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Role of thermal fluctuations in biological copying mechanisms
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During transcription, translation, or self-replication of DNA or RNA, information is transferred to the newly
formed species from its predecessor. These processes can be interpreted as (generalized) biological copying
mechanism as the new biological entities like DNA, RNA, or proteins are representing the information of their
parent bodies uniquely. The accuracy of these copying processes is essential, since errors in the copied code can
reduce the functionality of the next generation. Such errors might result from perturbations on these processes.
Most important in this context is the temperature of the medium, i.e., thermal noise. Although a reasonable
amount of experimental studies have been carried out on this important issue, theoretical understanding is truly
sparse. In the present work, we illustrate a model study which is able to focus on the effect of the temperature on
the process of biological copying mechanisms, as well as on mutation. We find for our paradigmatic models that,
in a quite general scenario, the copying processes are most accurate at an intermediate temperature range; i.e.,
there exists an optimum temperature where mutation is most unlikely. This allows us to interpret the observations
for some biological species with the aid of our model study.

DOI: 10.1103/PhysRevE.103.032110

I. INTRODUCTION

During some essential processes in biology, such as DNA
or RNA replication, transcription, translation, synthesis of
DNA from RNA, biological information is transferred from
one biological entity to its successor. As it is commonly
accepted, the sequence of amino acids of DNA and RNA en-
codes the information for all building blocks of living matter.
More precisely, DNA or RNA strands work as templates and
the base sequence in the template strand provides signals to
synthesize the desired product. For example, in the course of
the DNA or RNA replication process a copy of the parent
DNA or RNA is formed by following the sequence of bases
in the originator strand. In another mechanism, known as
transcription, messenger RNA (mRNA) is produced by read-
ing the information about the arrangement of bases from a
particular segment of the template DNA strand. The biological
information stored in the newly synthesized mRNA is uti-
lized to generate the protein in the cell during the translation
process. Transcription and translation are two fundamental
steps for protein synthesis in living organisms and these two
processes together are termed as gene expression. During
all of these functions, biological information flows from the
initiator biological macromolecule to the product body. There-
fore, these processes can be seen as copying of biological
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information [1–6]. The characteristics of the lineage of species
and proper biological functions in a cell which also affects
the nature of the next generations, depend decisively on the
correctness of these biological copying mechanisms. For ex-
ample, DNA replication during cell division is an essential
part of the growth and reproduction of a biological species.
Also, the appropriate proteins need to be synthesized in the
cells to properly regulate cell divisions and growth of the
organisms. Both of these processes, DNA replication and pro-
tein synthesis, involve copying of information from the parent
body to its successor.

Error in the copying process of DNA results in a wrong
sequence of information that would lead to mutation, i.e.,
an alteration in the appropriate genetic arrangement of the
species [7]. The study of mutation is a very active area of
research since the introduction of the science of evolution [8]
and the idea of natural selection [9] in early 19th Century and
has immense implication in contemporary science [10–18]
as it constructs the framework of the basic understanding of
the evolution of species. Mutation can be both harmful and
beneficial [19–27]. If the mutation is harmful, then the mu-
tated species has less chance to survive. However, beneficial
mutation in organisms is supposed to favor the survival of
the species in the present environment. However, beneficial
mutations might be lost or harmful mutations might be rec-
tified because of the random fluctuations associated with the
process. Nevertheless, mutation contributes to the evolution of
species to fit in the current environment. Therefore, it is very
crucial to understand the effect of the surroundings on muta-
tion, or more accurately on the biological copying processes,
the error in which causes mutation. Although there are exten-
sive studies on mutation in diverse directions, the influence of
the environmental parameters on mutation is comparatively
less explored [28–30]. While a fair extent of attention has
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been drawn towards the experimental studies [31–39] on this
subject, theoretical investigations are essentially countable
[24–26]. Here, in the present work we address this issue to
establish a theoretical interpretation of this important matter.

Since all chemical reaction rates are temperature depen-
dent, as well as the biochemical processes in a more general
sense [40], we presume that the temperature is an elemen-
tary factor that can directly impact mutation. Moreover, the
molecular machinery which performs the copying processes
lives on the nanoscale: Individual amino-acids are transported
and get attached to the strand, where molecular motors act
stepwise. This whole process is stochastic, and the intensity
of the noise is also related to the environmental temperature.
Actually, for purely mechanical nanosystems, the theory of
stochastic thermodynamics [41] has been developed, which
allows us to describe such isothermal nonequilibrium systems.

Here, we aim to analyze the effect of temperature on
mutations, or more precisely, on the process of biological
copying. We propose a generalized scheme as a model for
such biological copying processes and study the correctness
or error in the procedures as a function of temperature. Errors
in the copying process, if it is for DNA, cause mutations in the
species. It has been found that defects in translation can also
give rise to mutations [42]. Therefore, at the end of Sec. III B,
we compare the temperature dependence of our model for the
copying process to empirical findings on the mutation rates in
real biological species.

In real biological systems, there occurs another additional
step along with replication of the biological memory, which
is known as the proofreading procedure [43–53]. This step
reduces the error in the copying processes. Here, we disre-
gard this error-correcting step [2] and only concentrate on the
efficiency of the biological copying process as a function of
temperature. Our main result to be presented below is that its
error rate depends in a nontrivial nonlinear way on temper-
ature. The success rate of the biological copying processes
exhibits a maximum at an intermediate value of temperature,
i.e., there is an optimum temperature for maximal accuracy
and hence minimal mutation rate.

