
PHYSICAL REVIEW E 103, 032111 (2021)

Real-space renormalization-group treatment of the Maier-Saupe-Zwanzig model for
biaxial nematic structures

Cícero T. G. dos Santos ,1,2 André P. Vieira ,3 Silvio R. Salinas ,3 and Roberto F. S. Andrade 1,4

1Instituto de Física, Universidade Federal da Bahia, 40170-115 Salvador, Brazil
2Instituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano, 56302-100 Petrolina, Brazil

3Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao, 1371, 05508-090 Sao Paulo, SP, Brazil
4Centre for Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz,

41745-715 Salvador, Brazil

(Received 6 October 2020; revised 17 November 2020; accepted 11 February 2021; published 10 March 2021)

The Maier-Saupe-Zwanzig model for the nematic phase transitions in liquid crystals is investigated in
a diamond hierarchical lattice. The model takes into account a parameter to describe the biaxiality of the
microscopic units. Also, a suitably chosen external field is added to the Hamiltonian to allow the determination
of critical parameters associated with the nematic phase transitions. Using the transfer-matrix technique, the free
energy and its derivatives are obtained in terms of recursion relations between successive generations of the
hierarchical lattice. In addition, a real-space renormalization-group approach is developed to obtain the critical
parameters of the same model system. Results of both methods are in excellent agreement. There are indications
of two continuous phase transitions. One of them corresponds to a uniaxial-isotropic transition, in the class of
universality of the three-state Potts model on the diamond hierarchical lattice. The transition between the biaxial
and the uniaxial phases is in the universality class of the Ising model on the same lattice.

DOI: 10.1103/PhysRevE.103.032111

I. INTRODUCTION

Liquid crystals are intermediate phases of matter with rich
macroscopic patterns associated with orientational order [1].
Nematic liquid crystals are perhaps the best known and inves-
tigated class of these systems. From a microscopic point of
view, these nematic systems consist of anisotropic molecular
or micellar structures, which we call nematogens, and which
are associated with microscopic directors. This general term
refers to the microscopic components of a large class of sys-
tems with quite different properties, including thermotropic
and lyotropic (or colloidal) liquid crystals. In a simple uniaxial
nematic phase, on the average these microscopic directors
are aligned along a preferred direction. As we increase the
temperature, there may be a usually weak and discontinuous
transition to a disordered structure, which is perhaps the best
studied phase transition phenomenon in liquid crystalline sys-
tems [2]. A macroscopic rotational symmetry breaking around
a preferred nematic direction can lead to a nematic phase
with three independent directions, which is known as the
biaxial nematic phase [3]. In general, cylindrical or ellipsoidal
nematogens give rise to uniaxial phases only, but biaxial ne-
matic structures cannot be ruled out. These biaxial nematic
structures have been predicted theoretically by Freiser a long
time ago [4], have been initially found in micellar systems
[5], and seem nowadays to have been characterized in some
anisotropic board-shaped nematogens [6], more specifically in
those with a significant degree of size dispersivity [7]. Follow-
ing a possible but still somewhat controversial experimental
identification of thermotropic biaxial nematic liquid crystals

[8–12], a large number of experimental, computational, and
theoretical investigations have found a new stimulus [13].

The transition from a uniaxial nematic to an isotropic liq-
uid crystalline phase can be accounted for by the mean-field
Maier-Saupe theory [14], which plays a prominent role among
the theoretical descriptions of liquid crystalline transitions.
This theory also leads to the well-known form of the Landau–
de Gennes expansion of the free energy in terms of a tensor
order parameter, with the cubic term that guarantees the first-
order character of the transition between uniaxial nematic and
disordered phases [1]. On the basis of this approach, we can
devise a bona fide lattice statistical model, with quadrupolar
variables on the lattice sites, and with the energy restricted
to pair interactions. A fully connected version of this model,
which we call the Maier-Saupe (MS) model, and which is
analogous of the Curie-Weiss model of magnetism, leads to
the known results of the nematic mean-field theory. Also,
according to the work of Freiser, it is possible to introduce bi-
axial elements in the Maier-Saupe theory, which lead to stable
biaxial structures at low temperatures, and to a second-order
biaxial-uniaxial phase transition.

The Maier-Saupe approach can be combined with an as-
sumption of discrete orientations of the microscopic directors
associated with the nematogens. This approximation was orig-
inally proposed by Zwanzig [15] in the context of a work
with the hard cylinder model of Onsager for the nematic
transition, and has been later adopted by a number of authors
[16–23]. Although it may not be adequate to account for the
properties of systems with hard boardlike particles [24–26], it
has been used to obtain a number of equilibrium features of
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nematic systems. At the mean-field level of treatment, it has
been shown to compare quite well with analogous treatments
[27–31]. In this work, we then consider a three-state lattice
model system, which we call MSZ, and whose fully con-
nected version can be easily analyzed by standard statistical
mechanics techniques [23,28,29]. We can as well introduce
some modifications in the original MSZ model with a view
at explaining the onset of biaxial phases. We then consider
additional microscopic possibilities, and define a six-state
model, which we call MSZ6, and which can be shown to be
equivalent to a lattice statistical model originally proposed by
Boccara, Medjani, and de Sèze [32], to reproduce the well-
known sequence of isotropic, uniaxial, and biaxial nematic
phases as a function of decreasing temperature and the onset
of a Landau multicritical point [4]. More recently, we have
investigated the connections of these statistical formulations
with some proposals of a quite general two-tensor formalism,
at the mean-field level, which is able to describe the classical
isotropic-uniaxial-biaxial sequence of phases in the nematic
systems as well as some novel features of the phase dia-
grams [33]. The MSZ6 model that we work with corresponds
to the two-tensor formalism with the choice of interaction
parameters according to a very much used geometric mean
approximation. Except for a calculation on the Bethe lattice
[34], the investigations of the MSZ and MSZ6 models have
been restricted to fully connected systems, at the mean-field
level, without any attempt at considering the role of statistical
fluctuations.

