained in
[22]. Their essence lies in the fact that the perturbations which
would make the system leave the physical Hilbert space H
would be hard to define in practically any quantum theory of
closed systems including not only its conventional textbook
forms but, equally well, all of its various quasi-Hermitian
[5], pseudo-Hermitian [8], or PT -symmetric [6] versions. In
the latter setting, indeed, the Hamiltonian-dependent choice
of the physical Hilbert space H is ambiguous [8]. For this

reason, any change of the Hamiltonian reopens the ambiguity
problem and, in this sense, makes the perturbation theory
nonlinear [18,22].

Our present model may be recalled for illustration pur-
poses. In it, we are allowed to introduce a new small parameter
κ = κ (λ) ∈ (0, 1) and to redefine g = g̃(κ ) = 2 (1 − κ2).
This enables us to consider the related (“tilded”) modification
of our spectral problem (13) with the same exact eigenvalues
rewritten in an equivalent but SC-friendlier form

Ẽ0(κ ) = 7,

Ẽ±1(κ ) = 7 ± 2
√

−κ4 + 2κ2

∼ 7 ± 2
√

2 κ + O(κ3),

Ẽ±2(κ ) = 7 ± 4
√

−κ4 + 2κ2,

Ẽ±3(κ ) = 7 ± 6
√

−κ4 + 2 κ2.

Also in this representation these eigenvalues remain all real at
small κ , reconfirming the existence of a corridor of unitarity
connecting the WA and SC dynamical-regime extremes.

2. Canonical form of the Hamiltonian

In the SC EP7 limit κ → 0 the spectrum becomes degen-
erate and the Hamiltonian itself ceases to be diagonalizable.
It may be shown to possess just two eigenvectors so that the
EPN value η = 7 of the energy can be used in the canonical
eigenvalue problem (9) where

J (4+3)(η) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

η 1 0 0 0 0 0
0 η 1 0 0 0 0
0 0 η 1 0 0 0
0 0 0 η 0 0 0
0 0 0 0 η 1 0
0 0 0 0 0 η 1
0 0 0 0 0 0 η

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣

η 1 0 0
0 η 1 0
0 0 η 1
0 0 0 η

⎤
⎥⎦ ⊕

⎡
⎣η 1 0

0 η 1
0 0 η

⎤
⎦. (14)

This is a direct sum of two Jordan-block matrices. The parti-
tioning merely guides the eye and emphasizes the fact that in
our toy-model Hamiltonian (12) there is no mutual coupling
between the even and odd indices. In the EP7 limit, our Hamil-
tonian H (toy)(λ(EP7)) may be interpreted as a direct sum of the
two independent components,

H (toy)(λ(EP7)) = H [odd]
(EP7) ⊕ H [even]

(EP7) , (15)

where

H [odd]
(EP7) =

⎡
⎢⎢⎣

1 2
√

3 0 0
−2

√
3 5 4 0

0 −4 9 2
√

3
0 0 −2

√
3 13

⎤
⎥⎥⎦,

H [even]
(EP7) =

⎡
⎢⎣ 3 2

√
2 0

−2
√

2 7 2
√

2

0 −2
√

2 11

⎤
⎥⎦.
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Off the EP7 limit, our specific pentadiagonal matrix H (toy)(λ)
still has the form of a direct sum of the two tridiago-
nal matrices. Due to our specific choice of the model,
they are both exactly solvable so that the whole N = 7
model is solvable in closed form as well. Moreover, arbi-
trary ad hoc perturbation terms may be added to couple

the components of the direct sum (see, e.g., an applica-
tion of such an idea to a realistic model of such a type
in [23]).

A specific consequence of the simplicity of our present
perturbed model lies in the availability of the explicit
transition-matrix solution of Eq. (13),

Q(toy) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−48 24 −6 1 0 0 0
0 8 −4 1 8 −4 1

− 48
√

3 16
√

3 −2
√

3 0 0 0 0

0 8
√

2 −2
√

2 0 8
√

2 −2
√

2 0

− 48
√

3 8
√

3 0 0 0 0 0
0 8 0 0 8 0 0

− 48 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Indeed, in the perturbation constructions of the SC states the role of unperturbed basis is relegated, in natural manner, to transition
matrices (see more details in [18,23]).

B. Multiparametric Hamiltonians

The tricks used in connection with the one-parametric toy model (12) can immediately be applied to the N-dimensional model

H (N )
(pent. special)(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − N 0 c1(λ) 0 · · · 0

0 3 − N 0 . . .
. . .

...

−c1(λ) 0 . . .
. . . c2(λ) 0

0 . . .
. . . N − 5 0 c1(λ)

...
. . . −c2(λ) 0 N − 3 0

0 · · · 0 −c1(λ) 0 N − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

with an elementary shift of the origin on the energy scale and
with the parallels in structure emphasized by the partitioning.
Obviously, all of these matrices are equal to direct sums of
two tridiagonal matrices, viz.,

H (N )
(component one)(λ)

=

⎡
⎢⎢⎢⎣

1 − N c1(λ) 0 · · ·
−c1(λ) 5 − N c3(λ) . . .

0 −c3(λ) 9 − N . . .
...

. . .
. . .

. . .