II. TWO MODEL SYSTEMS AND THEIR DYNAMICS

For convenience, we will in the following only consider
the replication or transcription of DNA, hence we speak about
biological information which is encoded by only four different
symbols, namely, by the bases Adenine (A) or a Guanine (G)
or a Cytosine (C) or a Thymine (T ). Also for convenience, we
have here suppressed the base Uracil (U ) which might occur
as an alternative to Thymine T with the same information
content. Our models can be straightforwardly extended to the
problem of translation, where 20 different codons (triples of
these bases) encode the information for amino acids and hence
the information needed for protein synthesis.

We propose two general models for biological copying
processes to understand the effect of the environmental noise
on these mechanisms. We summarize external noises under
the notion of temperature, and hence investigate the influence
of temperature on these essential biological functions. Both
of our models will represent dynamical input-output relations.
We interpret the sequence of bases which is being replicated

or transcribed or translated as an input signal (as they dictate
the outcome of the process in a finite time) and the comple-
mentary base which comes and binds to the growing strand
during the replication and transcription process and the amino
acid which joins the elongated chain in case of the translation
process to be the output of the given procedure. In the course
of copying a long sequence, the system is out of equilibrium
the whole time. These biological processes occur in systems
of very small scale. Therefore, the role of thermal fluctuations
becomes important to consider. Consequently, we propose
stochastic dynamics for the output of the copying process,
where we ignore all biochemical details of the microscopic
processes.

A. Langevin model

In our first model, we use the dynamics of a Brownian
particle in an appropriate potential to symbolize the output
as a function of the input. The input signal is assumed to be
a random sequence of the four symbols A,C, G, T which is a
sufficiently good approximation to coding DNA strands: By
eye, no regularities in the sequence of bases can be recog-
nized, and all bases occur with roughly the same frequency
[54]. To exploit this symmetry, we will replace the letters
A,C, G, T by the index i ∈ {1, 2, 3, 4}.

We introduce a stochastic variable x which represents the
output of the copying process. In other words, the value of x
signifies the base which joins to the growing strand during
the copying mechanism. The dynamics of the output x is
modeled by the following over-damped Langevin equation in
a potential landscape V (x, Si ), in dimensionless form,

ẋ = −V ′(x, Si ) +
√

Dξ (t ). (1)

The first term on the right-hand side of the Eq. (1) expresses
the force derived from the deterministic potential V (x, Si ),
where Si is a time dependent control parameter which even-
tually will be the input. Before we explain this in detail,
we discuss the noise term ξ (t ). This represents zero-mean,
Gaussian, white noise and obeys the fluctuation-dissipation
relation. This noise term signifies the thermal fluctuations
driving the dynamics. The properties of ξ (t ) are as follows:

〈ξ (t )〉 = 0,

〈ξ (t )ξ (t ′)〉 = 2δ(t − t ′). (2)

Equation (1) represents the over-damped Brownian dynamics
in dimensionless form. In the course of making the actual
Langevin dynamics dimensionless, the quantity D appears as
a ratio of the temperature of the environment and a reference
temperature [55]. Therefore, D stands for the scaled temper-
ature of the system and is the measure of the strength of the
thermal fluctuations.

The potential landscape V (x, Si ) has as many minima as
there are possible symbols for the output, i.e., four in the
case of DNA replication or transcription. For fixed Si, the in-
variant probability distribution, ρ0(x) ∝ exp[−V (x, Si )/2D],
has a maximum at each minimum of V (x, Si ), so that under
coarse-graining of x we can associate an output symbol to x.
Here, the potential energy minima do not correlate to the free
energies of the bases or the amino acids. Instead we impose
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FIG. 1. The modified potential landscape for the replication or
transcription process when the system reads the signal i = 1. This
potential is considered in the Langevin model.

some symmetry in i: For given input Si, there is one global
deepest minimum with energy Vc which corresponds to the
biologically correct output of the copying process, and all
other minima with the depth Vw are shallower. Therefore, the
probability to observe x in the “correct” state is higher than
to find it in one of the “wrong” states. When the input signal
changes, the previously deepest minimum becomes shallower
and another minimum assumes the value Vc.

To be specific and to perform numerical simulations, we
chose the following potential: We concatenate four sinusoidal
minima on the real axis, where the ith minimum has the value
2a given by

V (x, Si ) = a cos(x) − (a − 1), x ∈ [2(i − 1)π, 2iπ ], (3)

while the others have a depth of 2 given by

V (x, Sj ) = cos(x), j �= i, x ∈ [(2( j − 1)π, 2 jπ ]. (4)

The parameter a determines the ratio of energies of the local
and the global minimum. We call a the well-depth factor
(wdf). The term (a − 1) in Eq. (3) has to be subtracted to have
a smooth potential. At x = 0 and x = 8π we impose reflecting
boundaries. We illustrate the potential for a given input signal
i = 1 in Fig. 1. In Fig. 2, we translate this into the scenario of
replication or transcription of DNA.

