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Assortative clustering in a one-dimensional population with replication strategies
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In a geographically distributed population, assortative clustering plays an important role in evolution by
modifying local environments. To examine its effects in a linear habitat, we consider a one-dimensional grid
of cells, where each cell is either empty or occupied by an organism whose replication strategy is genetically
inherited to offspring. The strategy determines whether to have offspring in surrounding cells, as a function of the
neighborhood configuration. If more than one offspring compete for a cell, then they can be all exterminated due
to the cost of conflict depending on environmental conditions. We find that the system is more densely populated
in an unfavorable environment than in a favorable one because only the latter has to pay the cost of conflict. This
observation agrees reasonably well with a mean-field analysis which takes assortative clustering of strategies
into consideration. Our finding suggests a possibility of intrinsic nonlinearity between environmental conditions
and population density when an evolutionary process is involved.
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I. INTRODUCTION

“Space exists so that everything doesn’t happen to you,”
says Susan Sontag. Spatiality often means being exempt from
interacting with all others: One may be surrounded by more
favorable neighbors than the average or the opposite, when the
spatial configuration is nonuniform. If the local environments
experienced by individuals differ from place to place, then
it implies different selection pressure in terms of evolution,
which can shape the local environments even more differently.
If such a feedback loop forms, then individuals can break
away from the evolutionary path that would have been fol-
lowed in a well-mixed population. For this reason, the roles
of spatiality in evolution have been studied extensively in the
literature [1–5].

To be more specific, let us consider a model of cellular
automata, one of the simplest models of life in spatial di-
mensions, yet with the possibility of genuine complexity in
its behavior [6–12]. In a cellular-automata model, the space is
divided into discrete cells, and the cells can be occupied by
“organisms” that replicate themselves according to mechanis-
tic laws. To put such a model into an evolutionary context, we
would like to point out the following: The replication process
would generate different copies with small errors in practice,
and each of the different copies would also have different
efficiency in replicating itself. In other words, they must be
subject to an evolutionary process of mutation and selection.

In this work, we will study evolution of such cellular or-
ganisms in silico by assigning a replication strategy to each
of them. The strategy is transmitted genetically to offspring,
and it has to compete with others in neighboring cells. This
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defines a game in the sense of game theory because an or-
ganism’s payoff, identified with the number of offspring, will
depend on its neighbors’ strategies as well as on its own.
An aggressive strategy would produce as many offspring as
possible, invading the territories of other strategies. Even if
it incurs extra cost of conflict and thus reduces the total size
of the population, it should have a higher chance to spread
than nonaggressive ones. If we regard the total population
growth as the collective interest of life, then it thus conflicts,
at least partially, with individual interests of the selfish genes
that encode replication strategies. However, a paradox of evo-
lution is that self-interested behavior is not always favored by
selection [13,14], provided that the dynamical rule permits
assortative clustering of players who conform to collective
interests [15–19]. This study will show that such an assor-
tative effect can be induced in a spatial game by a simple
mechanism, whereby defection from collective interests is
successfully suppressed. As a consequence, the mechanism
introduces nonlinearity in the relation between environmental
conditions and population density.

This work is organized as follows: In the next section, we
introduce our model. The Monte Carlo simulation result will
be presented in Sec. III. After explaining the observed behav-
ior with a mean-field approximation in Sec. IV, we conclude
this work in Sec. V.

II. MODEL

Let us consider a group of organisms living on a one-
dimensional grid with the periodic-boundary conditions to see
the assortative effect most clearly. In ecology, such a one-
dimensional structure describes a habitat constrained by linear
environmental features such as rivers or shorelines [20,21],
and it is also physically relevant to studying dynamic pro-
cesses in (1 + 1) dimensions [22,23]. Each grid cell is indexed
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by x, and its occupancy is denoted by nx: It can be either empty
with nx = 0 or occupied by one of the organisms with nx = 1.
Time t is also a discrete variable, under the assumption that
the organisms have nonoverlapping generations. The model
consists of two parts, i.e., replication and mutation.