In this work we present a real-space renormalization-group
(RSRG) analysis of the MSZ6 model. We work on hierar-
chical lattices [35–37], for which RSRG results are exact
and correspond to those obtained from the Migdal-Kadanoff
bond-moving RSRG approximation for the analogous models
on a Bravais lattice. Although these results may be quan-
titatively different from the findings for the corresponding
model systems on translational invariant lattices, especially
when it comes to critical exponents and universality [38–40],
these calculations on hierarchical lattices can be helpful to
reveal certain features of the phase diagrams that may be
mere artifacts of the mean-field treatments. We present a
renormalization-group calculation to deal with the biaxial-
uniaxial transition. Although the use of a hierarchical lattice
does not capture the discontinuous nature of the uniaxial-
isotropic transition, as it is also found in a similar real-space
treatment for the Lebwohl-Lasher model [41], we have been
able to reproduce all the remaining aspects of the mean-field
phase diagram, including the presence of two uniaxial phases
and of a Landau multicritical point.

In Sec. II, we define the MSZ6 model system. For a mat-
ter of convenience, we include two fictitious external fields
which are meant to enable a quantitative description of the
average molecular orientation in different phases. Also, we
describe the construction of the diamond hierarchical lattice
(DHL) and discuss its main properties. In Sec. III, we describe
the two real-space renormalization-group methods that are
used in this work. We obtain analytic expressions for the
maps associated with the transfer-matrix approach, and dis-
cuss the assumptions to implement the RSRG formalism. Due
to the complexity of the model, large expressions are moved
to the Supplemental Material [42]. Results obtained by both

methods are presented in Sec. IV. We point out the excellent
agreement between the corresponding results. In the final
section, we present some concluding remarks, with emphasis
on the more interesting results. We point out that there are
indications of two continuous phase transitions. One of them
corresponds to a uniaxial-isotropic transition, in the class of
universality of the three-state Potts model on the diamond
hierarchical lattice. The transition between the biaxial and the
uniaxial phases is in the universality class of the Ising model
on the same lattice.

II. DEFINITION OF THE MODEL SYSTEMS

A. Elementary MSZ model for biaxial liquid crystals

The general form of the nearest-neighbor MSZ model on a
crystal lattice is given by the Hamiltonian

H0 = −ε
∑
(i, j)

∑
α,β=x,y,z

�
αβ
i �

αβ
j , (1)

where ε is a positive parameter, the first sum is performed over
nearest-neighbor pairs (i, j) of nematogens on sites i and j,
and �

αβ
i are the components of a second rank, traceless tensor

associated with a nematogen at the ith site in the laboratory
reference system. If one decides to restrict the formalism by
directly working in the basis where � is diagonal, the sums
over the tensor indices α and β in Eq. (1) can be expressed
in terms of a scalar product between vectors formed by the
diagonal elements of the tensor. For the sake of presenting the
general framework, throughout this work we will continue to
explicitly indicate the tensor sums. In the MSZ6 model, � has
the generic form

� =
⎛
⎝ 2 0 0

0 −1 + � 0
0 0 −1 − �

⎞
⎠. (2)

In this formulation, each nematogen is represented by a gen-
eral parallelepiped with three different edge lengths that can
only be aligned along six directions determined by the Carte-
sian directions of the laboratory. Therefore, the quadrupole
tensor � can assume only six states, given by Eq. (2) and
respective permutations of the main diagonal elements. Pa-
rameter � is associated with the molecular biaxiality. If � <

1, the rodlike nematogen geometry gives rise to a prolate
uniaxial phase, while the � > 1 disklike shapes lead to an
oblate uniaxial phase.

If � = 0 or 3, the model is intrinsically uniaxial and equiv-
alent to a three-state Potts model. If 0 < � < 3, the model
turns out to be properly able to describe a biaxial phase. Note
that the energy spectrum of H0 for � > 3 can be mapped
onto that for 1 < � < 3 [28], so that is sufficient to restrict
the study to the choice 0 � � � 3.

The nematogens of a usual liquid crystal are not linearly
coupled to external fields, as it is the case in ferromagnetic
or ferroelectric systems. In fact, their response to an imposed
field is comparably weaker, and the actual nature of these
interactions is rather involved. Nevertheless, in the spirit of
the statistical mechanics approach to models with discrete
energy levels, and irrespective of whether an actual physical
meaning can be assigned to it, we find it useful to include in
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the Hamiltonian the contribution of a generic external field
that can be written as

H f = −
∑

i

∑
α,β=x,y,z

[
hx�

αβ
i δ(α, x)δ(β, x)

+ hy�
αβ
i δ(α, y)δ(β, y)

]
. (3)

For the sake of clarity, we have arbitrarily chosen x and
y as the directions for the alignment of the nematogens that
characterize the two order parameters. We remind that any of
other five possible choices give rise to equivalent results. In
Eq. (3), δ(·, ·) indicates the Kronecker delta of the arguments
and is used to select the components of � in which the external
fields will act, in a similar way as in the Potts model [43].
Therefore, the total Hamiltonian of the system is given by
H = H0 + H f .

