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Deterministic model of battery, uphill currents, and nonequilibrium phase transitions
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We consider point particles in a table made of two circular cavities connected by two rectangular channels,
forming a closed loop under periodic boundary conditions. In the first channel, a bounce-back mechanism acts
when the number of particles flowing in one direction exceeds a given threshold T . In that case, the particles
invert their horizontal velocity, as if colliding with vertical walls. The second channel is divided in two halves
parallel to the first but located in the opposite sides of the cavities. In the second channel, motion is free. We show
that, suitably tuning the sizes of cavities of the channels and of T , nonequilibrium phase transitions take place in
the N → ∞ limit. This induces a stationary current in the circuit, thus modeling a kind of battery, although our
model is deterministic, conservative, and time reversal invariant.
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I. INTRODUCTION

The nature of nonequilibrium phenomena is diverse and
rich, and a theory encompassing them is still in the mak-
ing [1–5]. Such a task requires, in particular, understanding
the coupling with external agents or reservoirs that may lo-
cally allow the condition of detailed balance or its violation
[6–10]. In this work we provide numerical results and a theory
explaining the onset of stationary currents in deterministic
conservative reversible systems made of N point particles.
Such currents are generated by nonequilibrium phase transi-
tions, which result in a deterministic model of battery, which
is phase space volumes preserving and time reversal invari-
ant [11]. Flows and oscillations produced by this mechanism
resemble those observed in biological systems or chemical re-
actions; cf. Refs. [12,13] for classical and quantum oscillators,
and Ref. [14] for experiments on time crystals. In particular,
our single-component deterministic model shows a realization
of uphill currents, i.e., currents opposing the driving fields,
thus providing an instance of the so-called negative absolute
mobility [15–17]. A theoretical description of uphill diffusions
was given in Refs. [18,19] for stochastic spin models cou-
pled to external reservoirs; moreover, in Ref. [[20], Sec. 4.5]
uphill currents were also obtained from the scaling limit of
inhomogeneous random walks on a lattice. A nonequilibrium
phase transition occurring in a deterministic particle system
was recently observed in a model with two cavities connected
by a single channel, allowing no stationary currents [21]. The
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transition amounts to switching from a homogeneous state,
in which approximatively the same number of particles lies
in each urn, to an inhomogeneous state in which almost all
particles gather in a single urn. The model studied in Ref. [21]
was also amenable to a stochastic interpretation, in terms of
time-dependent Markov chains. In this work, we investigate
the nature of the steady state in a two-urns model equipped
also with a second channel, which permits closing the system
as in a circuit. The main question we address here is twofold.
First, we shed light on the existence of nonequilibrium phase
transitions for the circuit model, in which the second channel
is designed to contrast the formation of particle gradients be-
tween the urns. Furthermore, we also discuss the emergence of
stationary currents, flowing through the circuit and sustained
by the phase transitions. We shall thus unveil a nontrivial
phase diagram for our model, revealing that phase transitions
indeed occur in certain regions of the parameter space and are
always followed by stationary currents.

The work is organized as follows. In Sec. II we intro-
duce our model and also present the numerical results of
our deterministic dynamics. In Sec. III we tackle the theo-
retical investigation of the model by means of probabilistic
arguments and compare the theoretical prediction with the nu-
merical results. We also highlight the strength and limitations
of the probabilistic model. More details on the probabilistic
derivation are deferred to the Appendix A. Finally, conclu-
sions are drawn in Sec. IV.

II. THE MODEL

Our model consists of N point particles that move in
straight lines with speed v = 1 and collide elastically with
hard walls. Hence, from collision to collision, the particles
follow these equations of motion: q̇ = p and ṗ = 0. There-
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FIG. 1. The billiard table: the N point particles are represented
as small disks, and velocities are represented by arrows. The two
gray-shaded regions, in the first channel, are the gates in which the
bounce-back mechanism separately acts. The horizontal component
of the velocity of the particles contained in one gate and moving
toward the other is reversed whenever their number is larger than the
prescribed threshold value T .