In the replication process, every organism produces an off-
spring with the same strategy in its own cell. At the same time,
it may also produce offspring in neighboring cells. Therefore,
at the beginning of a new generation, the number of offspring
in a cell can sometimes be greater than 1. For example, let
us imagine that only two neighboring cells, x − 1 and x, are
occupied in an otherwise empty system by organisms with
strategies I and J , respectively. However, as implied by nx �
1, each cell can barely support a single adult: If the I-player at
x − 1 produces two offspring i and i′, one in its own cell and
the other in a neighboring cell x, then the latter will compete
with the J-player’s offspring j born in x. By assumption, they
all die with probability 1 − α, leaving the cell x empty, as a
result of exhausting competition. Here we have introduced a
parameter α between 0 and 1, which can be interpreted as
the favorability of the environment. With probability α, the
cell remains occupied, i.e., nx(t = 2) = 1, in which case we
randomly choose one between i′ and j as the survivor. If i′
is chosen, then it will have grown into an I-player at t = 2;
otherwise, we will have a J-player in x again. The above
explanation can be schematically represented as follows:

t = 2 I Ω

t = 1 I J

i i′ j

with

� =
⎧⎨
⎩

E with prob. 1 − α

I with prob. α/2
J with prob. α/2,

(1)

where E denotes that the cell is empty. Similarly, let us
imagine that the system starts with only three organisms,
which occupy three consecutive cells, x − 1, x, and x + 1,
and play strategies I , J , and K , respectively. If the I- and
K-players produce their offspring in the J-player’s cell x, then
the competition of the three will be more intense than the
above case of two competitors. We describe this situation by
assuming that the focal cell x becomes empty with probability
1 − α2, which is greater than 1 − α for α ∈ (0, 1). If the cell
remains occupied, i.e., nx(t = 2) = 1, then one of the three
competitors is chosen randomly as the survivor. This example
can thus be represented as follows:

t = 2 I Ω K

t = 1 I J K

i i′ j kk′

with

� =

⎧⎪⎪⎨
⎪⎪⎩

E with prob. 1 − α2

I with prob. α2/3
J with prob. α2/3
K with prob. α2/3

. (2)

When an organism exists in a cell x, we assume that its
replication strategy takes into account nx−1 and nx+1, that is,
the occupancy of neighboring cells. We thus have to distin-
guish four cases, denoted by νx ≡ 21 × nx−1 + 20 × nx+1, so
that νx can take a value from {0, 1, 2, 3}. This variable can
be conveniently represented in binary: If nx−1 = nx+1 = 1, for
example, then we can write νx = 11. Let bx→y be a binary
variable for the replication behavior which represents whether
the organism in x produces an offspring in y: If it does, then
bx→y = 1, and 0 otherwise. Note that bx→x = 1 because the
organism will always produce an offspring in its own cell.
Then the strategy of the organism in a cell x is determined by
its replication behavior βx ≡ 21 × bx→x−1 + 20 × bx→x+1 as a
function of νx ∈ {00, 01, 10, 11}. The replication behavior βx

can also be represented in binary, for example, βx(00) = 11 if
bx→x−1 = bx→x+1 = 1 for νx = 00. It means that the strategy
will produce offspring in both the neighboring cells when they
are empty. We now represent the strategy as an eight-digit
binary number by arranging βx(νx ) in descending order of νx

from 11 to 00. The most aggressive strategy will always pro-
duce offspring in the neighboring cells by assigning βx = 11
to all four νx’s. This strategy can thus be indexed as 11111111
in binary, which corresponds to 255 in decimal. Note that the
subscript x can actually be dropped in the above description
because the strategy itself has no dependence on the position.
As another example, the most inactive strategy should have
β = 00 for every ν ∈ {0, 1, 2, 3}, hence 00000000 = 0 as its
index, because it will never invade the neighboring cells.
Among 256 possible strategies between these two extremes,
Table I shows a nontrivial strategy that produces offspring
only in empty neighboring cells, whose index is calculated
as 27 in decimal. As will be shown by numerical simulation
below, this turns out to be one of the most important strategies
in our model.