The last ingredient to our model is the pacing: We assume
that the input string {Si} is shifted at time intervals of Tstep

by one step, i.e., at multiples of Tstep the parameter Si is
replaced by Si+1 and the potential is changed correspondingly.
Therefore, the process is out of equilibrium, and the motion
of x(t ) is transient. To study this model, we will numerically
integrate the Langevin dynamics Eq. (1) subject to a given
input signal {Si} and find the time evolution of the stochastic
variable x(t ). We let the system evolve for a considerably long
time Tstep compared to its relaxation time τ and define this
time duration as the evolution time (tev). In the ideal situation,
at time Tstep, which we consider as a single step of the copying
process, x(t ) has settled down in the deepest well and hence
represents the correct output. A sequence of such steps mimics

FIG. 2. The schematic diagram of the modification of the poten-
tial in the Langevin model representing replication or transcription.
In this particular example the copying machinery detects signal T
and the well corresponding to the correct output A gets lowered.

the process of replication or transcription or translation. The
number of steps correlates to the amount of information that is
being copied in the developing entity from the parent DNA or
mRNA chain, or in other words the length of the predecessor
template strand. Although the accurate copying of informa-
tion implies a value of x in the appropriate well, x being a
stochastic variable, there is a chance that it ends up in a wrong
well. At the end of the each step, we examine whether x(t ) has
a value that signifies the correct output well corresponding to
the input signal Si. This scheme stands for a direct stochastic
algorithm that can be considered as a general representation
of biological copying mechanisms. To examine whether the
initial condition of x has any effect on the measurement, we
consider random initial condition for the dynamical variable
x, for an ensemble of trajectories, subject to random input
signals and estimate the quantities of our interest taking an
average over that ensemble.

We solve the over-damped Langevin dynamics Eq. (1)
numerically using the improved Euler algorithm or Heun’s
method [56]. This is essentially a second order Runge-Kutta
method to solve ordinary differential equations with a noise
term. In this method, two evaluations of the function is re-
quired at each step. The integration time step δt has been taken
to be equal to 10−3. The Gaussian white noise term has been
generated by the Box-Muller algorithm.

A recent study [57] possesses some similarity in terms
of the model as compared to our current research, so that
we want to emphasize here the fundamental differences. The
work by Chiuchiu et al. [57] considers heteropolymerization
in terms of reaction coordinates which follow a Langevin
dynamics similar to our Eq. (1). Their potential represents the
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FIG. 3. Schematic diagram of the four-state model representing
replication or transcription.

Gibbs free-energy landscape which is also a one-dimensional
potential depicted in terms of the reaction coordinate. At the
reaction network node, three reactions compete; incorporation
of the right monomer, incorporation of the wrong monomer
and removal of the lastly added monomer. The last step is
not a part of the biological copying process and therefore not
present in our model. And unlike in this paper, our coordinate
x cannot be interpreted as a reaction coordinate but instead,
after coarse-graining, signifies the output value of the copying
process.

B. Four-state model

The above Langevin model is a one-dimensional model
that is based on an energy landscape along a line. If the input
flips from 1 to 4 and we assume that the particle was in the
first well, then the trajectory has to pass through wells 2 and
3 to produce the correct output at the end of the next tev. To
study whether this might have some nondesired effects, we
introduce a second model. This model has a discrete state
variable which can be in one of four states, defined by the
symbols A, T or U , G and C. The model is illustrated in Fig. 3.

The states again denote the “output” of the copying pro-
cess, i.e., they indicate which base will be attached to the
growing strand in the next time step. During this process, the
free base pairs in the pool experience some sort of nonbonded
attraction (van der Waals) towards the growing strand. So,
for example, say A and G have some interaction energy with
the growing strand. Although there is a difference in energy
due to their difference in structure, we assume this to be so
small that in the model there is no distinction. However, when
the copying machinery detects the signal T , it develops a
bonding interaction with A. So, there occurs a lowering of the
potential well for A, while for G, the interaction still remains
of nonbonded type. So, that energy gap remains unaltered.
Hence, the proper interaction will have the lowest energy that
will make escape from that state difficult and transition from
other states to that state easier.

FIG. 4. Schematic diagram of the modification of the energy
barriers between the states of a four-state model when the system
receives a particular signal.

In our model dynamics, the susceptibility towards jumping
from one state to another will be determined by the associated
Kramers rate [58–61].

When no input signal is present, we consider that the rate of
transition from one state to another is equal for all four states
without any kind of bias. In this case, the new DNA strand
will be a random sequence. However, the energy barriers get
modified when the system reads a distinct input signal from
the parent strand, since then the additional binding force to the
complementary base of the parent strand favors the attachment
of exactly one specific base. We assume that the potential
well for the correct state is lowered by a factor b, whereas
for simplicity we assume that it remains unchanged for the
others. So b has a similar interpretation of the wdf as discussed
in the case of the Langevin model. In Fig. 4 we illustrate
this for DNA replication, where the system reads the input T
and correspondingly lowers the potential well for state A. The
potential well of state A being lowered, the transition from A
to any other state becomes less probable, since the potential
barrier to overcome is higher. Conversely, the probability to
jump in between any two other states remains unchanged. So
the trapping in the correct state is strengthened, but the escape
from the “wrong” states is not.

