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Weak mixed phase in the mutator model
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We consider the mutator model with unidirected transitions from the wild type to the mutator type, with
different fitness functions for the wild types and mutator types. We calculate both the fraction of mutator types in
the population and the surpluses, i.e., the mean number of mutations in the regular part of genomes for the wild
type and mutator type, which have never been derived exactly. We identify the phase structure. Beside the mixed
(ordinary evolution phase with finite fraction of wild types at large genome length) and the mutator phase (the
absolute majority is mutators), we find another new phase as well—it has the mean fitness of the mixed phase
but an exponentially small (in genome length) fraction of wild types. We identify the phase transition point and
discuss its implications.
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I. INTRODUCTION

Statistical physics has been successfully applied to evolu-
tion theory, especially to the quasispecies model suggested
for primordial life [1] and the description of virus evolution
[2–4]. The reasons behind its success are the similarities be-
tween fitness and energy, the large number of degrees in the
considered problem (the number of nucleotides in genome),
and the quasilinearity of the evolution equations (the nonlinear
system of differential equations can be mapped to the linear
system of differential equations using a nonlinear algebraic
transformation [5]). Many models have been solved exactly
[6,7]. Lately, the quasispecies model has also found applica-
tions to fields such as cancer research [8] and learning theory
[9]; it has become a key model of modern interdisciplinary
research, attracting increasing attention from researchers.

An important aspect of modern evolution is related with
the phenomenon of the mutator, first suggested in oncobiol-
ogy [10–15]. The mutator concept has serious applications to
bacteria as well [16–25]. While in the ordinary quasispecies
model all the replicators replicate with constant mutation rate
and fitness, in the mutator model there is a special gene that
increases the mutation rate. We define the types without the
mutation in the special genes as wild type and the types with
mutation in that gene as mutator types. We can analyze the
change of fitness landscape as well. This is related to the
genome instability phenomenon in cancer, which has been
considered as one of hallmarks of cancer [26]. The existence
of mutators provides some advantage to the evolving popula-
tion.

There has been some theoretical work to understand the
mutator phenomenon related to the standard quasispecies
model [17–29], and also some simplifications of the evolution
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process with constant mutation rates regardless of Hamming
classes [30,31]. For us, what is especially important is the
finding of the phase transition in the mutator model from the
mixed phases to the mutator phase [18]. In Ref. [27], we
gave a comprehensive investigation of the mutator model
for the case of bilaterial mutator type–wild type transitions,
focusing mainly on the case of symmetric transitions. In
Ref. [29], we investigated the dependence of the mean fitness
on the genome length in the case of bilateral asymmetric wild
type–mutator type transitions. An intriguing phenomenon has
been found: In the case of nonzero epistasis, the large sys-
tem of ordinary differential equations can be mapped into
a single nonlinear partial differential equation, though after
some critical length this property is not valid. In Ref. [28], we
solved exactly the mutator model for the linear fitness function
with finite genome length, but we got rather cumbersome
expressions. The statistical physics and mathematics for the
asymmetric transition mutator model are the richest ones in
infinite population size evolution models, especially for the
limiting case: unidirected transitions from the wild type to
the mutator type. Some results have been derived for the case
when the fitness landscape is the same in both the mutator
phase and the mixed phase [18,27], but the general case of the
model with different fitness landscapes for wild type and mu-
tator type was unsolved. The goal of this work is the solution
of this general case, the identification of the phase structure
and the calculation of the main characteristics: mean fitness
and surpluses (mean number of mutations) in wild types and
mutator types.