⎤
⎥⎥⎥⎦ (17)

and

H (N )
(component two)(λ)

=

⎡
⎢⎢⎢⎣

3 − N c2(λ) 0 · · ·
−c2(λ) 7 − N c4(λ) . . .

0 −c4(λ) 11 − N . . .
...

. . .
. . .

. . .

⎤
⎥⎥⎥⎦ . (18)

Due to our assumption of maximal non-Hermiticity (i.e., of
antisymmetry) of perturbations (i.e., of anharmonicities), their
diagonal component will always vanish. Thus, without con-
fusion, we may refer to the matrix of Eq. (16) by its main
diagonal put in the box, 1 − N, 3 − N, . . . , N − 1 . Its direct-
sum decomposition into components (17) and (18) can be then

written in shorthand,

1 − N, 3 − N, . . . , N − 1 = 1 − N, 5 − N, 9 − N, . . .

⊕ 3 − N, 7 − N, 11 − N, . . . .

The last elements of the summands are not displayed because
they vary with the parity of N . After the explicit specification
of the parity of N we arrive at the following two conclusions.

Lemma 1. At the even matrix dimension N = 2J , the de-
composition of the pentadiagonal sparse-matrix model (16)
into its tridiagonal TAO components (17) and (18) only sup-
ports the two K = 1 EPJ limits (2), with different respective
energies η = ±1. At any one of them, the confluence in
Eq. (3) is incomplete, involving just J levels.

Proof. The main diagonal 1 − N, 3 − N, . . . , N − 1 =
1 − 2J, 3 − 2J, . . . , 2J − 1 of matrix (16) does not contain

a central zero. The central interval (−1, 1) is “too short.” Its
two elements −1 and 1 get distributed among both of the
components (17) and (18). In the resulting direct sum

1 − N, 3 − N, . . . , N − 1

= 1 − 2J, 5 − 2J, . . . , 2J − 3

⊕ 3 − 2J, 7 − 2J, . . . , 2J − 1 ,

both of the components will be centrally asymmetric. �
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The search for an anomalous EPN with K = 2 failed. Even
after a successful J-by-J realization of the two separate EPJ
limits using building blocks (2), requirement (3) will only of-
fer two different values of the eligible limiting EPN energies.
The direct-sum decomposition yields the two nonanomalous
K = 1 EPNs of the same small order J = N/2. A better result
is the next one.

Lemma 2. At odd N = 2J + 1, both of the tridiagonal ma-
trices (17) and (18) admit the respective realizations (2) of
their EPN limits. The related energies coincide so that the di-
rect sum (16) admits the anomalous EPN limit with geometric
multiplicity 2.

Proof. We have

1 − N, 3 − N, . . . , N − 1

= −2J, 2 − 2J, . . . , 2J = −2J, 4 − 2J, . . . , 2J

⊕ 2 − 2J, 6 − 2J, . . . , 2J − 2 (19)

so that out of the central triplet of integers (−2, 0, 2), the
doublet (−2, 2) remains long enough to be a component
of one of the sub-boxes. Their respective dimensions J + 1
and J are now different. This is compensated by the central
symmetry of the summands and by the coincidence of the
EPN energies, η± = 0. In the direct sum (16) the respective
EPN limits degenerate to a single, anomalous EPN limit. The
K = 2 clusterization (7) takes place. �

The highly plausible one-to-one correspondence between
the tridiagonality of the Hamiltonian and the K = 1 form of its
EPN limit as conjectured in [13] is now complemented by our
two lemmas which confirm that in a search for models with
larger K even the pentadiagonality assumption need not help
too much. Nevertheless, the general pentadiagonal models

H (N )
(pentadiagonal)(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − N b1(λ) c1(λ) 0 · · · 0

− b1(λ) 3 − N b2(λ) . . .
. . .

...

− c1(λ) −b2(λ) . . .
. . . c2(λ) 0

0 . . .
. . . N − 5 b2(λ) c1(λ)

...
. . . −c2(λ) −b2(λ) N − 3 b1(λ)

0 · · · 0 −c1(λ) −b1(λ) N − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

offer another methodical inspiration paving the way towards
the full-matrix scenario. The idea is based on an additional
assumption that all of the matrix elements bn(λ) are small.
Then, the decomposition

H (N )
(pentadiagonal)(λ)

= H (N )
(pent. special)(λ) + small perturbations (21)

could prove tractable by perturbation techniques [18].

IV. MULTIDIAGONAL SOLVABLE MODELS

The freedom of choice of any positive integer K is desir-
able, but the task is ill-conditioned [24]. The numerical local-
ization of the EPN degeneracies is difficult at larger N ′s. This
is well sampled, e.g., in Ref. [25]. Therefore, we will only use
non-numerical strategies in our model-building project.

A. Clusterization

The core and essence of our forthcoming general non-
numerical constructions will lie in the mere generalization
of Eq. (21), i.e., in an application of the idea that it makes
sense to have some of the “unfriendly” GAO matrix elements

reclassified as “small perturbations” (which could be, in the
first run, neglected and omitted). Such a reduction should help
us to obtain a non-numerically tractable structure [analogous
to matrix (16)] which could be factorized into a K-plet of
solvable TAO components [sampled, at K = 2, by (17) and
(18)].