Our model equations are then describing the rates of
change of the probabilities of being in state A, T or U , G,

and C, i.e., the dynamics of PA, PT , PG, and PC , respectively.
The total probability is normalized and, therefore,

PA + PT + PG + PC = 1. (5)

As an example, the rate equation for PA can be written as

dPA

dt
= kTAPT + kGAPG + kCAPC

− kAT PA − kAGPA − kACPA. (6)

Here, kTA, kGA, and kCA represent Kramers rate of transition
from the other three states to state A and kAT , kAG, and kAC

denote the same for passage from state A to the other three
states. These rates are proportional to the exponential of the
negative of the energy difference between the states scaled by
the factor kBT where kB is the Boltzmann constant and T is
the temperature of the environment. For example, kAG and kGA

can be expressed as [62]

kAG ∼ exp
(
− EAG

kBT

)
, kGA ∼ exp

(
−EGA

kBT

)
. (7)

Similarly, we can write down the expressions for all other
rate pairs and consequently, the rate equations for all other
probabilities, such as, PT/U , PG, and PC . The time evolution
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equations for these probabilities are coupled differential equa-
tions guided by the Kramers rate of transition between the
states. Without any input signal, these rates are equal and
when we solve the system of rate equations for the probabili-
ties, asymptotically we retrieve equal occupancy P = 1/4 for
each state.

Our model is calibrated in the following way: As said,
the depths of the energy wells can be interpreted as binding
energies of bases to the growing strand and to the complemen-
tary base of the “input.” The thermodynamic energy function
which corresponds to the well depth in our model is the dif-
ference in Gibbs free energy of binding of a specific base with
two individuals. In aqueous medium, this ranges from 0 to −2
kcal/mol at room temperature, obtained experimentally and
also by molecular dynamics studies [63]. Converted into Joule
per molecule, the actual energy differences which enter the
Kramers rates are then of the order of kBTroom where Troom =
300 K. This allows us to calibrate the noise strength D in terms
of the temperature of the environment T in our the Langevin
model. The potential barriers �V in the energy landscape of
V (x, Si ) can be considered to represent the Gibbs free energy
of binding of a given base with all the types of nucleic acid
bases present in the system. We then have

�V

2D
≈ �G

kBT
= �G

kBTroom
× Troom

T
. (8)

Now, we have found that the factor �G/(kBTroom) is of the or-
der of 1 and �V is set to 2 by us for the unperturbed potential.
Therefore, we get, D ≈ T/Troom. This analysis clarifies our
definition of D as the scaled temperature of the system where
the reference temperature that proportionates the temperature
of the environment, as mentioned in Sec. II A, is the room
temperature. Actually, from the values of binding energies of
different base pairs, we also conclude that a realistic well-
depth factor is b ≈ 4 and more generally between 1 and 10.

Let us now consider the example when the system reads
the signal T such that the potential well of A deepens by the
factor b > 1. Hence, all energy barriers from A to the other
states increase by a factor b. This reduces all Kramers rates
for the transition from A to the other states, exemplified here
for A → G:

k′
AG ∼ exp

(
−bEAG

kBT

)
= kb

AG, (9)

whereas kGA remains the same. All other energy gaps and the
corresponding Kramers rate change accordingly. Therefore,
we can rewrite Eq. (6) as

dPA

dt
= kTA/UAPT/U + kGAPG + kCAPC

− k′
AT/AU PA − k′

AGPA − k′
ACPA. (10)

The other three rate equations can be altered in the similar
way by considering appropriate transition rates. Now, the set
of four rate equations for the probability of states serve as the
representation of the dynamics of the system when it reads a
particular signal. We analytically solve these differential equa-
tions to get the probability in the long time limit. For the ideal
copying process, the correct state is expected to be occupied
with a probability close to 1 as the modified rates introduce
proper bias into the transition probabilities between the states.

However, the precise value of this probability depends on the
parameters influencing the dynamics, and most prominently
from the environmental temperature T .

Analytical solution of the four-state model

It is straight forward to derive the analytical solution of
the rate equations for the probability of the states. Let us first
consider Eq. (6), the situation without external input. All the
transition rates between the states are equal, i.e.,

kAT/AU = kTA/TU = kAG = kGA = kAC = kCA

= k. (11)

Introducing this condition Eq. (11) in Eq. (6), we arrive at the
following equation:

dPA

dt
= k(PT/U + PG + PC ) − 3kPA. (12)

Incorporating the normalization condition Eq. (5) in Eq. (12),
we obtain

dPA

dt
+ 4kPA = k. (13)

Multiplying Eq. (13) with the integrating factor e
∫

4kdt , we in-
tegrate the equation from initial time at t = 0 to any arbitrary
time t and get the following form of PA as a function of t ,

PA(t ) = PA(0)e−4kt + 1

4
[1 − e−4kt ], (14)

where PA(0) is the initial value of the probability for state
A. Equation (14) shows that in the asymptotic limit, i.e., for
t → ∞, PA becomes 1

4 . The same is true for the probability
of any other state. This is physically understandable that in
absence of any external bias all possible states have the equal
probability of occupancy.

Next, we consider the copying process when the system
receives a particular signal and the transition rates between
the states get modified accordingly. In our example, as the
system reads signal T , the minima corresponding to the state
A gets lowered. Taking into account Fig. 4 and Eq. (9), we can
understand that kTA/TU , kGA, and kCA will remain unaltered,
whereas kAT/AU , kAG, and kAC will take larger values. At this
point, we define the transition rates for this circumstance as
follows:

kTA/TU = kGA = kCA = k,

k′
AT/AU = k′

AG = k′
AC = k′.