Let us now consider the mutator model. The genome is
described as a chain of N + 1 letters (genes) taking values
±1, comprising a special gene and N ordinary genes. For the
normal allele of a special gene, we have wild types. There are
2N wild types, and the fraction of ith type in the population
is given by pi. For the alternative allele, we have 2N mutator
types, and their fractions are given by qi.
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The probability distribution over the sequence space
evolves according to the following system of equations:

d pi(t )

dt
= pi(t )

(
r1

i − μ1 − a1 − R
)

+ μ1

N

∑
j:d (i, j)=1

p j (t ) + a2qi,

dqi(t )

dt
= qi(t )

(
r2

i − μ2 − a2 − R
)

+ μ2

N

∑
j:d (i, j)=1

q j (t ) + a1 pi,

R =
∑

i

(
pi(t )r1

i + qi(t )r2
i

)
, (1)

where d (i, j) is the Hamming distance between two se-
quences i and j (the number of point mutants that transforms
the type i to type j), and μ1 and r1

i are the mutation rate
and fitness for the wild types respectively. For the wild type,
the mutation rate is nonzero (equals μ1/N) only between the
sequences which are related via change of a single allele. We
denote by μ2 and r2

i the mutation rate and fitness of the muta-
tor type respectively. a1 and a2 are the transition rates between
wild types and mutator types. Consider the symmetric fitness
landscapes for both wild types and mutator type. We define
as the lth Hamming class the collection of all Nl ≡ N!

l!(N−l )
sequences with the same Hamming distance l from the ref-
erence sequence. We define Pl and Ql as a sum of all pi and qi

from the lth Hamming class, so Pl = Nl pi, Ql = Nlqi, where
pi and qi are the probabilities of single sequences from the lth
Hamming class. We bet the following equations for Pl and Ql ,
for 0 � l � N :

dPl (t )

dt
= Pl (t )[ f1(xl ) − μ1 − a1 − R]

+μ1

(
N − l + 1

N
Pl−1 + l + 1

N
Pl+1

)
+ a2Ql ,

dQl (t )

dt
= Ql (t )[ f2(xl ) − μ2 − a2 − R]

+μ2

(
N − l + 1

N
Ql−1 + l + 1

N
Ql+1

)
+ a1Pl ,

R =
∑

l

(Pl (t ) f1(xl ) + Ql (t ) f2(xl )), (2)

where xl = 1 − 2l/N , and f1(x) = f (x), f2(x) = g(x) are the
fitness functions.

Previously, we solved the case when both transition rates
are nonzero [27]. The unidirected transition case a2 = 0, a1 ≡
α > 0 is a singular case. In Sec. II, we solve the Crow-Kimura
version of the mutator model with unidirected transitions and
calculated the fraction of mutator type. In Sec. III, we solve
the eigen model version of the mutator model. In the Ap-
pendix, we calculate the finite genome size corrections of the
Crow-Kimura model version of the mutator model.

II. THE CALCULATION OF BULK VALUES
OF FRACTIONS

We consider the unidirected transition version of Eq. (2):

dPl (t )

dt
= Pl (t )( f1(xl ) − μ1 − α − R)

+μ1

(
N − l + 1

N
Pl−1 + l + 1

N
Pl+1

)
,

dQl (t )

dt
= Ql (t )( f2(xl ) − μ2 − a2 − R)

+μ2

(
N − l + 1

N
Ql−1 + l + 1

N
Ql+1

)
,

R =
∑

l

(Pl (t ) f1(xl ) + Ql (t ) f2(xl )). (3)

Now, taking μ1 = 1, we consider the steady-state solution
of the system by Eq. (3) for the wild types:

RPl = Pl (t )( f (xl ) − 1 − α)

+
(

N − l + 1

N
Pl−1 + l + 1

N
Pl+1

)
. (4)

For nonzero Pl , we get that R is the maximum eigenvalue of
the matrix on the right-hand side of equation. There is a well-
developed theory for such a problem. We first calculate the
mean fitness in the limited of infinitely large L and denote it
as R0. The derivation is given in Refs. [4,32], then will look
1/L corrections. We will look also the surpluses

s =
∑

l

(Pl + Ql )(1 − 2l/N ),

S1 =
∑

l Pl (1 − 2l/N )∑
l Pl

,

S2 =
∑

l Ql (1 − 2l/N )∑
l Ql

. (5)

We look the asymptotic expansions via degrees of 1/L,

R = R0 + R1/L,

S1 = s0 + s1

L
,

S2 = s0 + s2

L
, S = s0 + O(1/L), (6)

where s0 is the bulk value of surplus. Then it is easy to derive
the equations for the bulk terms in Eq. (7).