fore, their speed is preserved while their velocity is reflected
with respect to the normal to the boundary of the table, at
the collision point. The billiard table is made of two circular
urns of radius r, connected by two rectangular channels of
widths w,w′ and lengths �, �′, called, respectively, first and
second channels; cf. Fig. 1. The two urns will be referred
to, in the sequel, as urn 1 and urn 2, respectively. The first
channel is divided in two parts, each of length �/2, called
gates. Periodic boundary conditions are imposed by letting the
second channel close the table on a circuit. This constitutes
an ergodic billiard [22,23]. We now add the bounce-back
mechanism in the first channel: when the number of particles
in one gate, which are moving toward the other gate, exceeds a
threshold T , the horizontal component of the velocity of those
particles is reversed. The particles coming from the other
gate are unaffected by this mechanism and continue their mo-
tion. Although this dynamics is deterministic, time reversible,
and phase volumes preserving, it can produce nonequilibrium
phase transitions, because the bounce-back mechanism imple-
ments a sort of negative feedback that promotes the onset of a
nonequilibrium steady state.

For T � N , the usual ergodic billiard dynamics is realized
[22,24]. Thus, for large N , the vast majority of time is spent
in a state in which approximately the same number of par-
ticles resides in each urn [25]. That state, like any other, is
abandoned to reach still other states, with frequency given by
the ratio of the respective phase space volumes [26]; therefore
no state is strictly stable. Nevertheless, the lifetime of the
homogeneous phase rapidly becomes so long, with growing
N , that such a lack of stability turns physically irrelevant even
at moderately large N , consistently with Boltzmann’s expla-
nation of his H-theorem [27,28]. For T < N , ergodicity also
guarantees that, sooner or later, the threshold will be exceeded
in a gate: as long as that event does not occur, the dynamics
is like the ergodic one, which eventually leads to a station-
ary homogeneous state. When the threshold is exceeded, the
standard dynamics is interrupted by the bounce-back. As evi-
denced in Ref. [21], for large N and sufficiently small T/N ,
a larger concentration of particles in one urn leads to an
increased frequency of activation of the bounce-back mech-
anism in the adjacent gate, while particles can flow in from
the other urn, incrementing the effect. As a consequence, one

FIG. 2. Stationary values of the mass spread χ (left panel) and
net current (right panel) for N = 103, w = 0.3, r = � = �′ = 1. The
initial condition yields χ (0) = 0. In the left panel, the red pixels
denote the homogeneous phase, whereas the other pixels refer to the
inhomogeneous phase. The white lines mark the theoretical bound-
ary between homogeneous and inhomogeneous steady states [see
Eq. (6)].

urn gets depleted of particles, while the other urn increases its
population, until a steady state is reached in which the flow
of particles per unit time in the two directions equalize. In
this scenario, a microscopic fluctuation suffices to trigger the
transition, even when starting from the homogeneous phase.
In this work, the phenomenology is much richer: the second
channel allows particles to flow freely, contrasting the trend
toward inhomogeneous states. Both homogeneous and inho-
mogeneous states can thus be realized, and the latter support
stationary self-sustained currents, as in a battery.

Each half of the table is now made of one urn, the adjacent
gate, and the adjacent semichannel of length �′/2 of the sec-
ond channel; cf. Fig. 1. Letting N1 and N2 be the number of
particles in the two halves, with N = N1 + N2, we define the
mass spread by

χ = |N1 − N2|/N. (1)

For simplicity, we define the net current by taking the absolute
value of the difference of the number of particles coming from
opposite directions and crossing the vertical line separating
the two gates, and by then dividing this quantity by the elapsed
time t [29]. Namely, let n12(t ) and n21(t ) denote the number of
particles that cross, during the time interval [0, t], the vertical
line separating the two gates in the direction from urn 1 to urn
2 and in the opposite direction, respectively. The net current
flowing in a given channel is thus given by the ratio

|n12(t ) − n21(t )|
t

. (2)

In the large t limit, such a discretely defined current settles
to a stationary value related to the asymptotic billiard current.
Due to the symmetry of the model, it is irrelevant whether the
net current is positive or negative.

