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Thermodynamic nonlinear response relation
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The fluctuation-dissipation theorem connects equilibrium to mildly (linearly) perturbed situations in a thermo-
dynamic manner: It involves the observable of interest and the entropy production caused by the perturbation. We
derive a relation which connects responses of arbitrary order in perturbation strength to correlations of entropy
production of lower order, thereby extending the fluctuation-dissipation theorem to cases far from equilibrium
in a thermodynamic way. The relation is validated and studied for a four-state model which is coarse-grained to
a non-Markovian two-state model.
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I. INTRODUCTION

The theoretical footing of nonequilibrium states remains
a fundamental challenge, despite important progress, e.g.,
given by fluctuation theorems and work relations [1–4].
When aiming at the nonequilibrium responses, the powerful
fluctuation-dissipation theorem (FDT) provides the leading
order. It states that measurements of thermodynamic fluctua-
tions in the unperturbed equilibrium system predict behaviors
of the perturbed one in linear order [5–9]. With stronger per-
turbations, it fails, making it necessary to consider nonlinear
responses, which have been addressed by the response for-
mula from Kawasaki [10], transient time correlation functions
[11–13], equilibrium correlations deduced for specific sys-
tems [14–18], as well as by generic approaches using operator
formalisms [8,19] and path integrals [20–23].

An important observation is that the nonlinear responses
are of fundamentally different nature as compared to FDT:
Already at second order, dynamical details of the system enter
[21]. Determining and measuring theses dynamical details in
the considered system, such as (interaction) potentials, hin-
ders application of the mentioned approaches to macroscopic
systems with many degrees of freedom [24]. The thermody-
namic nature is thus lost in higher orders, causing the notion
of a theorem to stop at first order.

We derive a formula for nonlinear responses to arbitrary
order, which is distinct from known relations by its thermo-
dynamic appearance. It consists of correlations of the entropy
and the observable of interest. These are taken out of equi-
librium as well, but one order lower than the response. For
the linear response, one order lower is equilibrium, so that
the derived relation extends the FDT to far from equilibrium
scenarios in a natural manner. We demonstrate this formula for
a non-Markovian jump process by calculating the responses
for time independent as well as time dependent perturbation
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up to third order. We also investigate statistical convergence
for the examples provided.

II. DERIVATION OF THE RESPONSE FORMULA

Consider a classical system in weak contact with a thermal
bath, described by a phase space xs at time s. It is driven out
of equilibrium by an additional time dependent term H1 in the
Hamiltonian, of the form

H1(xs, s) = εh(s)V (xs). (1)

V (xs) is a potential, ε is a dimensionless expansion parameter
setting the strength of the perturbation, and h(s) is the per-
turbation protocol of order unity, being finite for 0 � s � t .
Using perturbations of potential type eases the presentation,
and we will comment on other types later in the paper.

We continue by reviewing the standard approach via path
integrals [20,21,25,26] to arrive at Eq. (5) below. The path
weight Pε(ω) for a path ω = (xs), which describes the phase
space configurations xs of the system on the time inter-
val [0, t], enables the computation of the expectation value
〈O(xt )〉ε of a state observable O(xt ) via the path integral

〈O(xt )〉ε =
∫

DωO(xt )P
ε(ω). (2)

Pε(ω) = e−Aε (ω)P(ω) is split into a part comprising the per-
turbation via the nonequilibrium action Aε(ω) [20,21,25,26]
and the equilibrium path weight P(ω). The latter satis-
fies time-reversibility P(ω) = P(Θω). The sequence Θω =
(πxt−s), 0 � s � t , represents the time-reversed path where
the operator π reverses the sign of kinematic components.
Out of equilibrium, time-reversal symmetry is broken and
Pε(ω) does not equal its time-reversed counterpart. When
speaking of time-reversal, also the protocol h(s) is reversed
[23,26], and the corresponding path weights are denoted by
tilde superscripts, P̃ε(Θω) = e−Ãε (Θω)P(Θω). The breaking
of time-reversibility is quantified by the entropy flux Sε(ω)
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towards the environment [20,21,25–28]

Sε(ω) = Ãε(Θω) − Aε(ω)

= εβ

[
h(t )V (xt ) − h(0)V (x0) −

∫ t

0
ḣ(s)V (xs)ds

]
,

(3)

where β = (kbT )−1 with T the temperature and kB the Boltz-
mann constant. The thermodynamic role of the entropy flux
Sε(ω) becomes clear by the explicit form given in the sec-
ond line: It contains no system-specific information, and
can be written down without specifying the system under
consideration.