To quantify the degree of molecular ordering in a liq-
uid crystal under given temperature conditions, one defines
a tensor order parameter Q ≡ 〈�〉 representing the thermal
average of the distribution of molecular orientations. We thus
have Qμν = 〈�μν〉, and introducing sx = ∑

i �
xx
i /N and sy =∑

i �
yy
i /N , where N represents the number of nematogens, we

can define mx and my as

mx ≡ 〈sx〉 = 1

Z

∑
{�}

sxe−H/kBT (4)

and

my ≡ 〈sy〉 = 1

Z

∑
{�}

sye−H/kBT , (5)

in which kB is Boltzmann’s constant, T is the temperature, Z
is the partition function

Z =
∑
{�}

e−H/kBT , (6)

and the sums run over all sets of states {�} of all nematogens
in the system. Finally, mx and my can be connected to the
scalar order parameters S and η, respectively the uniaxial and
biaxial order parameters, by considering Q in its diagonal
form

Q =
⎛
⎝ S 0 0

0 − 1
2 (S − η) 0

0 0 − 1
2 (S + η)

⎞
⎠ (7)

for � � 1, and

Q =
⎛
⎝ − 1

2 (S − η) 0 0
0 − 1

2 (S + η) 0
0 0 S

⎞
⎠ (8)

for � > 1. This choice leads to S > 0 in a rodlike uniaxial
phase, which is expected for � < 1, and S < 0 in a disklike
uniaxial phase, which is expected for � > 1.

From Eqs. (4) and (5) and the preceding discussion, we can
also write

Q =
⎛
⎝ mx 0 0

0 my 0
0 0 −mx − my

⎞
⎠, (9)

FIG. 1. First two steps of construction of the p = b = 2 DHL.
Generation g = 1 defines its generator.

so that, comparing with Eqs. (7) and (8), we obtain{
S = mx,

η = mx + 2my
(10)

for � � 1, and {
S = −mx − my,

η = mx − my
(11)

for � > 1.

B. Diamond hierarchical lattice

Hierarchical lattices [36] are built recursively by replacing
each link between two sites in a given generation by a pattern
called the generator. The DHL is built by starting from two
root sites connected by a single link. In the first generation,
this single link is replaced by p parallel branches, each one
of them connecting the root sites via b internal links and
b − 1 internal sites. In the subsequent generations, each link is
replaced by the same generator. The fractal dimension for this
family of lattices is given by d f = 1 + (ln p)/(ln b). The num-
bers of sites and links at the gth generation are, respectively,
given by Ng = (b − 1)p[(bp)g − 1]/(bp − 1) and Lg = (bp)g.
In this work, for the sake of simplicity we consider only
the most used case p = b = 2, i.e., d f = 2, but we checked
that the results are qualitatively independent of the fractal
dimension as long as it is greater than or equal to 2. The lattice
with fractal dimension d f = 2 is illustrated in Fig. 1. The dis-
tribution of connections at each site is highly inhomogeneous,
as it becomes clear for larger generations.

Results for physical models on hierarchical lattices have
a tendency to qualitatively agree with those for actual reg-
ular Bravais lattices, albeit the quantitative comparison may
present considerable discrepancies [44]. With this proviso,
results for such geometrical constructs may be regarded as
valuable approximations for actual systems. Indeed, it is well
known that the Migdal-Kadanoff real-space renormalization-
group approach to the two-dimensional Ising model is
equivalent to the same model in the b = p = 2 DHL inves-
tigated in this work.

III. DHL CALCULATIONS

As it can be seen from the recursive construction mecha-
nism, DHLs have a scale invariance property. Thus, models
on these lattices are suitable to be analyzed by methods that
explicitly take into account these intrinsic properties. Both
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approaches implemented in this work are based on scale in-
variance, and have been extensively used in previous studies
for much simpler interaction models. In the sequence we
present the key steps used for the derivation of the expres-
sions, leading to the results discussed in the next section.

A. Transfer matrices for the MSZ6 model on DHLs

A transfer-matrix (TM) formulation for hierarchical lat-
tices such as the DHL has been used to obtain the thermo-
dynamic functions of several statistical models [45–47]. The
general idea is to obtain the free energy in the gth generation
from the one in the (g − 1)th generation. This can be achieved
due to the lattice geometrical self-similarity, which warrants
that the matrix elements in the gth generation can be written
as a function of those in the (g − 1)th generation by a recur-
rence map. As the matrix elements in the different generations
preserve the same structure, it happens that the eigenvalues of
two successive generations are expressed in the same way as
a function of the corresponding matrix elements. Therefore,
for some models, it is even possible to write a direct recursive
map for the eigenvalues 
g in the gth generation in terms of
those in generation g − 1. As a consequence, the free energy,
written in terms of the largest eigenvalue of the TM, can
also be obtained as a recurrence relation between successive
generations.

We then write

fg = −kBT

Ng
ln(
g), (12)

where 
g is the largest eigenvalues of the TM in the gth
generation and Ng is the corresponding number of sites. Let

us start at g = 0, when the lattice consists of two root sites
connected by one single interaction term. For the purpose of
simplifying the calculation, it is possible to assume that root
sites are not subject to the external fields, which will only
be included in the internal sites appearing in the successive
generations. In such case, the 6 × 6 TM, M̄0, for the MSZ6
model is written as

M̄0 =

⎛
⎜⎜⎜⎜⎜⎝

a0 b0 c0 d0 d0 e0

b0 a0 d0 e0 c0 d0

c0 d0 a0 b0 e0 d0

d0 e0 b0 a0 d0 c0

d0 c0 e0 d0 a0 b0

e0 d0 d0 c0 b0 a0

⎞
⎟⎟⎟⎟⎟⎠, (13)

where a0 = exp[(6 + 2�2)/kBT ], b0 = exp[(6 − 2�2)/kBT ],
c0= exp[(−3 + 6� + �2)/kBT ], d0= exp[(−3 − �2)/kBT ],
e0 = exp[(−3 − 6� + �2)/kBT ]. In the gth generation, the
corresponding TM, M̄g, has exactly the same distribution
of matrix elements ag, . . . , eg, which respectively replace
a0, . . . , e0 in Eq. (13). Therefore, for any g, the matrix ele-
ments of M̄g can be expressed in a recursive way in terms of
those of M̄g−1. For the sake of simplicity, we may consider the
case g = 1. As illustrated in detail elsewhere [45], the field
free M̄1 TM can be obtained with the help of B̄1, a 6 × 36 TM
with elements