(15)

Considering the above condition Eq. (15) and the normalized
total probability, we can rewrite Eq. (10) as

dPA

dt
+ (k + 3k′)PA = k. (16)

We solve Eq. (16) with the aid of the integrating factor
e
∫

(k+3k′ )dt to get the following form of PA(t ):

PA(t ) = PA(0)e−(k+3k′ )t + k

k + 3k′ [1 − e−(k+3k′ )t ]. (17)

In the long time limit, i.e., for t → ∞, PA(t ) can be expres-
sed as

PA(∞) = k

k + 3k′ . (18)
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The above expression Eq. (18) shows that when the transition
rates from the correct state to the other states are much smaller
compared to the transition rates from the other states to the
correct state, i.e., k′ 
 k, which happens to be the condition
in the ideal situation, we can ignore 3k′ with respect to k in
the denominator of the expression at the right-hand side of
Eq. (18) and this consideration implies that PA(t ) will tend to
value 1 in the asymptotic limit. This indicates the fact that for
the correct copying process, the steady state probability of the
appropriate state will attain a value close to 1. As the tran-
sition rates depend on the barrier height of the potential and
the temperature, we will study the success of the biological
copying process in dependence on these two parameters.

III. RESULTS AND DISCUSSIONS

We want to measure the accuracy of the copying mecha-
nisms as a function of the system parameters. For this purpose,
we define a quantity which we call success rate for the pro-
cess. Here, we explain our interpretation for success rate
considering the Langevin and the four-state model.

A. Success rate

For a given input, we know the desired output for each of
our two models, namely, the symbol which matches the input.
If the output is indeed identical to the desired one, then we
call this success. We define the success rate S as the fraction
of correct output among all input-output relations which we
test. As inputs, all four symbols should be taken with the
same probability. The details of how the success rates are
calculated depend on the model used. In both cases we study
the success rate as a function of temperature which is encoded
in the diffusion constant D, where additionally the influence of
other model parameters needs to be studied. These are the wdf
and the tev, i.e., the time after which we evaluate the current
state and present the next input symbol and hence change the
potential.

1. Langevin model

We solve Eq. (1) numerically using a random string of
106 input symbols. Depending on the input, the potential gets
adjusted to make the appropriate minimum which represents
the correct output, the deepest one. A trajectory is allowed
to evolve for a fixed tev which is considerably longer than
the intrinsic relaxation time of the system. At the end of the
evolution time, we examine whether the trajectory is in the
correct potential well with respect to the input signal, which
is the global minimum. If so, then we say that the information
has been copied properly into the developing entity from its
parent, and we count this as success. Each such time evolution
is regarded as a single step in the copying mechanism, indicat-
ing that a single base sequence is encountered by the copying
machinery and consequently, a base joins the developing DNA
or mRNA strand to expand its length. Starting from the value
of the random variable at the end of one evolution time, we
continue the stochastic path in the “new” potential in the next
evolution time interval. Due to the randomness of the new
input, this guarantees that we probe all possible transitions
between potential minima. This is relevant, since we have
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FIG. 5. Variation of the success rate S against noise strength D
for different values of the wdf for the (a) Langevin and the (b) four-
state model.

a spatial ordering of the minima, so that, e.g., a transition
from the leftmost to the rightmost one means to overcome
three potential barriers which might require more time or be
less probable in the given time interval tev than a transition
between adjacent minima. Each of these stochastic steps can
produce correct or incorrect outcomes. The success rate is
the total number of successful steps out of 106 trials, divided
by the number of trials. The initial condition x(0) is chosen
randomly, however, since it is exponentially suppressed it
does not play any role.

Such a simulation run can be interpreted as the propagation
of the copying machinery along a template strand recognizing
a base in it at each step. Therefore, the success rate which we
calculate, reflects the exactness of the whole process in which
a DNA or an mRNA is created exploiting the information
stored in the precursor strand.

2. Four-state model

We have presented the analytical solutions of the four-state
model in Eq. (17), which is the time dependent probability to
be in the deepest well, i.e., to find the correct output state. In
analogy with the Langevin model, we insert a tev in Eq. (17)
and read the success rate which is essentially represented by
the probability Pi. Due to symmetry, the success rate is the
same for all possible input symbols and for all possible initial
states when starting a new evolution time. For a close to
optimal copying process, the value of Pi(tev) for the correct
state i has to achieve a value very close to 1, while the other
three should be close to 0.

B. The effect of temperature on the success rate

Here we present the results for the dependence of the
accuracy of the biological copying mechanisms on the tem-
perature of the surroundings. For this purpose, we explore the
variation of the success rate for the processes as a function of
the diffusion coefficient D which is present in the dynamics
as a representation of the temperature. In both models, the
success rate of the copying processes depends significantly
on temperature and it shows a maximum with respect to the
variation of the diffusion coefficient D. Quantitative results
are shown in Figs. 5(a), 5(b) and 6(a), 6(b) considering both
the Langevin and the four-state model. Figures 5(a) and 6(a)
represent the results obtained from the Langevin model and
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FIG. 6. Variation of the success rate S against noise strength D
for different values of the tev for the (a) Langevin and the (b) four-
state model.

Figs. 5(b) and 6(b) exhibit the same for the four-state model.
There are two parameters in the dynamics that can influence
the variation of the success rate against D; one is the wdf and
another is the tev. It is evident that the time to escape from a
well, the first passage time, is related to the Kramers rate and
hence is the shorter, the lower the barrier and the stronger the
noise. However, for strong noise or low barriers, there is also
a larger probability to escape from the deeper well. Hence,
if tev is small compared to the inverse Kramers rate, then the
particle has no chance to escape from the well where it starts,
while if the tev is larger than the inverse Kramers rate to jump
back from the deep well into a flat well, tback, the particle
also might be in the wrong well at the end. Both Kramers
times are controlled by the noise strength, and the time tback in
addition by the well-depth factor. This comparability between
the two timescales in the dynamics, tev and the Kramers time,
justifies the occurrence of the maxima for the success rate
when plotted against the scaled temperature D.