This time-antisymmetric part of Aε(ω) is complemented
by the time-symmetric part Dε(ω) = 1

2 [Ãε(Θω) + Aε(ω)]
[20,21,25–28]. In contrast to Sε(ω), Dε(ω) has no thermo-
dynamic interpretation. A general form such as the lower
line of Eq. (3) is not known, but has been given for spe-
cific systems [20,21,26]. To proceed, we assume that Aε(ω)
and Ãε(Θω) can be expanded around ε = 0, i.e., Dε(ω) =
εD′(ω) + ε2D′′(ω)/2 + . . . and Sε(ω) = εS′(ω), compared to
Eq. (3) [21]. It has proven useful to define the expectation
value of O(xt ) under time-reversed dynamics [21,23]

〈O(xt )Θ〉ε =
∫

O(xt )P̃
ε(Θω)Dω = 〈O(xt )〉 = 〈O(x)〉, (4)

where 〈O(x)〉 = ∫
O(x)P(ω)Dω is the equilibrium expecta-

tion value of the state observable. The equality in Eq. (4)
can be derived via time-reversal relations [21,23]. Subtracting
Eq. (4) from Eq. (2) and expanding in powers of ε gives

〈O(xt )〉ε =〈O(x)〉 +
∞∑

n=0

εn

n!

〈
dn

dεn

(
e−Dε (ω)+ ε

2 S′(ω)

− e−Dε (ω)− ε
2 S′(ω)

)∣∣∣∣
ε=0

O(xt )

〉
. (5)

Executing the derivatives and expanding Eq. (5) in ε results
in the known expression of the responses via equilibrium
correlations [20,21]. In linear order of ε, Dε(ω) drops out,
yielding the FDT. As mentioned, already the second order
term involves Dε(ω), as do higher orders, implying that non-
linear responses are not of thermodynamic nature; while this
statement is of principal interest, it makes determination of the
nonlinear responses challenging and laborious, particularly
for complex systems [20,21,23,24,29]. To make progress, we
use an identity based on the Leibniz rule [30],

dn

dεn
e−Dε (ω)± ε

2 S′(ω)

∣∣∣∣
ε=0

=
n∑

i=0

(
n

i

)
dn−i

dεn−i
e−Dε (ω)

∣∣∣∣
ε=0

(
±S′(ω)

2

)i

(6)

with the binomial coefficient
(n

i

)
. Plugging the identity of

Eq. (6) into Eq. (5), substituting e−Dε (ω) = e−Aε (ω)− ε
2 S′(ω) and

using the identity once more [with Dε(ω) replaced by Aε(ω)]

yields

〈O(xt )〉ε = 〈O(x)〉 + 2
∞∑

n=1

1

n!
εn

n∑
i=1, odd

(
n

i

) n−i∑
j=0

(
n − i

j

)

× (−1) j dn−i− j

dεn−i− j

〈(
S′(ω)

2

)i+ j

O(xt )

〉ε
∣∣∣∣∣
ε=0

. (7)

As required, the sum contains no term n = 0.
Equation (7), hereafter referred to as thermodynamic re-

sponse relation (TRR), is the main result of this paper. It
relates the mean of the observable far from equilibrium on the
left hand side to correlation functions involving entropy on the
right hand side. Its thermodynamic meaning is thus displayed
with Eq. (3). It is insightful to regard the first orders in ε

from Eq. (7) explicitly, mirroring the responses χn of order
n (〈O(xt )〉ε = 〈O(x)〉 + χ1ε + χ2ε

2 . . . ),

χTRR
1 (t ) = 〈S′(ω)O(xt )〉,

χTRR
2 (t ) = d

dε
〈S′(ω)O(xt )〉ε

∣∣∣∣
ε=0

− 1

2
〈S′(ω)2O(xt )〉,

χTRR
3 (t ) = 1

2

d2

dε2
〈S′(ω)O(xt )〉ε

∣∣∣∣
ε=0

− 1

2

d

dε
〈S′(ω)2O(xt )〉ε

∣∣∣∣
ε=0

+ 1

6
〈S′(ω)3O(xt )〉.