(B̄1)i, jk = (B̄1)i,κ = (M0)i, j (M0)i,k, (14)
where i, j, k = 1, . . . , 6 and κ = 6( j − 1) + k. B̄1, which ac-
counts for all interactions between one root site and the two
newly introduced internal sites at g = 1, is characterized by
the following arrange of its 15 matrix elements

B̄1 =

⎛
⎜⎜⎜⎜⎜⎝

l m n o o p m q r s s t n r u v v w o s v x x y o s v x x y p t w y y z
q m s t r s m l o p n o s o x y v x t p y z w y r n v w u v s o x y v x
u v n r w v v x o s y x n o l m p o r s m q t s w y p t z y v x o s y x
x y s o x v y z t p y w s t q m s r o p m l o n x y s o x v v w r n v u
x v y x o s v u w v n r y w z y p t x v y x o s o n p o l m s r t s m q
z y y w t p y x x v s o y x x v s o w v v u r n t s s r q m p o o n m l

⎞
⎟⎟⎟⎟⎟⎠. (15)

Therefore, it is straightforward to see that

M̄1 = B̄1B̄T
1 , (16)

where the superscript T indicates the transpose matrix.
It turns out that, given the large number of distinct matrix

elements of Bg, it is no longer possible to explicitly write
analytic expressions relating the elements of Mg to those of
Mg−1. Nevertheless, it is possible to write the exact recurrence
relations for the matrix elements of Bg in terms of those
of Bg−1, from which one can compute the elements of Mg

together with the complete eigenvalue spectrum. This finally
leads to the free energy and all derived thermodynamical
functions for any generation g, as well as to the correlation
length

ξg = 2g

ln(
g/ζg)
. (17)

In this expression the numerator corresponds to the shortest
path connecting the root sites in the gth generation, and ζg

indicates the second largest eigenvalue (or the third, in case
the two largest eigenvalues are degenerate) of Mg. In the
Supplemental Material [42] we indicate the expressions of the
eigenvalues of M̄g in terms of its matrix elements.

To account for the effect of the external fields acting only
on the internal sites we define the matrix B1 with matrix
elements (B1)i, jk = (B̄1)i, jk B̃ jk , where

B̃ jk = exp

[
1

2kBT

∑
α,β=x,y,z

(
hx

[
�

αβ
j δ(α, x)δ(β, x)

+�
αβ

k δ(α, x)δ(β, x)
]

+ hy
[
�

αβ
j δ(α, y)δ(β, y) + �

αβ

k δ(α, y)δ(β, y)
])]

.

(18)
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As in Eq. (16), the matrix M1 is obtained from

M1 = B1BT
1 . (19)

The presence of external fields largely increases the number
of distinct matrix elements of Mg and Bg. In the Supplemental
Material [42] we indicate the general structure of these matri-
ces Mg, as well as the recurrence maps for the matrix elements
of Mg+1 in terms of those of Mg.

B. Real-space RG for the MSZ6 model on DHLs

The idea of a renormalization-group treatment of a sta-
tistical model is to rescale lengths by iteratively eliminating
degrees of freedom, and renormalizing couplings while look-
ing for scale-invariant conditions associated with the existence
of critical phenomena. On a hierarchical lattice, self-similarity
prevents the generation of effective couplings involving dis-
tant neighbors and increasingly larger sets of lattice sites as
real-space degrees of freedom are decimated. Thus, contrary
to what generally happens in Bravais lattices of dimension
larger than 1, exact real-space renormalization-group solu-
tions of statistical models can be obtained for hierarchical
lattices [35,48].

The Hamiltonian H0 in Eq. (1) is a special case of a more
general HSVD Hamiltonian, which is given by

−HSVD

kBT
=

∑
(i, j)

Ui, j, (20)

in which the sum runs over all nearest-neighbor pairs of sites
i and j,

Ui, j = Kqi : q j + L(qi : b j + bi : q j )

+ L2(qi : b j )(bi : q j ) + Mbi : b j, (21)

and the colon in qi : b j represents the tensor operation

qi : b j =
∑

μ,ν∈{x,y,z}
qμ,ν

i bμ,ν
j . (22)

The two traceless tensors q and b (not to be confused with
the scalar b representing the number of internal links of the
DHL generator) are defined in terms of mutually orthogonal
unit vectors n̂1, n̂2, and n̂3, pointing along the principal axes
of each nematogen. Therefore,

q = n̂1 ⊗ n̂1 − 1

3
I and b = n̂2 ⊗ n̂2 − n̂3 ⊗ n̂3, (23)

where I is the 3 × 3 identity matrix and ⊗ the usual outer
product. This two-tensor formalism, with L2 = 0, was intro-
duced [33] as a tensor representation of the classical Straley
interaction potential between nematogenic units [49], and cor-
responds to the most general bilinear orientational interaction
between biaxial nematogens. The reason for introducing the
term proportional to L2 will become clear below.

The Zwanzig choice consists in restricting the unit vectors
n̂1, n̂2, and n̂3 to point along the Cartesian axes, thereby
defining six possible nematogen states represented by distinct
pairs of tensors (q, b). The correspondence between H0 in
Eq. (1) and HSVD in Eq. (20) is obtained if we choose

K = ε

kBT
, L = �

3
K, L2 = 0, M = L2

K
. (24)

As applied to the DHL shown in Fig. 1, the RSRG scheme
amounts to reversing the inflation process, iteratively replac-
ing each instance of the generator by a single link via a
summation over the corresponding internal spins. This allows
to write the partition function ZN for a lattice containing N
sites,

ZN =
∑

{(q,b)}
exp

(
−HSVD

kBT

)
, (25)

in terms of the partition function Z ′
N ′ for a lattice containing

N ′ sites, with N/N ′ = Ng/Ng−1 → bp as N → ∞ and a renor-
malized Hamiltonian H′