In a way inspired by the pentadiagonal-matrix Lemma 2
and, in particular, by the direct-sum decomposition (19), also
the general GAO full-matrix Hamiltonian (8) may still be
identified and represented by its left-right antisymmetric main
diagonal put in a box,

1 − N, 3 − N, . . . , N − 3, N − 1 . (22)

Formally, such a boxed symbol can be decomposed as fol-
lows:

1 − N, 3 − N, . . . , N − 1

= 1 − N, N − 1 ⊕ 3 − N, 5 − N, . . . , N − 3 . (23)

Naturally, the first right-hand-side component 1 − N, N − 1
of this decomposition could already represent the required
TAO type Hamiltonian matrix, provided only that all of the
unfriendly elements are omitted from the outer rows and
columns of the initial Hamiltonian, yielding

H (N )
(spec. partit.)(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − N 0 0 · · · 0 ω1(λ)
0 3 − N b2(λ) . . . z2(λ) 0

0 −b2(λ) . . .
. . .

... 0
...

...
. . . N − 5 b2(λ)

...

0 −z2(λ) . . . −b2(λ) N − 3 0
−ω1(λ) 0 0 · · · 0 N − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (24)
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This enables us to decompose

H (N )
(spec. partit.)(λ) = [

(N − 1) × H (2)
(toy)(λ)

] ⊕ H (N−2)
(GAO) (λ),

where the dimension of the second full-matrix component
is diminished. Thus, the construction of one of the possible
direct-sum decompositions could be completed iteratively,
with the ultimate result preserving the TAO form of all of its
components.

We are now prepared to search for all of the other K-
term generalizations of the K = 2 direct-sum expansion (19).
It is worth emphasizing that for the reasons illustrated in
Lemma 1 our fundamental methodical requirement of the non-
numerical tractability of the EPN limits of the GAO models
is in a one-to-one correspondence with the constraint that
all of the components of their K-term direct-sum expansions
must keep having the specific TAO form, represented by the
centrally antisymmetric boxed symbols. Thus, an exhaustive
classification of all of the possible direct-sum decompositions
of the initial symbol (22) becomes an interesting combinato-
rial problem with the solution described in Appendix below.

B. General direct-sum decompositions

The unitary evolution scenarios characterized by an in-
complete, anomalous K > 1 degeneracy of eigenstates are
all equally important [13]. The present continuation of their
analysis will be inspired by Eq. (15) where K = 2. We will
fix the parameter λ = λ(EPN) and assume an analogous GAO
direct-sum decomposition valid, in the EPN limit with specific
η = 0, at any preselected dimension N and multiplicity K ,

H (N )
(GAO)(λ

(EPN)) = ˜H (N1 )(λ(EPN)) ⊕ ˜H (N2 )(λ(EPN))

⊕ · · · ⊕ ˜H (NK )(λ(EPN)). (25)

We should only keep in mind that the value of the geometric
multiplicity K cannot exceed N/2. We will also insist on
the non-numerical tractability of the model. Most easily, this
goal will be achieved by the requirement that all of the sepa-
rate Nj-dimensional tilded matrix components of Hamiltonian
(25) are elements of the above-mentioned TAO-Hamiltonian
family (2),

˜H (Nj )(λ(EPN)) = c j H
(Nj )
(TAO)(λ

(EPN)), j = 1, 2, . . . , K. (26)

The freedom of choice of K different normalization constants
c j will not destroy the non-numerical form and solvability of
the model. In a small vicinity of the EPN singularity the exact
solvability of the TAO toy models (1) will survive. We may,
therefore, extend the definition of the model, accordingly, to
parameters λ < λ(EPN) which do not lie too far from λ(EPN),

H (N )
(GAO)(λ)

= ˜H (N1 )(λ) ⊕ ˜H (N2 )(λ) ⊕ · · · ⊕ ˜H (NK )(λ)

+ small corrections. (27)

For the sake of simplicity let us ignore the corrections, and let
us only consider the components with weights which remain
λ independent,

˜H (Nj )(λ) = c j H
(Nj )
(TAO)(λ), j = 1, 2, . . . , K. (28)

TABLE I. The list of all of the alternative TAO-direct-sum de-
compositions (27) of the GAO Hamiltonian (15) with symbol (label)
1 − N, 3 − N, . . . , N − 1 at N = 6 (K > 1).

GAO label −5, −3, −1, 1, 3, 5

K R(6) j Nj c j TAO j label

2 4+2 1 4 1 −3, −1,1,3

2 2 5 −5,5

3 2+2+2 1 2 1 −1,1

2 2 3 −3,3

3 2 5 −5,5

The parameter λ may now decrease to zero in a way which
parallels the behavior of the tridiagonal TAO models (1) of
Refs. [12,14,15].

During the process the direct-sum decomposition of the
Hamiltonian [i.e., the exact solvability of the K > 1 models
(27) where we omitted the “correction” term] will survive.
Unfortunately, for a general real K-plet of the normalization
constants c j the spectrum of model (27) would be, in the
λ → 0 limit, nonequidistant. This means that in such a limit
our system would not mimic the truncated harmonic oscil-
lator. This would be a truly unpleasant feature of the model,
especially in the context of perturbation theory. In our present
paper the equidistance of the unperturbed λ = 0 spectrum of
the GAO model will be, therefore, added as an independent
WA postulate.