(8)

The linear response, i.e., the first line in Eq. (8), resembles
FDT. Higher order responses contain higher order correla-
tions of S′(ω), and also derivatives of these correlations with
respect to ε, so that the right hand side of Eq. (7) requires
measurements under applied perturbation. Notably, the nth
order response is related to correlation functions up to order
n − 1. We thus interpret the TRR in Eq. (7) as follows: Even
far from equilibrium, thermodynamics allows to predict one
order in perturbation strength—this new insight contains FDT
as a special case, connecting equilibrium to linear order.

III. DISCUSSION IN A COARSE-GRAINED
FOUR-STATE MODEL

We illustrate and examine the TRR of Eq. (7) in a simple
model, where four states A, B,C, D are connected via dimen-
sionless transition rates as depicted in Fig. 1. The system’s
dynamics follows a simple master equation. For illustration

FIG. 1. Sketch of the four-state model. The rates r within the
macrostates 0 and 1 are chosen to be small (r = 0.1), so that the
resulting two state model is strongly non-Markovian [22]. The tran-
sition rate rε (s) equals unity for s < 0 and follows a perturbation
protocol for s � 0.
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purposes, we pretend to be blind to microscopic details by
coarse graining: Let states A and B form macrostate X = 0,
and C and D macrostate X = 1 [22]. The resulting two state
system is Markovian for large values of r and non-Markovian
if r is small. We choose r = 0.1 to achieve the latter. This
model thus allows to discuss the case of hidden degrees of
freedom [31]. As it can also be solved analytically, it makes a
good test case for our purposes [22,23].

Treating the so obtained setup via response theory is chal-
lenging, due to the presence of the mentioned hidden degrees
of freedom: Eq. (5) is not applicable, as evaluation of Dε(ω)
requires microscopic resolution [26]. This example allows to
illustrate the thermodynamic type of Eq. (7): It is applicable
despite presence of hidden degrees of freedom.

The system is in equilibrium for s < 0 and perturbed for
s � 0 by making the transition rate which connects macrostate
0 to macrostate 1 a function of the dimensionless time s
via the protocol h(s), i.e., rε(s) = eεh(s). This perturbation
corresponds to Eq. (1) with a dimensionless potential V (Xs)
with V (0) = 0 and V (1) = 1 [22,23]. The entropy production
Sε (ω) in Eq. (3) depends on Xs, so that Eq. (7) acts in the space
of macrostates, and its thermodynamic nature is apparent.
Once on that level, the ‘internal’ nature of the macrostates is
not relevant concerning validity of Eq. (7), as required from a
thermodynamic relation.

We start with a time independent perturbation (TIP),
i.e., h(s) = 1, s � 0, so that Eq. (3) simplifies to S′(ω) =
V (Xt ) − V (X0) (β = 1 here and in the following). Further-
more, we choose O(Xt ) = Xt . We evaluate the responses up
to third order, using computer simulations of the master
equation, and applying Eq. (8). The derivatives with respect
to ε appearing in Eq. (8) are calculated via central differ-
encing, i.e., d

dε
〈· · · 〉ε|ε=0 = limε→0

〈··· 〉ε−〈··· 〉−ε

2ε
for first order,

d2

dε2 〈· · · 〉ε|ε=0 = limε→0
〈··· 〉ε−2〈··· 〉+〈··· 〉−ε

ε2 for second order and
so on.1 This requires a choice of ε. The results for χTRR

2 and
χTRR

3 are shown in Fig. 2 as red data points using ε = 0.1 and
a simulation time step of 	t = 0.001. In that curve, we also
show the exact results χa