SVD. We explicitly have

ZN = AL′
Z ′

N ′ , (26)

in which L′ is the number of links in the renormalized lattice.
The parameter A and the effective parameters of H′

SVD are ob-
tained by the summation over the internal sites of a generator.
As an example, for b = 2, this summation leads to

A exp
(
U ′

i, j

) =
∑

k

∑
{(qk ,bk )}

exp (Ui,k + Uk, j ), (27)

with the index k running over the p internal sites of the
generator whose end sites are labeled by i and j, and

U ′
i, j = K ′qi : q j + L′(qi : b j + bi : q j )

+ L′
2(qi : b j )(bi : q j ) + M ′bi : b j . (28)

Evaluating Eq. (27) for the possible choices of (qi, bi )
and (q j, b j ) leads to five independent relations between the
couplings

{x1, x2, x3, x4} ≡ {tanh K, tanh L, tanh L2, tanh M},
and the renormalized couplings

{x′
1, x′

2, x′
3, x′

4} ≡ {tanh K ′, tanh L′, tanh L′
2, tanh M ′},

plus the parameter A. See the Appendix for explicit results for
b = 2. Note that it is convenient to use the hyperbolic tangent
to deal with cases in which one or more of the parameters
K , L, L2, and M diverge. Eliminating A from these relations
yields expressions for the couplings {x′

i} in terms of {xi} which
can be written in the form

x′
i = fi(x1, x2, x3, x4) (29)

for i ∈ {1, 2, 3, 4}. These recursion relations define the
renormalization-group (RG) transformation of the model. We
note that omitting the term proportional to L2 in Eq. (21)
would render this system of equations indeterminate, as the
five independent relations between {A} ∪ {x′

i} and {xi} would
be reduced to only 3. We remark that the term proportional
to L2 is nonlinear but respects the expected symmetries of a
nematic phase.

Inspection of the functions fi shows that the choice in
Eq. (24) is not invariant under the recursion relations in
Eq. (29). Thus, the form of the Hamiltonian in Eq. (1) is not
preserved by the RG transformation, in contrast with the form
of the Hamiltonian in Eq. (20).

We now restrict the investigation to the initial points in the
parameter space which are compatible with the geometric-
mean condition and the range 0 � � � 3, and thus with
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Eq. (24). The accessible fixed points {x∗
i } of the RG trans-

formation are given by the solutions of

x∗
i = fi(x

∗
1, x∗

2, x∗
3, x∗

4 ). (30)

We may start with the trivial coordinates

{x∗
i }I = {0, 0, 0, 0}, (31)

which are associated with an isotropic phase. Also, we may
start with

{x∗
i }U+ = {1, 0, 0, 0}, (32)

which are associated with a rodlike uniaxial phase

{x∗
i }U− = {1, 1, 1, 0}, (33)

associated with a disklike uniaxial phase, and

{x∗
i }B = {1, 1, 1,−1}, (34)

associated with the biaxial phase.
As usual, the critical behavior is related to the unstable

fixed points of the RG transformation. The stability analysis is
based on the eigenvalues of the matrix R whose elements are
defined by

Ri, j = ∂ f j

∂xi

∣∣∣∣
{x∗

i }
. (35)

Further details about specific examples, including coordinates
of the unstable fixed points, are provided in the next section.

IV. RESULTS AND NUMERICAL ANALYSIS OF
THE RG FLUXES

According to the approach described in Sec. III A, the
maps for the free energy and its derivatives were iterated
numerically until g = 50, at the stage in which the solutions
converge to fixed values with a relative discrepancy between
two successive generations of order 10−16. We considered
ε = kB = 1, several values of � ∈ [0, 3], and iterated the
maps as a function of T for the range necessary to cover both
transitions, with temperature increment of 10−2. In Fig. 2,
we draw the specific heat c = −T ∂2 f

∂T 2 as a function of T for
� = 0, 0.8, 1, and 1.6.

For � �∈ {0, 1, 3} two cusps are observed at temperatures
TBU and TUI, the critical temperatures for the biaxial-uniaxial
and uniaxial-isotropic phase transitions, respectively. The
value cBU of the specific heat at TBU is always smaller than
the corresponding value at TUI. However, the values of c at
all cusps are always smaller than cUI,�=0, the height of the
single cusp at TUI,�=0 for � = 0, when the biaxial phase is not
observed for any T > 0. An exception to this scenario occurs
at � = 3.0, in which case there is only one cusp with the same
value cUI,�=0 at a much higher temperature TUI. This behavior
for � = 3 can be understood by the fact that all the energy
levels at � = 3 are twice as large as those obtained at � = 0.
When � increases in the interval � ∈ (0, 1), the values of TBU

and TUI approach each other and coalesce at a temperature
TL that characterizes a Landau multicritical point, at � = 1.
At this special point, the c × T curve is smooth, with no hint
of a singular critical behavior. However, for other thermody-
namic functions a critical behavior appears in the context of a

FIG. 2. Specific heat as a function of temperature for � = 0
[light gray (green) solid line], 0.8 [gray (red) dashes], 1 [dark gray
(blue) dashed-dotted], 1.6 (black dashed-dotted-dotted). For � = 0
only one peak is observed, whereas for � = 0.8 and 1.6 two peaks
are observed. The lower peak is always at a lower temperature than
the one for � = 0. At the multicritical Landau point (� = 1), the
curve looks smooth curve for all values of T .

biaxial-isotropic (BI) transition. Some specificities related to
the critical behavior at � = 1 will be discussed later on. When
� further increases in the interval � ∈ (1, 3) the values of TBU

and TUI move apart.
In Fig. 3, we show curves of ξ × T for four different values

of � = 0, 0.8, 1, and 1.6. For the sake of a better under-
standing, we find it useful to use subscripts BU, UI, and BI
to describe each of the three distinct phase transitions. When
one works within the TM approach, the correlation length is
defined in terms of the largest eigenvalue 
 of M and the
second largest eigenvalue distinct from 
. Let us denote the
three largest eigenvalues of the TM, in decreasing order, by 
,
ζ , and �. For the MSZ model on DHL we have found that 


and ζ coalesce for all T � TUI. Thus, while we define ξUI in
terms of 
 and ζ for T > TUI, we have found that the BU
transition at TBU < TUI can be characterized by ξBU, which
is defined in terms of 
 and �. At � = 1, the BI transition
is also investigated by ξBI defined in terms of 
 and ζ for
T > TBI.