The model has been simulated as follows. Our numerical
algorithm updates, at each time step, the position of all parti-
cles by moving them along straight lines, in the direction of
their velocities, over a distance v δt . Here δt denotes the time

032119-2



DETERMINISTIC MODEL OF BATTERY, UPHILL … PHYSICAL REVIEW E 103, 032119 (2021)
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FIG. 3. Currents as functions of time, for r = � = �′ = 1, 0.01 = w′ � w = 0.3, N = 103, and initial datum such that χ (0) = 0. For
T = 2 (a) and T = 18 (c), a homogeneous steady state with zero net current is reached. For T = 7 (b), a stationary net current with N1 �= N2

arises Disks (squares) represent numerically computed flows out of urn 1 (urn 2) in channel 1; triangles (diamonds) represent flows out of urn
1 (urn 2) in channel 2. Black dashed lines are the theoretical values (obtained from the probabilistic model) of the stationary currents; solid red
(blue) lines denote the net currents in the first (second) channel. The parameter η is plotted in the insets as a function of N2/N , while the red
disks indicate the stable state reached by the deterministic dynamics.

interval between two consecutive collisions of the particles
with the physical boundaries of the table and also with the
fictitious vertical lines marking either the boundary of each
gate with the adjacent urn or the junction between the two
gates in the first channel. Elastic reflections at the boundaries
of the billiard table are implemented.1 The initial datum is
chosen by fixing arbitrarily the number of particles inside each
urn and selecting their positions and velocities at random with
uniform distribution. Nevertheless, the values attained in the
steady state by the observables in Eqs. (1) and (2) resulted in
being insensitive to the initial datum. In particular, in all our
simulations we verified that, for any value of the parameters
of the model, the same stationary values of the mass spread
and the net current are numerically reached by starting both
from χ (0) = 0 and from χ (0) = 1.

In Fig. 2 we have N = 103, w = 0.3, r = 1, � = 1, and
�′ = 1 and varying values of T/N and w′. Initially, N/2 par-
ticles lie in each urn, while the channels are empty. Positions
and velocities are taken at random with uniform distribution.
The stationary values of χ and of the net current are computed
averaging postcollision data, namely, right after the collision
of each particle with the walls of the table. Simulations last
108 collisions, corresponding, on average, to 105 collisions
per particle.

For T/N in an interval that depends on w′, and for small w

and w′, an inhomogeneous phase is observed together with
a stationary net current flowing in the circuit. In particu-
lar, Fig. 2 shows that for w′ below a certain critical value,
three different regimes are produced by variations of T/N ,
corresponding to two nonequilibrium phase transitions. The
agreement between the theoretical solid white lines and the

1The direction of the inward normal at the junction points between
the urns and the channels depends on the origin of the colliding
particle. Namely, a junction point is considered as belonging to the
urn or to the channel if the incoming particle is originally located,
respectively, in the urn or in the channel.

numerical results is imperfect because our theoretical calcu-
lations rely on probabilistic arguments, which are justified by
the ergodic hypothesis, in the large N and small w,w′ limits.
Hence, the theory better describes the simulations if N grows.
In Ref. [21] where only the first channel is present, the growth
of N produces only one interface between homogeneous and
inhomogeneous phases, which occurs at a specific T/N value,
for fixed geometrical parameters. The second channel results,
instead, in a more complex phenomenology, because the free
motion of particles passing through it tends to equilibrate N1

and N2. Therefore, two contrasting mechanisms are at work,
and their interplay, between w′ and T/N in particular, deter-
mines the steady state.

In fact, higher T/N values make the bounce-back mecha-
nism less likely, hence particles flow more easily through the
first channel, while lower values make particles more likely to
bounce back. Flow through the second channel decreases or
increases when w′ does.