2 , χa
3 , which can be found analyti-

cally.2 χ2 raises to a maximum at around t ≈ 0.5, and then
goes to zero for t → ∞, for reasons of symmetry. This final
decay is slow due to the internal rate r being small. χ3 exhibits
a similar behavior, but levels off to a finite static response
at t → ∞. Figure 2 demonstrates the validity of Eq. (7) for
the given model, and that model also allows to test practical
aspects, such as the convergence of Eq. (7) in the statistical
sense. For χ2 and χ3, we provide two panels each with dif-
ferent number N of independent computer ‘measurements’.
While the main graphs supply a qualitative impression, insets
of the left panels give the averaged relative deviation, i.e., the
time average of the ratio |[χn(t ) − χa

n (t )]/χa
n (t )|. The panels

show the decay of this relative error with 1/
√

N , as expected.
The insets in the right panels display this relative error for
a fixed N = 1010, as a function of ε used in the mentioned

1The third order is given by d3

dε3 〈...〉ε|ε=0 =
limε→0

〈...〉2ε−2〈...〉ε+2〈...〉−ε−〈...〉−2ε

2ε3 .
2See Appendix for more details regarding the analytical expres-

sions in the coarse-grained four-state model.

FIG. 2. Second (top) and third (bottom) order responses of the
four-state model for the TIP, as functions of time t , found analytically
or via simulations using Eq. (7) (TRR), or the conventional method.
The number of independent measurements is denoted N . Insets de-
pict the relative statistical error as a function of N (left) for ε = 0.1
and as a function of ε (right) for N = 1010.

central differencing. The curves reveal a minimum: For large
values of ε, Eq. (7) acquires a systematic error, while, for
ε → 0 and a fixed N , the statistical error diverges.

The statistical quality of results obtained via Eq. (7) can be
compared to the outcome of conventional response measure-
ments, for which the responses χ conv

n of nth order are obtained
from perturbed data as [22,29]

χ conv
n (t ) = 1

n!

dn

dεn
〈Xt 〉ε

∣∣∣∣
ε=0

. (9)

One difference between evaluating Eqs. (7) and (9) is already
evident from the method of central differencing: The higher
the order n, the more different experimental or simulation
setups have to be used (e.g., two, i.e., +ε and −ε for χ conv

1 ).
The TRR, Eq. (7) thus, for odd orders, requires a smaller
number of different setups [one versus two for χ1 (FDT), two
versus two for χ2, three versus four for χ3].

The results of the conventional method are displayed in
Fig. 2 as blue data points. When comparing the two for-
malisms, we note similar behavior of the relative error (insets),
but the scaling for ε → 0 is different, with power laws that are
advantageous for the TRR. The smaller the value of ε, i.e., the
smaller a systematic error is sought, the better is the TRR in
comparison to the conventional method.

We continue by investigation of a time dependent per-
turbation (TDP) of the form h(s) = sin(ω0s), where ω0 = π

is chosen. Analogously to the above, second and third or-
der responses are calculated, analytically2, via the TRR in
Eq. (8) and the conventional method in Eq. (9), here using
	t = 0.005 and ε = 0.2 for simulations. Figure 3 presents the
resulting curves, again demonstrating the validity of Eq. (7).
Furthermore, as for TIP, we show the relative error as a
function of N for the two methods. Both scale as 1/

√
N as

before, with the error of TRR being again smaller for the given
value of ε. We also show a close up view of the short time
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FIG. 3. Second (top) and third (bottom) order responses for a
sinusoidal perturbation as functions of time t . Responses are com-
puted analytically, or found by simulations via Eq. (7) (TRR) or
via the conventional method. N gives the number of independent
measurements. Left insets present a closer view of the short time
behavior. Right insets show the relative error as a function of N for
ε = 0.2.

behavior, which discloses a fundamental difference. For t →
0, the responses vanish. While the error of the conventional
method stays finite for any t , the relative error diverges for
t → 0. For this reason, we excluded times t � 0.1 when com-
puting the time averaged relative deviation depicted in the
other insets. In contrast, the TRR appears to be much more
precise at short times, because S′(ω) naturally approaches
zero leading to vanishing χTRR

n . While qualitatively advan-
tageous for short times, one may expect the TRR to deviate
stronger for very large t (larger than shown here), as the
error may add up in the time integrals in S′(ω). This will be
investigated in future work.