In the presence of environmental noise, the strategic in-
formation may be lost in the course of replication. Thus, we
assume that an offspring’s strategy may change to an arbi-
trary one in the set of available strategies S ≡ {0, 1, . . . , 255}
with small mutation probability μ � 1. The mutation process
is also important from a computational point of view: We
will calculate time-averaged quantities from a Monte Carlo
method. This would not be justified without mutation because

TABLE I. Example of a replication strategy indexed as 27, which
produces offspring only in empty neighboring cells. Such behavior is
characterized by β = NOT ν, where NOT means logical negation on
each bit. As shown in the first line, we sort ν in descending order from
11 to 00, so the binary representation of this strategy is obtained as
00011011 (the second row), which corresponds to 27 in decimal.

Neighboring-cell occupancy ν 11 10 01 00
Replication behavior β for each ν 00 01 10 11
Strategy index 27
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FIG. 1. Evolution of a population which is initially composed of
strategies 27 (blue) and 255 (red). The horizontal axis represents
the spatial dimension under the periodic boundary conditions, and
the vertical axis represents time in units of generations. The initial
configuration is given at the bottom (t = 0). Between generations, we
have draw three small blocks for each cell to represent the offspring
produced in that cell. The environment is assumed to be extremely
unfavorable (α = 0), so the cell will become blank if more than one
offspring are produced there.

the system might cease to be ergodic when it reaches an
absorbing state consisting of a single strategy.

Figure 1 illustrates our model by showing how a popula-
tion of the above-mentioned two strategies, i.e., 27 and 255,
evolves on a one-dimensional ring with L = 8 cells. Both the
environmental parameter α and the mutation probability μ

are set to be zero to help follow the rules in a fully deter-
ministic way. Note that all the cells are updated in parallel
as t increases by one in this example, and this will also be
the case of our Monte Carlo calculation in the next section
(see Ref. [24] for possible effects of update rules on time
evolution). However, the long-time behavior presented below
shows no significant difference even when we use a random
asynchronous update rule.

III. RESULT

Let us now include all the 256 strategies of S and sim-
ulate the model on a larger ring structure with L = 64 cells
(Fig. 2). Initially at t = 0, every cell is occupied by an or-
ganism with a randomly drawn strategy from S . The colors
represent strategy indices from 0 to 255. Bluish strategies
do not produce offspring in neighboring cells when they are
occupied. In other words, they are characterized by β(ν =
11) = 00. On the other hand, reddish strategies aggressively
produce offspring in such a situation by having β(ν = 11) =

FIG. 2. Effects of the environmental favorability α. Each panel
shows a simulation result with a different value for α, ranging from
0.0 to 0.8. The mutation probability is fixed at μ = 10−3. As in Fig. 1,
the horizontal axis represents the spatial dimension. The vertical axis
represents time, along which we have sampled the data at every 50
generations. Initially at t = 0, every cell is occupied by an organism
with a random strategy drawn from S. The colors represent strategy
indices from 0 to 255 (see the color box on the right), and the white
cells are empty.

11. Greenish strategies are in between, so they have either
β(ν = 11) = 01 or 10.

Figure 2 shows which class of strategies are favored de-
pending on α: When α = 0.0 or 0.2, the system is bluish, and
the reason is that aggressive strategies are very likely to be
removed with such a low value of α. The bluish cluster is
usually dense because these strategies tend to avoid conflict
with neighbors. On the other hand, reddish strategies take
over when α = 0.6 or 0.8, but their cluster is porous, and the
porosity will gradually vanish as α → 1.