In Fig. 3(a), we illustrate the typical behavior of ξUI. For
� = 0, this correlation length diverges at TUI = 6.4921 . . .,
the same temperature at which the specific heat cusp occurs.
As 
 and ζ coalesce within a precision ∼10−16 for T < TUI,
ξUI is characterized by a numerical divergence in that tem-
perature interval. The behavior of ξUI for T > TUI is typical
of a second-order phase transition, from which it is possible
to evaluate the critical exponent ν. The scenario for � = 0.8
shown in Fig. 3(b) indicates a similar divergence of ξUI, while
there are two divergences of ξBU at both TBU = 2.1173 . . .

and TUI = 5.8702 . . ., whereby the coalescence between 


and � is observed only for T < TBU. Thus, for 0 < � <

3, � �= 1, two continuous phase transitions are observed. The
fact that the uniaxial-isotropic transition is predicted to be
continuous is in contrast with the (weak) first-order transitions
predicted by the experimental results. On the other hand,
mean-field treatments generally predict a much stronger first-
order uniaxial-isotropic transition [1].
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FIG. 3. Correlation length ξUI (black solid line) and ξBI [gray (red) dashes] as a function of temperature for � = 0 (a), � = 0.8 (b), � = 1
(c), and � = 1.6 (d).

Finally, regarding Fig. 3(c), we also observe a clear diver-
gence of ξBI for � = 1 at TBI = 4.582 . . ., which characterizes
the Landau point, where the four phases meet: isotropic, bi-
axial, and two uniaxial phases, a calamitic (rodlike) phase for
� < 1 and a discotic (disklike) phase for � > 1. The behavior
of the correlation length contrasts with the curve c × T for
� = 1, shown in Fig. 2, which is completely smooth, even
at TBI. However, when we consider the limits � → 1−(+),
the observed pattern consists of two smooth Shottky maxima,
placed respectively to the left of a small cusp at TBU and to
the right of another small cusp at TUI. At the Landau point,
the two cusps disappear when TBU and TUI coalesce at TBI.
By way of contrast, the two curves for ξB and ξU also get
closer and closer in the same limit, but each of them preserves
its divergent character at TBI for � = 1. The reasons for this
unexpected behavior will be discussed later in this section,
together with the evaluation of the critical exponents.

In Figs. 4 and 5 we illustrate the dependence of mx, my, S,

and η with respect to T for several values of � that correspond
to all different patterns. Our results show that, irrespective of
the shapes of the curves for mx and my observed for different
values of �, S, and η vanish identically for, respectively,
T > TUI and T > TBU. At the Landau point we also observe a
consistent scenario, where mx and my coincide, both vanishing
at TBI.

The general susceptibilities, which are second derivatives
with respect to the field components χx ≡ (∂2 fg/∂h2

x )|hx=0

and χy ≡ (∂2 fg/∂h2
y )|hy=0, directly reflect the behavior of mx

and my shown in Fig. 4. At � = 0, there is only one critical
divergence at TUI for both field components χx and χy. For
� > 1, divergent behaviors are observed at TBU and TUI for
both χx and χy. On the other hand, as the curve for mx at
TBU is smooth when � < 1, χx is characterized by a single
critical behavior at TUI while χy diverges at both TBU and

TUI. The behavior of χx and χy when � = 1 can be also
similarly inferred from mx and my. They coincide with each
other, diverging at TBI. These features are clearly illustrated in
Fig. 6.

The uniaxial and biaxial susceptibilities χS and χη can be
obtained by summing or subtracting χx and χy in accordance
with the expressions for S and η in Eqs. (10) and (11). The
overall aspects of the dependence of χx and χy as functions of
T are essentially the same as those displayed in Fig. 6

We remark that, from the present results, the divergences
of ξ provide the best estimations for the critical temperatures
for all values of � in the interval 0 � � � 3, with at least
14 digits. They have been used to draw the phase diagram
in the (Tc,�) plane in Fig. 7, with the regions associated
with the four different phases. We observe that the phase
diagram shares the same aspect as other theoretical phase
diagrams for biaxial liquid crystals [2,28,32,50,51]. The main
difference lies in the fact that, as already mentioned, the UI
(or nematic-isotropic) transition is experimentally known to
be weakly first order. The second-order UI phase transition
of the MSZ model in DHL is most probably an artifact of
the lattice, as it has been extensively discussed in the case
of the q-state Potts model that always exhibits continuous
transitions in DHLs. Indeed, as reported in [44], on the basis
of an extensive use of RSRG analyses, no first-order phase
transitions have been found in these structures. This is in
contrast with the Potts model on the square lattice, which is
known to display a second-order phase transition for q � 4
and first-order transitions for q > 4 [43].

The very precise values of the critical temperatures ob-
tained with the TM method make it possible to independently
estimate the critical exponents associated with various ther-
modynamic functions for all observed transitions. From the
numerical calculation of the logarithm of the associated

FIG. 4. First derivatives mx (black solid line) and my [gray (red) dashes] of the free energy with respect to the fields hx and hy as a function
of temperature for � = 0 (a), 0.8 (b), 1 (c), and 1.6 (d).
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FIG. 5. Uniaxial S and biaxial η order parameters as a function
of temperature for several values of �. Line types and colors are the
same used in Fig. 2.

functions, in terms of reduced temperature t = |T − Tc|/Tc,
we obtain the asymptotic values

c ∼ (T − Tc)−α, c ∼ (Tc − T )−α′
, (36)

ξ ∼ (T − Tc)−ν, ξ ∼ (Tc − T )−ν ′
, (37)

S ∼ (Tc − T )βS , η ∼ (Tc − T )βη , (38)

FIG. 6. General susceptibility χx as a function of temperature
for several values of �. The susceptibility χy shows quite similar
profiles, with exception of the presence of another divergence at the
BU transition temperature for � < 1. Line types and colors are the
same used in Fig. 2.