Figure 3 shows how two different phase transitions can be
encountered. For T = 2 [Fig. 3(a)], we are in the left region
of Fig. 2. Here a homogeneous phase arises, because in the
first channel particles frequently bounce back, making left
and right flows vanish, but N1 and N2 equalize due to the
second channel. For T = 18 [Fig. 3(c)], in the region to the
right of Fig. 2, the first channel allows particles to flow almost
freely, with a 0 net current, while just a few particles cross
the second channel because much smaller than the first: w′ =
w/30. For T = 7 Fig. 3(b)], we fall in the center of Fig. 2,
where an inhomogeneous state, characterized by N1 �= N2 and
by a stationary net current, persists longer than our simu-
lations. The reason is that the bounce-back phenomenon is
only partly mitigated by the flow through the second channel.
As the net current in the first channel flows uphill, i.e., against
the population gradient, and downhill in the second channel,
the first channel acts like an emf. The numerical results il-
lustrated in Fig. 3 agree with excellent numerical accuracy
with the theoretical prediction (black dashed lines) discussed
in Sec. III. Stationary uphill currents in presence of a nonequi-
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librium phase transition have been previously observed for
stochastic dynamics in Refs. [18,19,30]; an analogous behav-
ior has also been identified in Ref. [31] for locally perturbed
zero-range processes. In these cases, uphill currents stem ei-
ther from a local inhomogeneity in the jump rates or from the
nonequilibrium coupling of the bulk dynamics with external
reservoirs, which breaks detailed balance. Our deterministic
conservative dynamics accounts, instead, for the work done
by the bounce-back mechanism. This phenomenology can be
understood introducing a variation of the probabilistic model
of Ref. [21], which agrees with our deterministic dynamics in
the large N and small w,w′ limits. Details can be found in the
Appendix.

III. THEORETICAL DERIVATION

Using the uniformity of the distribution of the particles and
of their velocities, one first obtains that the number of particles
in urn 1, say, entering channel 1 (or channel 2) per unit time
is given by N1wv/(πA) [or by N1w

′v/(πA)], where

A = πr2 − r2 arcsin
w

2r
+ 1

4
w

√
(2r)2 − w2

−r2 arcsin
w′

2r
+ 1

4
w′√(2r)2 − w′2. (3)

The number of particles leaving urn 1 and successfully cross-
ing the first channel, per unit time, is then reduced by the
bounce-back mechanism to

N1
wv

πA

�[T, N1w�/(4A)]

(T − 1)!
, (4)

where �[y, x] = ∫ ∞
x t y−1e−s ds , y > 0, is the Euler incom-

plete � function. Thus, in the probabilistic model, the number
of particles leaving urn 1 per unit time, and reaching urn 2,
minus those going from urn 2 to urn 1 is given by

η = N1v

πA

[
w

�[T, λ1]

(T − 1)!
+ w′

]
− N2v

πA

[
w

�[T, λ2]

(T − 1)!
+ w′

]
, (5)

where λi = Niw�/(4A), for i = 1, 2. Correspondingly, a
steady state implies η = 0, an equation that can be solved for
N2. From Eq. (2) it is immediately seen that the condition of
stationarity amounts to the equality between the net current
flowing uphill in the first channel and the net current flowing
downhill in the second channel, as in a circuit. Inspection
shows that N2 = N/2 is a solution of η = 0 and that, for
certain parameter values, η changes sign in intervals not con-
taining N/2. Given its continuity, in those cases in which η

has more than one zero in [N/2, N], one may ask which of
the steady states of the probabilistic model is stable. Given
the smoothness of η, the linear stability is given by the sign of
(∂η/∂N2): if positive the steady state is unstable, if negative it
is stable. The points at which this derivative vanishes delimit
the domains of stability of different steady states; hence, as a
definition of the theoretical transition line, we shall consider
the locus of points such that

∂η

∂N2

∣∣∣∣
N2=N/2

= 0. (6)

In other words, we collect the points where the homogeneous
solution of the equation η = 0 becomes unstable.

FIG. 4. Mass spread with the same values of the parameters
and of the threshold considered in Fig. 3: Homogeneous and in-
homogeneous states are both stable (blue curve, T = 2), only the
inhomogeneous state is stable (red curve, T = 7), and only the
homogeneous state is stable (black curve, T = 18). The dotted and
dashed lines indicate the theoretical values of the mass spread for the
inhomogeneous states at T = 2 and T = 7, respectively. The initial
datum is such that χ (0) = 1.