First, we keep tev fixed and observe the dependence of the
success rate S on D for different values of wdf. The timescale
of the four-state model is smaller as compared to the Langevin
model. Therefore, the constant values of tev are chosen as 3000
for Langevin model and 300 for the four-state model, respec-
tively. Both of these time duration are sufficiently longer with
respect to the intrinsic relaxation timescale of the systems.
The results from this study have been presented in Figs. 5(a)
and 5(b) for the Langevin and the four-state model, respec-
tively. Although the wdf have similar interpretation signifying
the relative difference in the depth of the deepest well com-
pared to others, their same numerical values do not represent
the identical difference in energy levels between the global
and local minima for the two models. This can be understood
from our definition of the models. We compare the findings
obtained from the two models and see that both of them pro-
duce qualitatively similar kind of dependence of the success
rate S on the diffusion coefficient D. The success rate S first
increases and then decreases exhibiting a maximum (close
to or at 1) when D is varied. The value of the success rate
S = 1 implies perfect copying of the biological information.
The maximum in the curve suggests that the information gets
copied most efficiently at an optimum value of the tempera-
ture. For different values of the wdf at a fixed tev, the rise of
the success rate S to the maximum as a function of D is more
or less the same. However, the success rate S remains near the

FIG. 7. Schematic representation of the variation of mutation
rate against temperature as described in Ref. [31]. The temperature
range has been split into three different regions to indicate three
characteristic variation of the mutation rate with respect to temper-
ature. The portion of the curve at region A illustrates decrease of
mutation rate as a function of temperature as described in Ref. [35],
the right-most section of the curve at region C supports the observed
increase of mutation rate with respect to temperature as found in the
studies [33,34] and the flatness of the curve within region B depicts
that mutation rate can remain constant with alteration of temperature
as mentioned in Refs. [37,38].

maximum for a grater range of D when the value of the wdf
is higher. This indicates that the greater stability of the correct
state keeps the accuracy of the copying process to persist for
a wider range of physical conditions.

Next, we fix the wdf and study the variation of the success
rate S against D for different tev. For the Langevin model
the wdf has been kept fixed at 5.38 and the value is 6.0 for
the four-state model. The success rate S shows a maximum
against D and it is observed that for higher value of the tev,
the maximum of the success rate S appears at a lower value
of noise strength [Figs. 6(a) and 6(b) for the Langevin and
the four-state model, respectively]. This points toward the fact
that, if the tev is longer, then the correct minimum of the
potential can be occupied with a lower level of noise, i.e.,
the correct sequence can be copied at a lower temperature.
However, above a certain value of the noise strength the tev

does not have any effect on the success rate S.
The above observation which depicts that the biological

information can be copied most efficiently at an optimum
temperature, is the central result of the present study. The
success rate S in our model is related to the mutation rate M
as M = 1 − S, since a fraction M of the information would
not be copied correctly. Hence, our model predicts a minimum
mutation rate at an optimal temperature. This result is motivat-
ing because it supports some observations in real biological
systems. It is reported that the spontaneous mutation rate to
respiration deficiency in saccharomyces yeast shows a mini-
mum with respect to temperature variation [31]. This has been
represented schematically in Fig. 7. It has also been found
that the mutation rate can increase [33,34], decrease [35], or
remain constant [37,38] with increasing temperature for dif-
ferent organisms. In a recent experiment, it has been observed
that the mutation rate in an Escherichia coli strain first remains
constant and then increases with increasing temperature [28].
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FIG. 8. Variation of the success rate S against the wdf for dif-
ferent values of noise strength D for the (a) Langevin and the
(b) four-state model.

These observations can also be explained with the curve ob-
tained from the simulations of our models. We see that the
success rate initially rises and then decreases with growing
temperature. Therefore, the first trend can be described to sup-
port the drop of the mutation rate with increasing temperature
(temperature region A in Fig. 7). Similarly, the right-most
portion of the curve (temperature region C in Fig. 7) can be
considered to represent the increase of the mutation rate as
a function of temperature. We also detect some flatness in
the curves (temperature region B in Fig. 7) depending on the
parameter values which can be thought to correspond to the
constant mutation rate with respect to temperature. We can
argue that different organisms and their copying machinery
are only stable in a given temperature range and they show
the characteristic variation of the mutation rate of that partic-
ular region. Therefore, we can say that our model, although
it is a minimal model with the lowest thinkable set of free
parameters, is flexible enough to yield explanations for all
observed scenarios of the observed temperature dependence
of the mutation rates.

C. The effect of wdf and tev on the success rate

To complete the study of our models, we will explore in
more detail the influence of other parameters, namely, the wdf
and the tev on the success rate S of the copying mechanism.