We define the ansatz

Pl = exp (LU (xl )), xl = 1 − 2l/L, (7)

with O(1/L) accuracy:

l

L
= 1 − x

2
,

Pl±1 = Pl exp[− ± 2U ′]. (8)

The Hamilton-Jacobi equation, rescaling the time L times:

∂U

∂t
= f1(x) − 1 − α + 1 − x

2
e−2U ′ + 1 + x

2
e2U ′

. (9)
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We are interested in the static solution,

U (x) = Rt + U0(x), (10)

where R is the mean fitness. Putting the ansatz into Eq. (9),
we obtain

R = f1(x) − 1 − α + 1 − x

2
e−2p + 1 + x

2
e2p, (11)

where we denoted p = U ′. To have a real value solution, we
impose a condition:

R � min

[
f1(x) − 1 − α + 1 − x

2
e−2p + 1 + x

2
e2p

]
p

≡ [ f1(x) − 1 − α +
√

1 − x2]. (12)

Replacing the inequality sign in Eq. (12), we obtain [6]

f ′(x0) − x0√
1 − x2

0

= 0,

R0 = f (x0) +
√

1 − x2
0 − 1 − α. (13)

According to our ansatz, Eq. (7), there is a narrow peak (width
∼1/

√
N in the x space). In the definition of s =

∑
l Pl xl∑

l Pl
, we can

just take the value of xl at the maximum point x = s0 of U (x)
function, obtaining s = s0 + O(1/L). At the maximum point
x = s0, we have U ′(s0) = 0, so Eq. (11) gives an accuracy
O(1/L)

R0 = f (s0) − α. (14)

From the solution of the Crow-Kimura model [32], we have
after rather lengthy derivations

R1 = 1√
1 − x2

0

[
1 −

√
1 − (

1 − x2
0

)3/2
f ′′(x0)

]
,

s1 =
(

R1 − s
f ′′(s0)

f ′(s0)

)
1

f ′(s0)
. (15)

Consider the following representation for Pl near the max-
imum point,

Pl =
√

A√
2L

exp

[
−A(l − l0)2

2L
+ k1(l − l0)

L

]
, (16)

where [32]

A = f ′(s0)

2s0
(17)

and (see Ref. [32])

k1 = 1

2s0

(
R1 − s0

f ′′(s0)

f ′(s0)

)
. (18)

Our goal is to calculate

P =
∑

l

Pl (19)

and s2, which has not been solved in previous works.
Let us first define P in the bulk approximation. The sum

via l in the steady state gives

RQ =
∑

l

Qlg(xl ) + αP. (20)

FIG. 1. Q ≡ q vs the parameter J1 for the mutator model with
J1 = 1, J2 = 2, N = 1000, f1(x) = J1x, f2(x) = J2x, α = 1. The
smooth nonhorizontal line is given by our analytical formulas
Eq. (26) (below the critical point we take a solution Q = 1), and
the solid dots are the numerical results by Eq. (4). There is a phase
transition point near J1 ≈ 1.39.

This is an exact equation. Consider the following representa-
tion for Ql :

Ql =
√

A√
2L

exp

[
−A(l − l0)2

2L
+ k2(l − l0)

L

]
. (21)

Consider the 1/L expansion of
∑

l Qlg(xl ):∑
l

Qlg(xl ) ≈ Q[g(s0) + R2/L],

R2 = [g′(s0)k2 + g′′(s0)]. (22)

The second equation in Eq. (22) has been derived directly
from Eq. (21).

A. The bulk term for the mutator fraction

We have a peak of the distribution near the point xl = s0.
Then R =< f (x) > p + q < f2(x) > together with Eq. (20)
gives a system of equations to define s0, q:

Rq = qg(s0) + αp,

R = p f (s0) + qg(s0), (23)

where p = 1 − q or

[(1 − q) f (s0) + qg(s0)]q = qg(s0) + α(1 − q). (24)

Thus, we obtain

q2(g(s0) − f (s0)) + [ f (s0) − g(s0) + α)]q − α = 0. (25)

A trivial solution is q = 1. An alternative solution is

q = α

f (x0) − g(x0)
. (26)

Equation (26) is our main result. Figure 1 illustrates the
accuracy of our theoretical result.