To quantify the behavior, we calculate the ensemble–
averaged frequency of strategy k as follows:

fk (t ) = 1

M

M∑
m=1

N (m)
k (t )

L
, (3)

where M is the number of independent Monte Carlo realiza-
tions and N (m)

k (t ) is the number of organisms playing strategy
k at time t in the mth realization (Fig. 3). To obtain its value
in a steady state, we remove transient behavior for a certain
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FIG. 3. Frequencies of strategies under α = 0.1. The system size

is L = 1024, the mutation rate is μ = 10−3, and all the results are av-
eraged over M = 103 independent realizations. The colors represent
strategy indices from 0 to 255 as in Fig. 2. Initially at t = 0, every
strategy starts with an equal frequency, but selection favors strategy
27 and its variants.

initial period T and then take an average over P generations:

φk = 1

P

T +P∑
t=T +1

fk (t ). (4)

The total density of population,

ρ =
∑
k∈S

φk, (5)

is a measure of collective interests for this group of organisms.
Let us check how these observables behave as α varies.

Figure 4 shows that an unfavorable environment with small
α tends to favor bluish nonaggressive strategies such as 27,
and they are replaced by more and more aggressive ones as α

increases, which is entirely consistent with Fig. 2. Note that
strategies 31 and 59 exhibit identical behavior because they
are related by left-right symmetry, and the same statement
holds between 127 and 191. An interesting point is that the
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FIG. 4. Steady-state frequency of each strategy k [Eq. (4)] as a

function of α. The colors of φk’s are as given in Fig. 2. The total
density of the population [Eq. (5)] is represented by the thick black
line. We use the same L, M, and μ as in Fig. 3. The time average has
been taken over P = 105 generations, after removing transients for
the first T = 9 × 105 generations.

total density of the population decreases as the environment
becomes more and more favorable between 0.2 and 0.5.

IV. DISCUSSION

To illustrate the basic picture, it is instructive to work with
a reduced set of strategies. We choose 27 and 255, the most
favored ones for small and large α’s, respectively (Fig. 4). The
former strategy is able to increase the population density ρ up
to 100% by replicating itself in a nonaggressive way. Thus,
it may be called a “cooperating” strategy. The latter strategy
is the most aggressive one, and we may call it a “defecting”
strategy.

Let us consider three consecutive cells, each of which is
either C (cooperating), D (defecting), or E (empty). From the
configuration of these three cells, we can discuss the replica-
tion dynamics in the middle cell. Let η+

C
be the rate for an

empty cell to be occupied by a cooperator. By enumerating all
the possible cases, we see that

η+
C

= (φEEC + φCEE ) + (φCED + φDEC )
α

2
+ φCEC α, (6)

where φXY Z is the frequency for the three consecutive cells to
have states X , Y , and Z , respectively. On the other hand, a C
cell becomes either a D cell or an E cell with a rate of

η−
C

= (φECD + φCCD + φDCE + φDCC )
(

1 − α

2

)

+φDCD

(
1 − α2

3

)
. (7)

Similarly, we can write the rates η±
D

for creation or annihi-
lation of D cells. However, to know φXY Z , the statistics of
five consecutive cells is required, and this hierarchy generally
goes on ad infinitum [25,26]. As an approximation, we will
factorize φXY Z into φX φY φZ , where φX denotes the frequency
of X cells [see Eq. (4)], and this mean-field approximation
is valid in the absence of spatial correlations. Figure 2(f)
suggests that D cells form a homogeneous mixture with E
cells (without strong spatial correlations) for large α in the
steady states. We can estimate the frequency of D cells using
a mean-field approximation in such (D + E ) clusters. In these
clusters, η±

D
is given by

η+
D

= (φEED + φDEE ) + φDEDα, (8)

η−
D

= (φEDD + φDDE )(1 − α) + φDDD (1 − α2). (9)