FIG. 7. Phase diagram in the � × T plane. The Landau point
is located at (�, T ) = (1, 4.582). Each point in the diagram was
obtained by iterating the maps with a fixed value of the biaxiality
parameter �. All lines represent continuous transitions.

in which Tc may represent TUI, TBU, and TBI. In the Sup-
plemental Material [42] we present some graphs illustrating
the used procedure. The values of the slopes in these graphs,
which correspond the critical exponents, are shown in Table I
for UI, BU, and the � = 1 BI transitions. We remark that, for
the BI transition, the exponents α and α′ could not be inde-
pendently evaluated within the TM approach, as the specific
heat curves appear completely smooth.

The values that we have obtained can be used to test
the Rushbrooke, α′ + 2β + γ ′ = 2, and the hyperscaling re-
lations, νd = 2 − α, in the TM approach. Our estimates
indicate that, for the UI and BU transitions, these relations
are satisfied within an error of less than 1%. However, for the
BI transitions, we tested the accuracy of the TM approach by
evaluating the values of α and α′ using the above relations.
The two obtained values differ by ∼6%. The UI and BU
transitions are in different universality classes. However, the
universality class of the uniaxial-isotropic transition for the
intrinsically uniaxial model, for � = 0, remains the same with
the addition of biaxiality. That is, this transition continues to
belong to the same universality class of the three-state Potts
model in the DHL, while the BU transition belongs to the
same universality class as the Ising model in the same lattice
[52,53]. Finally, we were unable to identify whether the BI
transition belongs to any previously described universality
class.

It is fortunate that our calculations lead to critical be-
haviors compatible with three-state Potts and Ising models.

TABLE I. Critical exponents. In the biaxial-isotropic transition,
α and α′ were obtained via hyperscale and Rushbrooke relations.

ν α α′ β γ ′

Uniaxial-isotropic 1.205 −0.418 −0.41 0.159 2.091
Biaxial-uniaxial 1.338 −0.68 −0.678 0.1617 2.3531
Biaxial-isotropic 5.99 −9.98 −9.38 0.49 10.4
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FIG. 8. Sketch showing a subset of the flows of the RG transfor-
mation. Labels are defined in the main text.

In the transition between the uniaxial nematic and isotropic
structures, the Hamiltonian terms associated with biaxiality
are irrelevant, as it can be checked by looking at the eigen-
vectors of the renormalization-group relations in the vicinity
of the appropriate fixed points, indicated in Eqs. (39) and
(40) below. On the other hand, uniaxial order, in our MSZ6
model, involves the breaking of a threefold symmetry, hence,
the transition between the uniaxial and the isotropic phases
must be in the three-state Potts universality class. In addi-
tion, slightly above the critical temperature of the transition
between uniaxial and biaxial phases, there is already a partial
symmetry breaking associated with uniaxial order. As such
order is threefold degenerate, out of the sixfold degeneracy of
the Hamiltonian there remain two compatible states only, so
that breaking the remaining symmetry involves a transition in
the Ising universality class. Of course, the observation of these
universality classes is an artifact of the discretization leading
to the MSZ6 model, and is not expected to be reproduced for
rotationally continuous models.

In the case of the “thermal” exponents α and ν, a check is
provided by the RSRG treatment of Sec. III B, which we then
use to treat the b = p = 2 with the transfer-matrix method.
The fixed points associated with the various phases are listed
in Sec. III B. We now discuss the unstable fixed points asso-
ciated with the transitions between those phases, which can
be obtained numerically from the solutions of Eq. (30), with
values of up to 4 digits.

There are two fixed points related to the UI transition,

{x∗
i }U+I = {0.8824, 0, 0, 0}, (39)

which governs the transition between the isotropic and the
rodlike uniaxial phases, and

{x∗
i }U−I = {0.3333, 0.3333, 0, 0.3333}, (40)

which governs the transition between the isotropic and the
disklike uniaxial phases. On the other hand, there is a single
fixed point governing the BU transition

{x∗
i }BU = {1, 0.9815,−0.7231, 0.2956}. (41)

Finally, there is a multicritical fixed point associated with the
maximum-biaxiality case � = 1:

{x∗
i }M = {0.9872, 0.7900,−0.1869, 0.1869}. (42)

A simplified scheme showing part of the flows between the
various fixed points is presented in Fig. 8.

The critical exponents can be calculated from the behavior
of the RG equations around a given critical fixed point {x∗

i }. If
we are sufficiently close to this fixed point, we write

|x′ − x∗〉 = R |x − x∗〉, (43)

in which R is the matrix defined in Eq. (35), and | . . .〉 is the
vector whose components are given by xi − x∗

i . If we denote
by λ j an eigenvalue of the matrix R and by |v j〉 and 〈v j | the
corresponding normalized right and left eigenvectors, so that
we have the scalar products 〈vl |v j〉 = δ jl , we can write

|x′ − x∗〉 =
4∑

j=1

u j |v j〉 (44)

in which the scaling fields u j are given by

u j = 〈v j |x − x∗〉. (45)

If we order the eigenvalues of R so that |λ1| � |λ2| � |λ3| �
|λ4|, it is clear from iterating Eq. (43) that the RG flow near
the fixed point is governed by λ1, as long as the corresponding
scaling field u1 is not negligible.