For the linear fitness function f (x) = cx, we have

s0 =
√

c2 + 1 − 1

c
, (27)
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FIG. 2. The surpluses s1, s2 vs J1 for the mutator model with
N = 1000, f1(x) = J1x, f2(x) = J2x, J1 = 1, J2 = 2, α = 1. The
smooth line is given by our analytical formulas, and the solid dots
are the numerical results by Eq. (4). We start from any initial con-
figuration and then solve the system of equations using Runge-Kutta
methods. The upper line corresponds to s1, and the low line to s2.
There is a phase transition point near J1 ≈ 1.39.

and for the quadratic case f (x) = cx2/2,

s0 = 1 − 1

c
. (28)

For the case when the mutator has the same fitness func-
tion as the wild type but different mutation rates, we get the
solution

q = 1. (29)

The latter result is correct for infinite genome length. For finite
but large genome length, we have P � Q. The asymptotic
expression has been derived in Ref. [27].

B. The phase structure of the model

Consider again the general case, with different fitnesses. At
small α, we have a small q. Increasing α, we met a situation
q became 1 at some α. As q � 1, it is a phase transition
point. We verify that there is a phase transition point, and for
different fitness functions the second equation in the system
by Eq. (23) gives for the critical point

g(s0) = R. (30)

After the critical point, we have again the mean fitness ex-
pression by Eq. (13). In the case of f (x) = g(x), there was
an exponentially small (in N) fraction of wild types [27].
We assume a similar situation for the case f (x) �= g(x) as
well. We define such a phase as a weak mixed phase. Now
we have different expressions for the surpluses of wild type
and mutator type (see Fig. 2). Figure 3 illustrates the phase
structure of the model. The mutator phase has the following
expression for the mean fitness [27]:

g′(x0) − x0√
1 − x2

0

= 0,

R0 = g(x0) +
√

1 − x2
0 − 1. (31)

FIG. 3. The phase space of the mutator model with f1(x) =
J1x, f2(x) = J2x, J2 = 2, α = 2. There are three phases: mutator
phase (mutator), mixed phase (mixed), and weak mixed phase
(weak m).

When the R0 by Eq. (30) is larger than R0 by Eq. (5), we have
the mutator phase; otherwise, we are in the mixed phase or the
weak mixed phase.

III. EIGEN MODEL VERSION FOR MUTATOR MODEL
FOR DIFFERENT FITNESS IN WILD TYPE

AND MUTATOR TYPE

The Eigen model version for the mutator model has been
considered in Refs. [18,27]. We now formulate the model and
provide analytical solutions.

Let us consider now the following system of equations for
pi, qi, 0 � i < 2N − 1:

d pi(t )

dt
=

∑
j

p jr je
−hQji − pi

∑
j

(r j p j + r̂ jq j ),

dqi(t )

dt
=

∑
j

q jQ̂ ji +
∑

j

p j r̂ j (1 − e−h)Qji

− qi

∑
j

(r j p j + r̂ jq j ). (32)

Here ri and r̂i are the fitness functions for the wild type and
mutator type. Qi j and Q̂i j are the corresponding mutation tran-
sition probabilities, with Qi j = qL−d ( j,i)(1 − q)d ( j,i), where q
is the probability of errorless replication per nucleotide for the
pi sequences. 1 − e−h ≈ h is the transition probability from
the wild type to the mutant type.

We denote Qii = qL ≡ Q ≡ e−γ , where γ = −N ln(q) ≈
N (1 − q) is the parameter of mutation in the Eigen model.
Q̂i j = q̂N−d ( j,i)(1 − q̂)d ( j,i), where q̂ is the probability of er-
rorless replication per nucleotide for the qi sequences. d (i, j)
is the Hamming distance between two sequences i and j: It is
defined as the number of point mutations to get the sequence
i from the sequence j.