Equating η+
D

and η−
D

, the equilibrium frequency of D cells in a
(D + E ) cluster is obtained as

φD = 6 − 3α − √
12 − 12α + α2

2(3 − 3α + α2)
, (10)

= 1 + 2ε + 7ε2 + 35ε3 + . . . , (11)

where we used φE = 1 − φD and set ε ≡ α − 1 < 0 (Fig. 5).
Equation (10) agrees well with our numerical results for large
α, implying that the whole system can be described as a single
(D + E ) cluster. On the other hand, the system is mostly filled
with C cells for small α. This suggests existence of a transition
between C and (D + E ) phases at a certain threshold α = α∗.
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FIG. 5. Simplified dynamics with a reduced set of strategies, i.e.,
{C = 27, D = 255}. The other simulation parameters are the same as
in Fig. 4. The φC and φD curves represent steady-state frequencies of
C and D, whereas the dashed and dash-dotted lines mean the simple
mean-field (MF) and pair approximation (PA) results, respectively,
for a (D + E ) cluster. The vertical dotted line is an approximate value
of α∗, obtained by solving Eq. (12), above which D invades C.

To estimate α∗, let us assume that a (D + E ) cluster has
an interface with a C cluster. The most probable situation for
growth of the C cluster is found when the two nearest cells
to the interface on the (D + E ) side are empty. The simplest
estimate for this probability would be φ2

E
= (1 − φD )2, under

the assumption that the bulk behavior inside a (D + E ) cluster
is mostly valid even in the vicinity of the interface. The second
contribution is given by another configuration in which D and
C compete for an empty cell in the middle, and this contributes
φD (1 − φD )(α/2) because C wins with probability α/2. On the
other hand, the (D + E ) cluster can proceed by one cell with
probability φD × (α/2) because the front must be filled with D
and the invasion succeeds with probability α/2. If we compare
these two events, then the latter becomes more probable for
large α, and the threshold value is estimated by equating them,
i.e.,

(1 − φD )2 + φD (1 − φD )(α/2) = φD × (α/2), (12)

which, together with Eq. (10), results in α∗ ≈ 0.64 (Fig. 5).
We note that this may well be an overestimate because the
actual frequency of D is likely to be higher than predicted by
Eq. (10) near the interface, where the competition between C
and D would be less intense than between two D’s.

The above mean-field calculation can be modified by using
the pair approximation [27], according to which three-point
and four-point correlation functions are approximated as

φXY Z ≈ φXY φY Z

φY

(13)

and

φXY ZW ≈ φXY φY Z φZW

φY φZ

, (14)

respectively (see Refs. [28–30] for further modification be-
yond the pair approximation). If we deal with a (D + E )
cluster, then we need five correlation functions, i.e., φD , φE ,
φDD , φDE = φED , and φEE , but only two of them are independent

because φD = 1 − φE = φDD + φDE = 1 − (φEE + φED ). If we
find φD and φDD , for example, then the other three are deter-
mined by these relations. Regarding φDD , the rates of creating
and annihilating DD cells are given as

η+
DD

= (φEDEE + φDEED + φEEDE )

+α(φEDED + φDDEE + φEEDD + φDEDE )

+α2(φDDED + φDEDD ) (15)

and

η−
DD

= (1 − α4)φDDDD + (1 − α3)(φEDDD + φDDDE )

+ (1 − α2)φEDDE , (16)

respectively. By solving η+
D

= η−
D

and η+
DD

= η−
DD

with the pair
approximation [Eqs. (13) and (14)], we obtain φD as a function
of α [31], which is shown as the dash-dotted curve in Fig. 5.
Although its explicit expression is not illuminating, a few
points are worth mentioning: First, the pair-approximated ver-
sion of φD has the same Taylor series to the order of ε3 as given
by the mean-field calculation [see Eq. (11)]. Second, if we also
write φDD as a function of α, then we obtain the connected
correlation function φ̃DD ≡ φDD − φ2

D
= −4ε3 + . . ., which is

indeed small and thus consistent with the mean-field-like
ideas behind our approximate calculation. Third, the system
has four solution branches, and the physical solution, having
both φD and φDD inside the unit interval, changes its branch at
α ≈ 0.60, which might indicate an improved estimate of α∗.