The latter requirement will restrict the freedom of our
choice of the normalization constants c j in Eq. (28), of course.
From the practical physical, phase-transition-oriented point of
view, such a restriction appears acceptable, being rather severe
only at the not too large integers N and K . This is illustrated
in Table I. It shows that just two alternative GAO models
with K > 1 will exist at N = 6. Nevertheless, the benefits
of the exact solvability of the restricted GAO models will
certainly prevail at the larger matrix dimensions because with
the growth of N the number of alternative scenarios will grow
very quickly. This growth is sampled in Appendix.

V. SYSTEMATICS OF MODELS WITH
CLUSTERED EPN LIMITS

Our model-building strategy is based on the partitioning
of an N-by-N GAO Hamiltonian labeled by the boxed main
diagonal [cf. Eq. (22)] into a K-plet of the TAO components
represented by the shorter, centrally antisymmetric boxed
equidistant subsets

(1 − Nj ) c j, (3 − Nj ) c j, . . . , (Nj − 3) c j, (Nj − 1) c j .

(29)
This makes every candidate for a solvable benchmark Hamil-
tonian equal to a direct sum of TAO building blocks. At the
first few dimensions N , the systematic constructive implemen-
tation of such a recipe will be made more explicit in what
follows.
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A. The choice of N = 2 and N = 3: No anomalous degeneracies

For our present GAO class of λ-dependent Hamiltonians
(8) there exists strictly one, unique EP2 limit satisfying our
restrictions at N = 2, namely, the matrix H (2)

(TAO)(λ
(EPN)) as

displayed in Eq. (2). In our abbreviated notation such a matrix
is characterized by the boxed symbol −1,1 . In the notation
of Appendix the number a(N ) of eligible scenarios is one,
a(2) = 1. In the EPN limit, the geometric multiplicity of the
spectrum is K = 1.

Similarly, at N = 3 we have a(3) = 1 and the unique
K = 1 limit H (3)

(TAO)(λ
(EP3)) represented by the boxed symbol

−2,0,2 and by the matrix displayed in Eq. (2).

B. The simplest anomalous case with N = 4 and K = 2

Besides the trivial K = 1 option with symbol
−3,−1, 1, 3 , there exists strictly one other possibility

of decomposition at N = 4, viz.,

−3,−1, 1, 3 = −1, 1 ⊕ −3, 3 , K = 2.

In the limit λ → λ(EP4) this direct sum represents the seven-
diagonal but very sparse GAO matrix

H (4)
(K=2)(λ

(EP4)) =

⎡
⎢⎣

−3 0 0 3
0 1 −1 0
0 −1 1 0

−3 0 0 3

⎤
⎥⎦. (30)

In the unitarity domain where λ 
= λ(EP4) the number of the
eligible dynamical scenarios is two, a(4) = 2, one of them
representing a nontrivial clusterization with K = 2.

C. Two K = 2 options at N = 5

At N = 5 the number of scenarios is three, a(5) = 3. Be-
sides the trivial case, we have the two K = 2 decompositions
−4,−2,0,2,4 = −2,0,2 ⊕ −4,4 and −4,−2,0,2,4 =
−4,0,4 ⊕ −2,2 , leading to the two alternative, nonequiva-

lent wave-function clusterizations. These two alternatives are
represented by the two respective EP5 limiting matrix Hamil-

tonians, viz., by the nine-diagonal

H (5)
(K=2,a)(λ

(EP5)) =

⎡
⎢⎢⎢⎢⎣

−4 0 0 0 4
0 −2

√
2 0 0

0 −√
2 0

√
2 0

0 0 −√
2 2 0

− 4 0 0 0 4

⎤
⎥⎥⎥⎥⎦

and/or by the pentadiagonal

H (5)
(K=2,b)(λ

(EP5)) =

⎡
⎢⎢⎢⎢⎣

−4 0 2
√

2 0 0
0 −2 0 2 0

− 2
√

2 0 0 0 2
√

2
0 −2 0 2 0
0 0 −2

√
2 0 4

⎤
⎥⎥⎥⎥⎦.

The latter matrix fits in the classification pattern as provided
by Lemma 2 above.

D. The first occurrence of K = 3 at N = 6

Besides the trivial, nondegenerate EP6 limit with K =
1 we have to consider its anomalous descendants, viz.,
the unique K = 2 decomposition −5,−3,−1,1,3,5 =
−3,−1,1,3 ⊕ −5,5 and the unique K = 3 decomposition

−5,−3,−1,1,3,5 = −1,1 ⊕ −3,3 ⊕ −5,5 . In both of
these cases (listed in illustrative Table I above) the direct-sum
components of H (6)

(K=2,K=3)(λ
(EP6)) may be found displayed in

Eq. (2). In the latter case, for example, the direct sum yields
the matrix

H (6)
(K=3)(λ

(EP6)) =

⎡
⎢⎢⎢⎢⎢⎣

−5 0 0 0 0 5
0 −3 0 0 3 0
0 0 −1 1 0 0
0 0 −1 1 0 0
0 −3 0 0 3 0

− 5 0 0 0 0 5

⎤
⎥⎥⎥⎥⎥⎦.

The number of scenarios is a(6) = 3. The role and con-
sequences of small perturbations of the latter matrix were
analyzed in [13].