IV. SUMMARY

A thermodynamic nonlinear response relation connects
responses to time correlation functions at arbitrary order of
perturbation strength. With it, thermodynamics allows to pre-
dict one order in perturbation strength, a statement, which
encloses the FDT at lowest order. Although we restricted
the derivation of Eq. (8) to perturbations by a potential,
Eq. (7) is also applicable for nonconservative perturbation
forces, as long as Sε is linear in ε, which is a typical case.
Analyzing this relation for a coarse-grained four-state model
displays similarities but also fundamental differences in the
scaling of the statistical error compared to the conventional
method. Especially for small value of perturbation strength,
the new formula converges faster compared to the conven-
tional method. Future work will address possible extension
to perturbations around nonequilibrium steady states.
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APPENDIX: ANALYTICAL CALCULATION OF THE
RESPONSES IN THE COARSE-GRAINED

FOUR-STATE MODEL

Here, we detail, how the responses of the coarse-grained
four-state model to the time independent perturbation and to
the sinusoidal perturbation are analytically calculated and give
the exact expressions for the second and third order response
for these perturbations. The time evolution of the probability
distributions of the four states ρi(t ), i ∈ {A, B,C, D} is given
by the master equation involving the generator matrix [22,23]

M =

⎛
⎜⎝

−r r 0 0
r −r − rε (s) rε (s) 0
0 1 −r − 1 r
0 0 r −r

⎞
⎟⎠. (A1)

The initial condition is that the system is in equilibrium at
t = 0 which corresponds to the distribution ρi(0) = 1/4, i ∈
{A, B,C, D}. The expectation value of the observable O(Xt ) =
Xt on the coarse-grained level is computed by 〈Xt 〉ε = ρC (t ) +
ρD(t ) [22].

The master equation can be explicitly solved for the time
independent perturbation. The second and third order re-
sponses can be calculated by the derivatives in Eq. (8) in
the main text (for brevity, we provide all explicit forms for
r = 0.1):

χa
2 (t ) = 1

81608
e−1.1t [

√
101(100 − 909t ) sinh(

√
1.01t )

+ 9191t cosh(
√

1.01t )] (A2)

and

χa
3 (t ) = 1

197817792
e−(

√
1.01+1.1)t (−303t[(1819

√
101

+ 18281)t − 4(507
√

101 + 5093)] − 4121204

× e(
√

1.01+1.1)t + e2
√

1.01t {303t[(1819
√

101

− 18281)t − 2028
√

101 + 20372] + 21302
√

101

+ 2060602} − 21302
√

101 + 2060602). (A3)

For the sinusoidal perturbation, the master equation cannot
be explicitly solved. Therefore, the responses are determined
by expanding the formal solution, which is a time-ordered ex-
ponential, in terms of ε resulting in a Dyson series [23]. When
executing the obtained integrals, the following expressions for
the second and third order are obtained:

χa
2 (t ) = −[1616(101 + 25π2)(1 + 111π2 + 25π4)(1 + 444π2 + 400π4)]−1e−(3

√
1.01+1.1)t (−101π (101 + 25π2)

× e(3
√

1.01+1.1)t [(1 + 178π2 + 8500π4 − 5000π6) sin(2πt ) − 3π (6 + 675π2 + 5000π4) cos(2πt ) + π (6 + 25π2)
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× (1 + 444π2 + 400π4)] + 2
√

101e3
√

1.01t sinh(
√

1.01t ){(1 + 444π2 + 400π4)[275π (1 + 5π2) sin(πt ) + 2(202

+ 23975π2 + 6250π4) cos(πt )] + 2(1 + 111π2 + 25π4)(−202 − 94194π2 − 52625π4 + 2500π6)} + 202e3
√

1.01t

× cosh(
√

1.01t ){2(1 + 111π2 + 25π4)(23 + 9756π2 + 8625π4 + 2500π6) − (1 + 444π2 + 400π4)[25π (5π2 − 1)