The stability criterion based on the derivative of η is il-
lustrated in Fig. 3. The inset in Fig. 3(a) shows two stable
steady states for the probabilistic model, but only the homo-
geneous one is actually observed in the simulations. This is
in accord with the initial condition being homogeneous. Pos-
sible departures from this state, with N = 103, are expected
to be extremely rare. Figure 3(c) illustrates a case in which
the homogeneous state is stable, is the only steady state for
the probabilistic model, and is reached with the deterministic
dynamics. In Fig. 3(b) the homogeneous state is unstable for
the probabilistic model and is not observed in the simulations,
despite initially N1 = N2. While this shows that the probabilis-
tic model describes quite well the currents in the deterministic
dynamics, Fig. 4 shows that some difference remains at finite
N . In particular it reports the behavior of the mass spread, for
the same values of the parameters and of the threshold con-
sidered in Fig. 3, with an initial datum yielding χ (0) = 1. The
red line shows the convergence to an inhomogeneous steady
state, also evidenced in Fig. 3(b). The black line shows the
establishment of a stable homogeneous state [see Fig. 3(c)], in
which the mass spread rapidly drops down around 0. Finally,
the blue line illustrates the case, highlighted in Fig. 3(a), in
which a homogeneous state and one inhomogeneous states are
both stable for the probabilistic model. Starting at χ (0) = 1,
the deterministic dynamics converges toward and lingers over
the inhomogeneous steady state, but then it moves away, even-
tually converging to the homogeneous state. Therefore, for our
finite N , the lifetime of the inhomogeneous state is short, and
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FIG. 5. Net currents as a function of T/N (left panel) and of χ (right panel) for N = 103, w = 0.3, r = � = �′ = 1, w′ = 0.0102 (circles),
0.0204 (squares), 0.0306 (triangles), and 0.0612 (diamonds). The dashed lines correspond to the stable solutions of η = 0; see Eq. (5).

that of the homogeneous state is very long. That is why the
latter looks globally attracting for the deterministic dynamics.

In the left panel of Fig. 5, a horizontal slice of Fig. 2, net
currents are plotted as functions of T/N for fixed w′. Theo-
retical predictions and data from simulations are compared,
which reveals that for small values of w′ the match is good
already at N = 103. The right panel of Fig. 5 highlights the
battery phenomenon, with the first channel generating the
emf. The resulting net current, at fixed w′, is linear with
the mass spread χ , and its slope increases with w′, closely
following the theoretical prediction. The linearity is better
realized for smaller w′, consistently with the conditions for
the applicability of the probabilistic model to the deterministic
dynamics.

IV. CONCLUSIONS

We considered a deterministic conservative reversible par-
ticle system undergoing a nonequilibrium phase transition,
induced by a bounce-back mechanism in one of the chan-
nels. Numerical simulations of the deterministic dynamics
reveal the existence of a rich phase diagram in the plane
w′-T/N , which includes states with stationary density gradi-
ents and stationary currents. Remarkably, the relation between
the mass spread and the net current turns out to be linear
for small values of w′, in agreement with the basic tenets
of ohmic transport [[32], Chapter 4]. The numerical simu-
lations of the deterministic dynamics are also supported by
a theoretical analysis based on probabilistic arguments. The
match between numerical and analytical results, which strictly
requires the N → ∞ and w′ → 0 limits, is strikingly good
even for moderately large N and moderately small values of
w′. Interestingly, the regime in which the probabilistic model
may be meaningfully applied to the deterministic dynam-
ics is relatively easy to achieve in practice. Some relevant
open questions still lie ahead; one, in particular, concerns the
existence of phase transitions and stationary currents when
considering different geometries of the channels and/or of the
cavities, or by adding long-range particle interactions. Further
challenging mathematical questions concern the investigation
of the thermodynamic limit of our model, the relaxation of the

particle system toward a nonequilibrium steady state, which
could even exhibit anomalous behavior [33], and applications
to the modeling of physical and chemical kinetics.

ACKNOWLEDGMENTS

E.N.M.C. and M.C. thank Karlstad University for its kind
hospitality. O.R. is grateful to the Sapienza Università di
Roma and the University of L’Aquila for their kind hospi-
tality and thankfully acknowledges partial financial support
of the GS Magnussons fond. L.R. has been partially sup-
ported by Ministero dell’Istruzione, dell’Università e della
Ricerca (MIUR) Grant No. E11G18000350001 “Dipartimenti
di Eccellenza 2018-2022.” The authors are grateful to the
Laboratorio di Calcolo of the Dipartimento di Scienze di Base
e Applicate per l’Ingegneria, Sapienza Università di Roma.