E. Paradox of decrease of a(N) between N = 7 and N = 8

At N = 7 the number of eligible EP7 scenarios is a(7) = 6
because the usual trivial K = 1 option can be accompanied by
the following quintuplet of anomalous EP7 direct sums,

−6,−4,−2, 0, 2, 4, 6 = −4,−2, 0, 2, 4 ⊕ −6, 6 , K = 2,

−6,−4,−2, 0, 2, 4, 6 = −2, 0, 2 ⊕ −4, 4 ⊕ −6, 6 , K = 3,

−6,−4,−2, 0, 2, 4, 6 = −4, 0, 4 ⊕ −2, 2 ⊕ −6, 6 , K = 3,

−6,−4,−2, 0, 2, 4, 6 = −4, 0, 4 ⊕ −6,−2, 2, 6 , K = 2,

−6,−4,−2, 0, 2, 4, 6 = −6, 0, 6 ⊕ −2, 2 ⊕ −4, 4 , K = 3.

In contrast, at N = 8 we have a(8) = 4, i.e., only the triplet of the anomalous, K > 1 direct sums becomes available, viz.,

−7,−5,−3,−1, 1, 3, 5, 7 = −5,−3,−1, 1, 3, 5 ⊕ −7, 7 , K = 2,
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−7,−5,−3,−1, 1, 3, 5, 7 = −3,−1, 1, 3 ⊕ −5, 5 ⊕ −7, 7 , K = 3,

−7,−5,−3,−1, 1, 3, 5, 7 = −1, 1 ⊕ −3, 3 ⊕ −5, 5 ,⊕ −7, 7 , K = 4 .

The latter item is our first four-term direct-sum decomposition
example representing a 15-diagonal but very sparse matrix
H (8)

(K=4)(λ
(EP8)) with bidiagonal structure.

VI. DISCUSSION

The field of study of quantum phase transitions and of the
role played by the Kato’s exceptional points may be charac-
terized by a lasting conflict between ambition and reality. The
enthusiasm accompanying the production of ideas on the side
of theory (see two older compact reviews of physics of non-
Hermitian degeneracies [26,27]) seems counterbalanced by
the difficulties of the search for EPN-related phase transitions
in the laboratory [28].

The concept of the exceptional-point value λ(EPN) of a
real parameter λ in a linear operator H (λ) proved, origi-
nally, useful in mathematics [9,11]. Physics behind the EPNs
remained obscure. The situation has changed after several
authors discovered that the concept admits applicability in
multiple branches of quantum as well as nonquantum physics
[6,19,20]. Pars pro toto let us mention that in the subdomain
of quantum physics the values of λ(EPN) acquired the status
of instants of an experimentally realizable quantum phase
transition [5,29,30]. The boundary-of-stability role played by
the values of λ(EPN) attracted, therefore, the attention of exper-
imentalists [27,31] as well as of theoreticians [32–34].

During our study of the problem we felt challenged by
both of these aspects of the phenomenon. On the side of
experiment we were impressed, first of all, by an intimate
connection between the mathematics of EPNs and the very
concrete physics of quantum phase transitions [35]. On the
side of theory we felt motivated by the existence of its two
mutually interrelated aspects. The first one was pragmatic: the
description of the processes of the loss of the observability
seems to be hardly feasible by the conventional numerical
means [25]. At the same time, the perturbation-approximation
techniques appeared to be applicable after minor amendments
[23]. The second attractive aspect of the theory was concep-
tual and deeper: the non-Hermitian degeneracy of an N-plet of
the stable bound states with N > 2 only became tractable as
an admissible process in the framework of quasi-Hermitian
formulation of quantum mechanics [5] (at present, people
more often use the term PT -symmetric theory; cf. reviews
[7,8,19,20]).

In the latter framework one encounters challenges and
apparent contradictions reflecting the unexpected peaceful co-
existence of the non-Hermitian EPN-related degeneracy of
spectra (which are, by assumption [6,29], real) with the uni-
tarity of evolution. Another puzzle may be seen in a rather
vague correspondence between some of the EPN proper-
ties and the structure of the operators, etc. In our present
study we felt guided by the contrast between the not too
surprising numerical ill-conditioning [24] and the real-matrix
nature of the exactly solvable TAO models of Refs. [14,15].

The over-restrictive form of these models was reclassified as
inessential. We accepted the conjecture of correlation between
the tridiagonality of Hamiltonians and a triviality of the geo-
metric multiplicities [13]. Keeping the warning in mind we
constructed the universal GAO K > 1 models via the TAO-
direct-sum ansatz.

A. Unitary vs nonunitary systems

The theoretical background of our present complete menu
of non-numerically tractable phase-transition scenarios lies in
the consistent theoretical compatibility of the non-Hermiticity
of the Hamiltonian with the unitarity of the quantum evo-
lution in the quasi-Hermitian Schrödinger picture [5,6,8,36].
In order to avoid misunderstandings we must immedi-
ately add that in many experiment-oriented descriptions,
the quantum-system transmutations mediated by the EPNs
alias non-Hermitian degeneracies [26] are very often nonuni-
tary. In the extensive related literature [37] the scope of the
theory is very broad. In the Feshbach’s open-system spirit
[38], people work with the non-Hermitian effective Hamilto-
nians Heff with spectra which are complex. Still, the quantum
systems in question are realistic and their analysis profits from
sharing the mathematical know-how with the PT -symmetric
theories of the closed, unitary system.