× sin(πt ) + 2(23 + 2400π2 + 625π4) cos(πt )]}) (A4)

and

χa
3 (t ) = [1958592π (101 + 25π2)2(101 + 100π2)(1 + 111π2 + 25π4)2(1 + 444π2 + 400π4)(1 + 999π2 + 2025π4)]−1

× e−(3
√

1.01+2.2)t (−303e(3
√

1.01+1.1)t (1 + 444π2 + 400π4) cosh(
√

1.01t ){ − 101[25π8(625π4{50π2[75π2

× (26407 + 2400π2) + 12370777] + 2900081621} + 4621856501725π2 + 4476537956287) + 33729449681951π6

+ 619396582987π4 + 3215953221π2 + 2631858 ] + 2π2(101 + 25π2)(101 + 100π2)(1 + 111π2 + 25π4)

× (1 + 999π2 + 2025π4)(4366 + 484550π2 + 119375π4)t − 101(101 + 25π2)(1 + 111π2 + 25π4)(1 + 999π2

+ 2025π4){[25π2(38929 + 48940π2 + 9750π4) + 8686] cos(2πt ) + π [25π2(21576 + 25575π2 + 5000π4)

+ 4816] sin(2πt )}} + 101(101 + 100π2)[909e(3
√

1.01+2.2)tπ2(1 + 111π2 + 25π4)[25π6(−185551 − 497900π2

+ 60000π4) − 150379π4 − 1209π2 − 2] cos(3πt )(101 + 25π2)2 − 101e(3
√

1.01+2.2)tπ (1 + 111π2 + 25π4)[50π6

× (−453291 − 761675π2 + 1395000π4) − 301283π4 − 1011π2 − 1] sin(3πt )(101 + 25π2)2 − 3(1 + 999π2

+ 2025π4){−101e(3
√

1.01+2.2)t (6 + 3403π2 + 320165π4 + 1919125π6 + 3312500π8)(101π + 25π3)2

− 2e(4
√

1.01+1.1)t (1 + 111π2 + 25π4)2[125000π8(9
√

101 − 101) + 202(432
√

101 − 4343) + 2500π6(4718
√

101

− 48177) + 707π2(54819
√

101 − 550981) + 100π4(381602
√

101 − 3840323)] + 2e(2
√

1.01+1.1)t (1 + 111π2

+ 25π4)2[125000π8(9
√

101 + 101) + 202(432
√

101 + 4343) + 2500π6(4718
√

101 + 48177) + 707π2

× (54819
√

101 + 550981) + 100π4(381602
√

101 + 3840323)]} cos(πt ) − 3(π + 999π3 + 2025π5)

× (−101e(3
√

1.01+2.2)t {50π6[625π2(−107 + 24π2) − 51011] − 77699π4 − 607π2 − 1}(101 + 25π2)2

− 50e(4
√

1.01+1.1)t (1 + 111π2 + 25π4)2[101(
√

101 − 9) + 10000π6
√

101 + 50π4(739
√

101 − 4949) + 18π2

× (2399
√

101 − 23331)] + 50e(2
√

1.01+1.1)t (1 + 111π2 + 25π4)2[10000π6
√

101 + 101(
√

101 + 9) + 50π4

× (739
√

101 + 4949) + 18π2(2399
√

101 + 23331)]) sin(πt )] + 3e(3
√

1.01+1.1)t (1 + 444π2 + 400π4){π2

× [−25π6(625π4{50π2[25π2(84528979 + 7435800π2) + 13601411543] + 3173994538649}
+ 4973852941113775π2 + 4751067447679093) − 35480872475621649π4 − 639468614663713π2 + 202(101

+ 25π2)(101 + 100π2)(1 + 111π2 + 25π4)(1 + 999π2 + 2025π4)(434 + 48200π2 + 11875π4)t

− 3263596534879] − 101(101 + 25π2)(1 + 111π2 + 25π4)(1 + 999π2 + 2025π4){[25π2(391061 + 488540π2

+ 97250π4) + 87264] cos(2πt ) + π [25π2(218854 + 256375π2 + 50000π4) + 48884]

× sin(2πt )} − 2670540192}
√

101 sinh(
√

1.01t )). (A5)
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