The RG eigenvalues y j around a critical fixed point are
related to the eigenvalues λ j of the matrix R given by Eq. (35)
so that

y j = ln λ j

ln b
. (46)

In particular, if λt is the largest eigenvalue of R with a nonva-
nishing scaling field, the correlation-length critical exponent
ν is related to the corresponding “thermal” RG eigenvalue yt :

ν = 1

yt
= ln b

ln λt
. (47)

Around {x∗
i }UI we obtain yt = y1 � 1.778, so that

νUI � 1.205, (48)

in excellent agreement with the numerical estimate from the
TM calculations. It should be pointed out that K is the only
nonzero parameter at {x∗

i }UI, and that the uniaxial order pa-
rameter S becomes nonzero at the UI transition. Thus, we
should expect that, starting from a temperature below TUI,
under the RG transformation the parameter K flows towards
K → ∞ (which means x1 → 1), as we have indeed checked.

For the biaxial-uniaxial transition, we obtain yt = y1 �
1.679, which leads to the correlation-length exponent

νBU � 1.338, (49)

which is again in excellent agreement with TM results.
Finally, for � = 1 there is a single biaxial-isotropic transi-

tion governed by the fixed point {x∗
i }M . The associated thermal

RG eigenvalue is yt = y2 � 1.123 rather than y1 � 1.790,
since the scaling field u1 becomes negligible as the fixed point
is approached starting from the geometric-mean condition in
the neighborhood of the Landau temperature Tc � 4.581 . . . .
This is compatible with the fact that the direction defined by
the eigenvector associated with the largest eigenvalue of R at
{x∗

i }M leads to flows towards the uniaxial phases, which are
not expected to be realized starting from the maximally biaxial
case � = 1. The correlation-length critical exponent is

νBI � 5.993, (50)
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which is again in agreement with the transfer-matrix results.
We remark that, for this particular value of ν, the hyperscale
relation indicates that α � −9.986, which agrees quite well
with the value in Table I, and explains why the specific heat
curve looks completely smooth around TBI.

Of course, it is possible to add formal field terms to
HSVD in order to investigate the “magnetic” scaling fields and
determine the order-parameter critical exponents. However,
the complete agreement between the obtained results within
the TM and RG approaches for α and ν, as well as the inde-
pendent check obtained by the Rushbrooke relations, provide
enough confidence for the values of β and γ obtained by the
TM approach.

It is worth to compare the critical exponents obtained in
this work with the corresponding experimental results for
the uniaxial-biaxial transition. Boonbrahm and Saupe [54]
and later Melnik et al. [55] obtained β = 0.38 ± 0.03 and
γ = 1.29 ± 0.08, for the BU transition in a lyotropic mixture.
These values are in reasonable agreement with the exponents
for the XY model in three dimensions. However, the critical
behavior for the BU transition in this case seems to depend on
the relative composition of the mixture and therefore could not
be universal [56]. In any case, the values of critical exponents
for the BU transition in Table I are quite different from the
experimental results. We still do not have experimental data
for the BU transition in thermotropic liquid crystals.

V. CONCLUSIONS

We used real-space renormalization-group techniques to
analyze global phase transitions and critical phenomena in a
class of six-state Maier-Saupe-Zwanzig models, whose mean-
field version is known to lead to a sequence of biaxial nematic,
uniaxial nematic, and disordered structures, as the tempera-
ture increases, and to the possibility of occurrence of a Landau

multicritical point. From an exact decimation procedure in a
diamond hierarchical lattice, we regain a similar qualitative
picture, which is in overall agreement with experimental find-
ings for biaxial nematic systems. Results are confirmed by an
alternative renormalization-group calculation on the basis of
a transfer-matrix technique. According to these calculations,
the biaxial-uniaxial transition belongs to the same universality
class of the Ising model on the diamond lattice. The uniaxial-
isotropic transition, however, belongs to the universality class
of the Potts model on the diamond hierarchical lattice, which
is also the same universality class of the much simpler three-
state uniaxial MSZ lattice model. We point out that the weak
uniaxial-disordered transition of our calculations is far from
the weak first-order transition, as it is found in mean-field
calculations, and it is generally accepted in the literature. This
type of behavior may be attributed to special features of the
hierarchical lattices. Along the same lines of this work, it is
certainly possible to carry out additional investigations, using
more elaborate hierarchical lattices and other generators of the
renormalization group.
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APPENDIX: DETAILS OF THE RSRG CALCULATION

The explicit forms of the relations obtained from Eq. (27)
in the case b = 2 are

Ae
2
3 K ′+2M ′ = (

e
4
3 K+4M + e

4
3 K−4M + e− 2

3 K+4L+2M+2L2 + 2e− 2
3 K−2M−2L2 + e− 2

3 K−4L+2M+2L2
)p

, (A1)

Ae
2
3 K ′−2M ′ = (

2e
4
3 K + 2e− 2

3 K+2L + 2e− 2
3 K−2L

)p
, (A2)

Ae− 1
3 K ′+2L′+M ′+L′

2 = (
2e

1
3 K+3M+2L+L2 + 2e

1
3 K−3M−L2 + 2e− 2

3 K−2L
)p

, (A3)

Ae− 1
3 K ′−2L′+M ′+L′

2 = (
2e

1
3 K+3M−2L+L2 + 2e

1
3 K−3M−L2 + 2e− 2

3 K+2L
)p

, (A4)

Ae− 1
3 K ′−M ′−L′

2 = (
2e

1
3 K+M−L2 + e

1
3 K−M−2L+L2 + e

1
3 K+2L−M+L2 + e− 2

3 K−2M−2L2 + e− 2
3 K+2M+2L2

)p
, (A5)

from which expressions of the form shown in Eq. (29) follow
by isolating K ′, L′, L′

2, and M ′ in terms of K , L, L2, and M.
Although straightforward, this procedure yields rather long
expressions which we refrain from presenting here.
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