To understand the nonequilibrium phase transition between
C and D more precisely [32–34], we conduct Monte Carlo
simulation and observe the following quantity: Let PC (t ) be
the probability to have at least one C cell at time t when the
simulation started at t = 0 with a single C cell in a system
filled with D. The result in Fig. 6(a) shows that it decays as
PC (t ) ∼ t−δ at α∗ = 0.4991 ± 0.0001. From 4 × 105 samples
for each α, we estimate the decay exponent as δ = 0.50 ±
0.02, where the error mainly originates from the uncertainty

FIG. 6. (a) Survival probability of a single C cell PC (t ) at time
t for α = 0.4990, 0.4991, and 0.4992, when all the other cells were
initially filled with D. We observe power-law behavior PC (t ) ∼ t−δ

with δ = 0.50 ± 0.02. (b) The number of C cells NC (t ) at time t
from the same initial configuration. For α = 0.4991 ± 0.0001 as in
(a), they are described by NC (t ) ∼ t θ with θ = −0.01 ± 0.03 as seen
from the three straight lines. We have generated 4 × 105 independent
samples for each α.

032114-5



CHAE, LEE, BAEK, AND JEONG PHYSICAL REVIEW E 103, 032114 (2021)

in α∗. The number of C cells is another quantity expected
to show power-law behavior NC (t ) ∼ t θ [Fig. 6(b)], and we
estimate the exponent as θ = −0.01 ± 0.03. We have also
obtained consistent results by exchanging C and D in the
initial configuration (not shown).

To conclude, our approximate calculation predicts that C
will densely occupy the whole system if α < α∗. Otherwise,
the system will be occupied by a mixture of D and E , among
which the fraction of D is described by Eq. (10). The total den-
sity of population should decrease as α exceeds α∗ because
φD (α = α∗) is far smaller than 100%. Our numerical results
suggest that the behavior at α = α∗ can be described by ran-
dom walks of domain walls because the survival probability
behaves as PC (t ) ∼ t−δ with δ ≈ 1/2 and the average number
of C cells is approximately constant.

V. SUMMARY

To summarize, we have studied an evolutionary game in
which replication strategies are inherited by the next gener-
ation and the survival probability in competition depends on
neighbors’ strategies as well as one’s own. We have examined
evolution of the population with varying the environmental
favorability that determines the chance of surviving competi-
tion. Our finding is that the population sometimes flourishes
better when the survival probability is smaller because it
eventually evolves to a more cooperative strategy. Although
we have focused on a one-dimensional system to see the
effects of spatiality most clearly, it is entirely plausible that
the effects will diminish in higher dimensions and disappear

in a well-mixed population. Exact identification of the critical
dimension is left as a future work.

A common assumption in microeconomics is that produc-
tion functions monotonically increase in all inputs so that
output quantities do not decrease when any input quantity
is increased. Our result suggests that the monotonicity as-
sumption may not always hold when an evolutionary process
is involved, if we regard α as a measure of input resources
and the population density ρ as the output. If the organ-
isms under consideration are coupled with the input resources
through a predator-prey interaction, then it implies that the
coupling will be described as nonlinear, as opposed to the
linear coupling in the Lotka-Volterra type, due to the in-
traspecific interaction among different behavioral strategies.
More specifically, the mean-field analysis discussed above
shows that assortative clustering can result in nonmonotonic
behavior through interfacial dynamics between two compet-
ing clusters. It demonstrates the role of assortative clustering
in evolution of cooperation under the condition of resource
scarcity.
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