With increasing wdf the success rate S tends to increase
monotonically and saturates beyond a certain value. This im-
plies that the selections are more accurate when the local
minima and the global minimum of the potential have larger
energy difference and the success rate of the copying process
saturates after a certain value of the energy difference between
the correct and the incorrect state is reached. This has been
illustrated in Figs. 8(a), 8(b) and Figs. 9(a), 9(b) for both the
Langevin and the four-state model. The saturation value of the
success rate S and the value of wdf at which the saturation
sets in, depend on the noise strength (Figs. 8(a) and 8(b)
for the Langevin and the four-state model, respectively) for
a fixed value of the tev = 3000 for the Langevin model and
tev = 300 for the four-state model. The dependence of the
saturation value of the success rate on the noise strength is
understandable from the variation of the success rate S with
respect to D. These two factors, the position of the saturation
point and the value of the saturated success rate also show
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FIG. 9. Variation of the success rate S against wdf for different
values of the tev for the (a) Langevin and the (b) four-state model.

dependence on the tev, for a fixed D [Figs. 9(a) and 9(b) for
the Langevin and the four-state model, respectively]. Here,
D has been kept fixed at 0.7 for the Langevin model and
at 0.6 for the four-state model. The higher saturation value
of the success rate for longer tev suggests that the copying
process becomes more successful when the dynamics evolves
for a larger time. This can be expected from the behavior of
a stochastic trajectory. If we let the system propagate for a
longer time, then it is more probable that the trajectory ends
up in the correct minimum at the completion of the process.
Actually, one might ask whether the trajectory then also has
a larger chance to escape again from the correct well. Indeed,
this escape from the deepest well exists, but due to the fact that
with probability close to 3/4 the initial state of a new time step
is located in a different minimum, the probability to be in the
correct well starts with a value close to 1/4 and increases until
it has reached its equilibrium value if the evolution time were
infinite.

To better visualize the dependence of the success rate S
on the tev, we choose tev as the variable and noise strength D
and the wdf as the parameters. In agreement with the previous
observations, we see that the S increases with increasing tev

and then saturates after a certain value [Figs. 10(a), 10(b)
and Figs. 11(a), 11(b)]. The process of the saturation and the
saturated value of the success rate S depends significantly on
the noise strength D [Figs. 10(a) and 10(b) for the Langevin
and the four-state model] for a given wdf. Here the wdf equals
5.38 and 6.0 for the Langevin and the four-state model, re-
spectively. The saturation of the success rate S with respect to
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FIG. 11. Variation of the success rate S against the tev for dif-
ferent values of the wdf for the (a) Langevin and the (b) four-state
model.

tev occurs faster for higher values of D. However, if we look
at the absolute saturation value for individual noise strengths,
then we can see it is maximum at an intermediate value
of the noise strength. This is consistent with Figs. 5 and 6
where we saw a maximum in the success rate S when plotted
against D. The other parameter wdf also has some influence
on the success rate versus tev curve for a fixed value of D
(D = 0.7 and 0.6 for the Langevin and the four-state model,
respectively). The approach to the saturation of the success
rate with respect to tev is more or less independent of the
wdf. However, the absolute value of the success rate in this
variation depends on the wdf [Figs. 11(a) and 11(b) for the
Langevin and the four-state model, respectively]. The greater
is the wdf, the larger becomes the value of the success rate,
implying better accuracy in the copying mechanism for larger
energy difference between the correct and the incorrect states.
The success rate reaches the maximum after certain value of
the wdf and then becomes independent of it.

D. Speed of the copying process and the efficiency

The efficiency of the copying process is not only deter-
mined by its success rate S, but also by the time it takes to
generate a copy of a strand of given length, i.e., by the speed of
the copying mechanism. In our model, we have the tev which
determines the duration of a single copying step. For a chosen
high success rate close to 1, the process with the shortest tev

is the most efficient one. From Fig. 11(a) one would conclude
that with a well-depth factor of wdf � 5 and D = 0.7 an evolu-
tion time of ≈2000 is the most efficient choice of parameters,
for the Langevin model. Similarly, Fig. 11(b) suggests that
for wdf � 5 and D = 0.6, tev ≈ 30 would produce the most
efficient copying steps corresponding to the four-state model.

To interpret the efficiency of the copying process, we in-
tend to estimate the quantity by defining it in terms of the
success rate S or the mutation rate M and the tev. We consider
the success rate S versus tev plots and note down the smallest
value of tev at which the success rate S saturates and denote it
by the symbol t s

ev. We measure the mutation rate M from the
success rate S by employing the relation M = 1 − S. Now, if
we take a product of the mutation rate M and t s

ev, we will get
an estimate about the extent of the time extensive mutation
in the copying process. If we evaluate the reciprocal of this
factor, then we will be able to measure the overall efficiency
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FIG. 12. Variation of the efficiency E with respect to the noise
strength D for different values of the “well-depth factor” for the
(a) Langevin and the (b) four-state model.

of the copying mechanism which takes into account both the
correctness of the process as well as its speed. Therefore,
the efficiency for the copying procedure can be explicitly
expressed as

E = 1
/(

M × t s
ev

)
. (19)

We observe the variation of the quantity E against the noise
strength D. The efficiency shows a maximum with respect
to the variation of D. This finding confirms the fact that
biological information gets copied most precisely at an in-
termediate value of temperature. This has been presented in
Figs. 12(a) and 12(b) for the Langevin and the four-state
model, respectively. We have carried out the analysis for
different well-depth factors and shown three representative
curves corresponding to the variation of the efficiency against
temperature, for both the models. Here, we see that the peak
value of the efficiency in the curves increases with increasing
wdf, suggesting the occurrence of a more efficient copying
process when the energy difference between the correct and
the incorrect interactions is larger. However, this peak value
becomes constant when a certain range of wdf is reached. This
is because the saturation pattern of the success rate against
time becomes independent of the wdf after a definite threshold
of the wdf value. This has been pointed out while discussing
Figs. 11(a) and 11(b).