From the historical perspective, the open-system philos-
ophy was always dominant. For a broader audience this
dominance has only been shattered, in 1998, by Bender and
Boettcher [29]. These authors proposed that at least some of
the processes of the quantum phase transitions might find a
more natural description and explanation in the alternative,
closed-system theoretical framework (see reviews [6,8,9]).

The Bender- and Boettcher-inspired change of the
paradigm had two roots, both of them related to the problem
of quantum phase transitions. One is that even in many closed
quantum systems the unitary evolution can be controlled by
the Hamiltonian (with real spectrum) which is non-Hermitian
(i.e., admitting the EPNs). Although such a conjecture might
sound like a paradox, Bender and Boettcher’s secret trick
was that the latter Hamiltonian can be, via an appropriate
amendment of the Hilbert space of states, Hermitized, fitting
all of the standard postulates of textbooks (see, e.g., the older
review paper [5] for some basic mathematical details).

The second root of the change of the paradigm concerns
the quantum phase transitions more immediately, opening
their innovative treatment via specific examples. In [29] the
innovation was sampled by the spontaneous breakdown of
parity-time (i.e., PT ) symmetry. The authors related the col-
lapse of the system to the coincidence of the parameter in
H (λ) with its EPN value λ(EPN). In the phase-transition limit
λ → λ(EPN) they indeed encountered a genuine qualitative
novelty. In their non-Hermitian local-interaction models the
degeneracy was mostly followed by an abrupt complexifica-
tion, i.e., by a sudden loss of the observability [29]. Their
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EPN-related “quantum catastrophic” behavior was realized as
a merger of bound-state energies (3). The key challenge was
to show, for every preselected non-Hermitian Hamiltonian,
that in the real-spectrum regime with λ < λ(EPN) the system
remains unitary.

B. Correct inner products

For a preselected non-Hermitian quantum Hamiltonian
with real spectrum a specification of its correct probabilistic
closed-system interpretation can be a straightforward linear-
algebraic procedure, especially for the most elementary TAO
tridiagonal Hamiltonian matrices (1) (cf. the detailed and
constructive discussion of this point in paper [39]). A firm
theoretical ground of such a procedure (explained, e.g., in re-
view [8]) is to be sought in an amendment of the conventional
Hilbert space. For the sake of definiteness, we may denote the
amended, correct Hilbert space by dedicated symbol H, with
the other, manifestly unphysical but mathematically friendlier
Hilbert space denoted by a different symbol, say, K.

In this notation the spectrum of any candidate H (λ) for
an observable Hamiltonian must be kept real. Although such
an operator must be self-adjoint in H (i.e., in the physical
Hilbert space, obedient to the Stone theorem [40]), it will
be, in general, non-Hermitian in K. The key purpose of such
a duplicity (often attributed to Dyson [41]) is that via tran-
sition to a user-friendlier space K, one achieves a decisive
simplification of all calculations. In parallel, in the language
of physics one transfers the responsibility for the unitarity of
the system from the λ dependence of the Hamiltonian to the
more flexible λ dependence of the Hilbert space H = H(λ).
Such a “double picture” of evolution offers a highly welcome
physical model-building freedom while still guaranteeing that
the evolution generated by H (λ) remains unitary in H(λ).

In the majority of applications (including the one used in
the present paper) the original Dyson’s flowchart of the theory
is inverted. The model-building process is initiated by the
choice of a non-Hermitian H (λ) acting in a λ-independent
Hilbert space K endowed with a conventional inner product
〈ψ1|ψ2〉K which is unphysical but user friendly. Naturally,
what is then needed is a reconstruction of the “missing”
Hilbert space H(λ) [8].

In a way described in [5] the construction of H(λ) becomes
significantly facilitated when the candidate for the Hamilto-
nian is finite dimensional, H (λ) = H (N )(λ). Then, there will
exist multiple Hermitian and positive-definite matrices � =
�(N )(λ) which satisfy the N-by-N matrix equation

[H (N )(λ)]† �(N )(λ) = �(N )(λ) H (N )(λ).

In terms of any one of these matrices one can, subsequently,
define the space H(λ) via the mere redefinition of the inner
product in K,

〈ψ1|ψ2〉H = 〈ψ1|�|ψ2〉K. (31)

The differences between the two alternative representation
spaces is in fact reduced to the mere nonequivalence of the
respective inner products. Due to such an elementary mathe-
matical correspondence the standard textbook description of
the unitary evolution dynamics defined in the difficult Hilbert
space H finds a simplification in which all of the necessary

calculations and predictions are assumed to be made in the
much simpler representation space K (i.e., in our present
paper, in the most elementary Euclidean real vector space
K = RN ).

C. The corridors of unitarity

Whenever one keeps the evolution unitary, the values of
λ(EPN) mark the points of the loss of the observability of the
system [42,43]. Our present hierarchy of specific GAO models
may be treated as certain exactly solvable quantum analog
of the Thom’s typology of classical catastrophes [44], with
potential applicability to closed as well as open systems.