We choose fitness functions

r j = f (x), r̂ j = g(x), (33)

where x = d ( j, 0). In the mixed phase, we have the fitness
of the pure eigenmodel with the fitness function f (x)e−h, so
we can use the result of Ref. [33] for the mean fitness R and
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surplus

R = max
[

f (x)e−h+γ (
√

1−x2−1)
]|x, R = f (s). (34)

Taking the sum via index i in the steady-state version of
Eq. (33), we have

Q( f (s)e−h − R) + (1 − e−h)P = 0. (35)

Substituting for the expression for R, we get

Q( f (s)e−h − [Qg(s) + (1 − Q) f (s)])

+ (1 − e−h)(1 − Q) = 0. (36)

Equation (36) defines the fraction of mutators in the pop-
ulation. Again we have three phases: mixed, mutator, and
weak mixed. For the mutator phase, we have the following
expression for the mean fitness:

R = max
[
g(x)e−h+γ (

√
1−x2−1)

]
, (37)

where the maximum is via x. The system is selecting the
mutator phase, when the mean fitness by Eq. (37) is higher
than the one by Eq. (36), the transition between the mixed and
weak mixed phases is at the point where

R = g(s). (38)

Again, the case f (x) = g(x) is a degenerate situation, giv-
ing for the large-L case Q = 1.

IV. CONCLUSION

The quasispecies model describes adequately both the
origin of life and virus evolution. The related mutator phe-
nomenon is an important concept of modern evolution theory
and has in recent years attracted serious attention from many
experts in statistical physics. The model has highly intriguing
phase structure and nontrivial mathematics. In the case of
symmetric transition rates between wild type and mutator
type, we have rather simple and well-confirmed analytical re-
sults. More involved is the situation in the case of asymmetric
transitions. In this article, we investigated the mutator model
for the case of unidirected transitions from the wild type to
the mutator type when the fitness functions are different. We
handled some simple version of asymmetric transitions from
wild type to mutator type. We solved the model, identifying
both the phase structure and the order parameters. Besides
the mutator phase (the evolutionary properties are completely
defined by the mutator type, so we can simply drop the wild
types in equations), there is a phase with mean fitness defined
by the wild-type fitness landscape, but with a fraction of the
wild population that decreases exponentially with the genome
length.

We calculated the fraction of mutator types in the model,
as well as the surpluses for the wild and mutator types. We de-
fined the fraction of mutator types for the eigenmodel version

of the mutator model as well. In the Appendix, we calculated
the finite genome size corrections in the Crow-Kimura version
of the model. All our results are derived for the infinite pop-
ulation case. As the unidirected transition version of mutator
has such interesting statistical physics, we hope that the same
should be with the finite population version of the model.
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APPENDIX: THE FINITE-SIZE CORRECTIONS

Now we should calculate q1 and k2, so we need two equa-
tions. Assuming Q = q + q1, P = p − q1, we get from the
definition of the mean fitness by the last line of Eq. (2) and
from Eq. (7):(

q + q1

L

)(
f + R1

L

)
+

(
g + R2

L

)(
p − q1

L

)
= R + R1

L
;

see Eq. (16) for the definition of R2. Looking the 1/L order
terms gives

f q1 + qR1 + pR2 − q1g − R1 = 0. (A1)

Then, looking the sum via l in the second equation in
Eq. (3) at the steady state and Eq. (16), we get

(R + R1/L − g − R2/L)(q + q1/L) − αp + αq1/L = 0.

Looking at the 1/L order terms, we get

Rq1 + q(R1 − R2) + αq1. (A2)

Thus, we get a system of equations for q1, R2:

( f − g)q1 + pR2 = R1(1 − q),

(R + α)q1 − qR2 = −qR1. (A3)

Having the expression for R2, we can calculate k2 and
then s2:

k2 = A

g′

(
R2 − g′′

2A

)
. (A4)

Then, from the second equation in Eq. (8), we get

s2 = 1

g′

(
R2 − g′′

2A

)
= 1

g′

(
R2 − s0g′′

2 f ′

)
. (A5)

We have a system of equations to derive the expressions
for s2, R2. For the linear fitness case f (x) = cx, our system of
equations is degenerate, so perhaps we should look for some
quadratic weak term to dismiss, calculating s2, q1 at that limit.
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