While concluding the discussions about our findings, we
would like to mention that we started our intended study with
the one-dimensional Langevin model which is probably the
simplest possible representation of the copying mechanism.
To examine the fact whether the dimensionality of the model
has any effect on the results, we introduced the four-state
model which takes four discrete states into account and does
not depend anyway on the dimensionality of the potential en-
ergy landscape. In all of our parameter studies, we have found
that both the models produce same qualitative results with
only quantitative difference in the timescale. This confirms the
fact that the details of the dimensionality of the model does not
leave any impact on the observations.

IV. CONCLUSIONS

We summarize those biological processes, such as repli-
cation, transcription, translation where information is trans-
ferred to the nascent species from its predecessor, as biolog-
ical copying mechanisms. We propose two minimal physical
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models for this mechanism, namely, a general Langevin model
and a four-state model that can represent such biological
copying processes. We explore the accuracy of these copying
procedures as a function of the parameters influencing the
system and dynamics. The most important factor that intro-
duces the effect of the noisy environment directly into the
dynamics is temperature. We observe interesting dependence
of the correctness of the copying processes on temperature.
The success rate of the copying mechanisms shows a peak,
and hence the mutation rate has a minimum, when plotted
against temperature implying that these processes are most
efficient at an optimum value of the temperature. Therefore,
the temperature dependence differs from what is known from
general considerations of the conventional reaction rate the-
ory which concerns the occurrence of collisions between the
reactants. In the common scenario the reaction rate increases
with increasing temperature as the probability of encounter
between the reacting particles becomes higher at an elevated
temperature. In transcription, translation or replication pro-
cess, selection of appropriate species or reactant is important
and our models take that into account. The mechanisms in-
troduced in our models result in nonmonotonic behavior of
the successful outcome of the process against temperature
instead of a steady rise of the rate. To be more precise, we
analyze the copying process by considering the nonequilib-
rium nature of the mechanism where input is transformed
into output. There exist cooperation between the forward
and backward rates which is modulated by the temperature
and competition between the rates of correct and incorrect
transitions which depends on the relative energy difference
between the appropriate and inappropriate interactions. These
rates are also affected by the finite-time duration of the
copying steps. These distinct features and the nonequilib-
rium transient nature of the dynamics are reflected in the
characteristic variation of the success rate with respect to
temperature.

Our measure of the correctness of the copying proce-
dures, the success rate, is complementary to the mutation
rate. We recalled the findings in some real biological systems
[28,31,33–35,37,38] regarding the variation of the mutation
rate with respect to temperature. In some biological exper-
iments, mutagenesis, the alteration of genetic information
causing mutation, has been found to be favored at higher tem-
perature [28–30,64]. In case of certain species in nature, it is
also observed that the mutation rate increases with increasing
temperature during the global climate change [65,66]. This
rise in mutation rate with respect to temperature could be fully
explained by reaction rate theory. However, such increase is
only one of different behaviors which have been observed as
a function of temperature variation in biological experiments

and in nature [28,31,33–35,37,38,67,68]. It is the advantage
of our models that they can explain all the different scenarios
which have been found.

Here we emphasize that in the present study, we only
consider the information copying step for the DNA repli-
cation process and disregard the proofreading mechanism.
Error-correcting steps also occur in case of transcription or
translation [69], however, the mechanisms differ from DNA
proofreading. We also do not take into account this de-
fect rectification associated with transcription or translation.
Therefore, the current results illustrate the dependence of the
accuracy of the copying step on the significant parameters
linked to the system and dynamics. However, we have carried
out a simple analysis to understand the incorporation of the
proofreading procedure for the DNA replication process. We
have modeled the proofreading mechanism with an erasure
protocol in which the system is driven to the correct state by an
external drive if it ends up in the wrong state after the copying
process. Interestingly, the study shows that the efficiency of
the erasure mechanism also exhibits a maximum at an inter-
mediate value of the temperature. So, even if we couple the
two steps, copying and erasure, our interpretation about the
role of thermal fluctuations on the replication process remains
unaltered. So, we can say, the biological processes involving
information transfer, such as, replication or transcription or
translation, occur most efficiently at an optimum value of
temperature.

In reality, replication, transcription and translation pro-
cesses are highly accurate. The percentage of errors in these
mechanisms depends on the type of species involved. In most
cases, the transcription and translation processes have error
frequency 1 in 104. DNA replication process has higher ac-
curacy because of the proofreading mechanism [70,71]. We
consider that the observed perfection appearing in the bio-
logical information copying processes might be a result of
the survival of the organisms in the physical zone where the
success rate of the processes is very high and the energy dif-
ference between the correct and incorrect interactions between
the base pairs is remarkably different. We also define another
quantity, the efficiency of the process, taking into account the
mutation rate and the speed of the copying mechanism, for
our models. This estimate is somewhat dynamic in nature as
it considers the effective evolution time of a copying step.
The variation of the efficiency as a function of temperature
also suggests maximum efficacy of the copying procedures
at an intermediate value of temperature. Finally, we can say
that our proposed models represent a general scheme for the
biological copying processes and can explain the observations
concerning the environmental dependence of mutation with a
simple approach.
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