In our present paper we were exclusively interested in the
former type of applications. We knew that the dynamics of
any unitary quantum system (i.e., typically, its stability with
respect to small perturbations) is strongly influenced by the
EPNs. We should only add that extreme care must be paid
to the Stone theorem [40] requiring the Hermiticity of H (λ)
in the related physical Hilbert space H. A Hermitization of
the Hamiltonian is needed [5]. Such a process involves a
reconstruction of an appropriate amended inner product in the
conventional but unphysical Hilbert space K. Interested read-
ers may find one of the rare samples of such a reconstruction
of the whole menu of H′s in [45].

In the realistic models one often encounters a paradox
that the construction of the correct, amended inner prod-
uct may happen to be prohibitively complicated, i.e., from
the pragmatic point of view, inaccessible. This is the reason
why people often postpone the problem and use, temporar-
ily, a simplified inner product. For our present, user-friendly,
matrix-represented GAO Hamiltonians of closed systems with
N < ∞ such a purely technical obstacle does not occur. The
reconstruction of H would be a routine application of lin-
ear algebra; reclassifying the real GAO matrices which are
non-Hermitian in our auxiliary space K = RN (that is why
we write H 
= H†) into operators which are, by construction,
Hermitian in H (in [36], e.g., we wrote H = H‡).

An unusual property of the physical, amended Hilbert
space is that it is Hamiltonian- and λ-dependent, H = H(λ).
In the present phase-transition context the Hamiltonian H (λ)
itself may be interpreted as Hermitian just for “admissible,”
unitarity-compatible λ′s forming a domain D. The system is
able to reach, via unitary evolution, the instant of the EPN-
related quantum phase transition if and only if the overlaps
of D with the arbitrarily small vicinities of λ(EPN) remain all
nonempty forming a “corridor of access” D(EPN) [10].

In paper [10] it has been shown that the corridors D(EPN)

connecting, in the space of matrix elements, the EPN ex-
tremes with the points in a deep interior of D do always
exist. For the TAO matrices (2), in particular, the shape of
these corridors has been found, in [15], sharply spiked. For
the present broader class of the K > 1 models the existence
of the analogous corridors of the unitary access to EPNs has
been conjectured in [18].

VII. SUMMARY

The phenomenological usefulness of the TAO models of
Refs. [12,14,15] reappears, unexpectedly, also in the K > 1
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GAO-based phase-transition context. We showed that in the
amended theory the TAO matrices may be assigned the role
of building blocks, and that such a trick implies, as one of its
by-products, the exact solvability of the resulting benchmark
GAO quantum systems at any K > 1 and λ ∈ (0, λ(EPN)).
Along these lines, a universal mathematical classification as
well as a richer structure of predictions of the measurable
phenomena is achieved.

A menu of eligible benchmark EPN-supporting specific
models is proposed and described as controlled by al-
ternative multidiagonal N-by-N matrix realizations of the
direct-sum anharmonic-oscillator-type Hamiltonians. On me-
thodical level the phenomenological nonequivalence of these
partially K-related decompositions of the Hamiltonians is to
be stressed.

Via our systematic explicit enumeration of the most
elementary special cases we emphasized, first of all, the im-
portance of the proper treatment of the geometric multiplicity
K of the N-plets of energy levels in the EPN-related phase-
transition dynamical regime. We showed that in a precritical
stage of the transition the nontrivial multiplicities K > 1
just reflect the existence of the phenomenon of a K-tuple
clusterization of the wave functions of bound states. This may
be of interest in experiments in which the processes of the
loss of observability are currently being studied, mostly due
to the existing technical limitations, just at the small N and
trivial K = 1. Our present results may offer a motivation for
performing some extended and subtler analyses or simulations
of the clusterized K > 1 processes in the laboratory.
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APPENDIX: DIRECT-SUM-DECOMPOSITION
PARTITIONINGS R(N)

In the present GAO-based phenomenological models
numbered by the Hamiltonian-matrix dimensions N =
(1), 2, 3, . . ., the counts of the eligible nonequivalent EPN-
related dynamical scenarios [i.e., direct-sum decompositions
(25) and (27) as sampled in Table I at N = 6) form a sequence

a(N )= (0), 1,1,2,3,3,6,4,11,6,17,7,32,8,47,13,66,. . ., .

(A1)

The evaluation of the sequence is important and useful for
at least two reasons. First, beyond the smallest N , it enables
us to check the completeness of the EPN-related dynamical

alternatives. Second, the asymptotically exponential growth of
the sequence indicates that at the larger N ′s, the menus of the
EPN-supporting toy models numbered by partitionings R(N )
will be dominated by the anomalous, multidiagonal K > 1
Hamiltonians.

Besides that, the properties of the sequence are of an in-
dependent mathematical interest. First of all we notice that
our sequence seems composed of the two apparently simpler,
monotonously increasing integer subsequences. They have to
be discussed separately.

1. Subsequence of a(N) with even N = 2J, J = 1, 2, . . .

The values

b(J )=a(2J )=1,2,3,4,6,7,8,13,14,15,25,26, 33, 50, . . .

(A2)

of the even-dimension (sub)sequence may be generated by
the algorithm described in [46] and carrying the identification
code number A336739. Recalling this source let us summa-
rize a few key mathematical features of the sequence.