APPENDIX: PROBABILISTIC DERIVATION
OF STATIONARY CURRENTS

A geometrical argument shows that given n particles uni-
formly distributed in an urn of area A, having fixed speed
v and such that the direction of their velocities is uniformly

FIG. 6. The billiard table considered in the numerical simulations.
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FIG. 7. Stationary currents as functions of T/N , with N = 500 and N = 1000 (left and right panel, respectively), for r = � = 1, and
w = 0.1 (squares), 0.2 (circles), and 0.3 (triangles), numerically obtained from the simulation of the deterministic dynamics. Dotted and
dashed lines correspond to the theoretical values of the current with N = 500 and N = 1000, respectively, obtained from Eq. (A4).

distributed on [0, 2π ], the typical number of particles that, in
a small time interval of length δ > 0, leave the urn and enter
a gate of width w and length �/2 is given by

2
( n

2πA

)
w

∫ vδ

0
arccos

(
1 − x

vδ

)
dx = n

wvδ

πA
. (A1)

We call pδ = wvδ/(πA) the probability that one particle in the
urn enters the gate in the time interval δ and call τ = �π/(4v)
the typical time needed for a particle to cross it. We then
introduce a partition of the time interval τ into segments of
length δ.

The probability that s particles enter the gate in the time τ

obeys, in the δ → 0 limit, the Poisson distribution

λs

s!
e−λ with λ = n

w�

4A
, (A2)

where n is assumed to be so large not to be sensibly affected
by the number of particles entering the gate. Therefore, the
probability that at most T particles enter the gate in the time

interval τ reads

Pτ =
T∑

s=0

λs

s!
e−λ = �(T + 1, λ)

T !
, (A3)

where �[y, x] = ∫ ∞
x t y−1e−s ds , y > 0 , is the Euler incom-

plete � function.
We now consider a larger timescale of order t and introduce

a coarser partition of the latter into segments of length τ . We
have that Pτ t/τ corresponds to the typical number of events
such that, in each time interval τ , there are at most T particles
in the gate. On the other hand, the typical number of particles
entering the gate in the time τ , conditioned to the fact that their
number be at most T , is equal to λT �(T, λ)/�(T + 1, λ).
Hence, we find that

λ

τ

�(T, λ)

(T − 1)!
t = n

wv

πA

�(T, λ)

(T − 1)!
t (A4)

FIG. 8. Difference between the theoretical and the numerical values of the currents, divided by the corresponding theoretical values, as a
function of T/N with N = 500 and N = 1000 (left and right panel, respectively), with the same values of the parameters of Fig. 7.
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FIG. 9. Stationary currents, rescaled by N , as functions of T/N ,
with N = 500 and N = 1000 (open and and filled symbols, respec-
tively), with the same values of the parameters of Fig. 7. Dotted
and dashed lines correspond to the theoretical values of the current
rescaled by N , with N = 500 and N = 1000, respectively.

yields the typical number of particles that, up to time t , suc-
cessfully exit the gate without being bounced back by the
threshold mechanism [21].

In order to validate the theoretical derivation of the cur-
rents, based on these probabilistic arguments, we numerically
implemented a deterministic dynamics similar to the one used
in the paper. We considered a billiard table made of a single
urn and a semichannel, whose right vertical boundary is an
elastically reflecting wall; see Fig. 6. Inside the semichannel,
a bounce-back mechanism works as described in the paper.
Positions and velocities of the n particles are initially taken at
random, inside the urn, with uniform distribution.

Such dynamics guarantees that the number of particles in
the urn is approximately constant, as it equals n minus the
(fluctuating) number of particles in the semichannel. This,
hence, permits a direct check of Eq. (A4).

The stationary current departing from the urn is defined as
the long time limit of the ratio of the number of collisions
against the right vertical boundary of the semichannel to the
elapsed time [29].

Figure 7 shows, in particular, the comparison between
the theoretical expression of the current, from Eq. (A4), and
the numerical values of the stationary current obtained from
the simulation of the deterministic dynamics. The discrepancy
between the theoretical and the numerical values of the current
is highlighted in Fig. 8. As visible from Figs. 7 and 8, the
agreement between theory and simulations improves for de-
creasing values of w and for growing values of T/N : namely,
when the ergodicity of the billiard dynamics is restored.

Finally, Fig. 9 highlights the behavior of the specific cur-
rent, i.e., the stationary current divided by N , for different
values of N .
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