Definition 1. The quantity b(n) is the number of decompo-
sitions of B(n,1) into disjoint unions of B(j,k) where B(j,k) is
the set of numbers {(2 i-1) (2 k-1), 1 � i � j }.

It may be instructive to display a few examples:
B(n, 1) are the sets {1}, {1,3}, {1,3,5}, {1,3,5,7},. . .,
B(n, 2) are the sets {3}, {3,9}, {3,9,15}, {3,9,15,21},. . .,
B(n, 3) are the sets {5}, {5,15}, {5,15,25}, {5,15,25,

35},. . .,
etc. There are two decompositions of B(2, 1) = {1, 3}, viz.,

trivial B(2, 1) and nontrivial B(1, 1) + B(1, 2) = {1} + {3}.
Similarly, the complete list of the a(5) = 6 decompositions
of {1,3,5,7,9} is as follows:

{{1,3,5,7,9}},
{{1,3,5,7}, {9}},
{{1,3,5}, {7}, {9}},
{{1,3}, {5}, {7}, {9}},
{{1}, {3}, {5}, {7}, {9}},
{{3,9}, {1}, {5}, {7}}.
We should add that the notation used in Definition 1 of

quantities B( j, k) is mathematically optimal. For the purposes
of our present paper, nevertheless, it is necessary to recall the
equivalence of every B( j, k) to one of the present boxed sym-
bols. For example, in place of B(3, 1) = {1, 3, 5} we should
write B[3,1] = −5,−3,−1, 1, 3, 5 , etc. Definition 1 can be
modified as follows.

Definition 2. The quantity b(n) is the number of different
decompositions of B[n,1] into unions of B[j,k] where B[J,K]
is defined as the boxed symbol

(2K − 1)(1 − 2J ), (2K − 1)(3 − 2J ), (2K − 1)(5 − 2J ), ..., (2K − 1)(2J − 1) .

2. Subsequence of a(N) with odd N = 2J + 1, J = 1, 2, . . .

The values of the subsequence

c(J ) = a(2J + 1)

= 1, 3, 6, 11, 17, 32, 47, 66, 105, 162, 198, 376, . . .

(A3)

may be found discussed in [47]. Using this source let us
summarize a few key aspects of this sequence which carries
the identification number A335631.

Definition 3. The quantity c(n) is the number of de-
compositions of C(n,1) into disjoint unions of C(j,k) and
G(q,r) where C(j,k) is the set of numbers {i k, 0 � i �j}

032120-11



MILOSLAV ZNOJIL PHYSICAL REVIEW E 103, 032120 (2021)

and where G(q,r) is the set of numbers {(2 p − 1)r, 1 �
p � q}.

In a more explicit manner let us point out that
C(n, 1) are the sets {0,1}, {0,1,2}, {0,1,2,3}, {0,1,2,

3,4},. . .,
C(n, 2) are the sets {0,2}, {0,2,4}, {0,2,4,6}, {0,2,4,

6,8},. . .,
C(n, 3) are the sets {0,3}, {0,3,6}, {0,3,6,9}, {0,3,6,

9,12},. . .,
etc., and that
G(n, 1) are the sets {1}, {1,3}, {1,3,5}, {1,3,5,7},. . .,
G(n, 2) are the sets {2}, {2,6}, {2,6,10}, {2,6,10,14},. . .,
G(n, 3) are the sets {3}, {3,9}, {3,9,15}, {3,9,15,21},. . .,
etc. We can say that a(2) = 3 because the decompositions

of C(2, 1) = {0,1,2} involve not only the trivial copy C(2, 1)

but also the nontrivial formulas C(1, 2) + G(1, 1) = {0,2} +
{1} and C(1, 1) + G(1, 2) = {0,1} + {2}. Similarly: why
a(3) = 6? Because the decompositions of {0,1,2,3} are as
follows:

{{0,1,2,3}},
{{0,1,2}, {3}},
{{0,1}, {2}, {3}},
{{0,2}, {1,3}},
{{0,2}, {1}, {3}},
{{0,3}, {1}, {2}}.
The one-to-one correspondence and the translation of this

notation to our present boxed-symbol language is again ob-
vious, fully analogous to the one described in the preceding
paragraph.
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Nori, Sci. Rep. 7, 3386 (2017).

[44] E. C. Zeeman, Catastrophe Theory-Selected Papers 1972–1977
(Addison-Wesley, Reading, 1977); V. I. Arnold, Catastrophe
Theory (Springer-Verlag, Berlin, 1992).

[45] M. Znojil, Sci. Rep. 10, 18523 (2020).
[46] The On-Line Encyclopedia of Integer Sequences (OEIS),

item A336739, https://oeis.org/A336739 (accessed Oct. 27,
2020).

[47] The On-Line Encyclopedia of Integer Sequences (OEIS),
item A335631, https://oeis.org/A335631 (accessed Oct. 27,
2020).

032120-13

https://doi.org/10.1088/1751-8113/45/44/444036
https://doi.org/10.1103/PhysRevB.97.121401
https://doi.org/10.1007/s10773-014-2085-x
https://doi.org/10.1103/PhysRevX.6.021007
https://doi.org/10.1038/s41598-017-03546-7
https://doi.org/10.1038/s41598-020-75468-w
https://oeis.org/A336739
https://oeis.org/A335631

