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Characterizing the Lipkin-Meshkov-Glick model excited-state quantum phase transition
using dynamical and statistical properties of the diagonal entropy
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Using the diagonal entropy, we analyze the dynamical signatures of the Lipkin-Meshkov-Glick model excited-
state quantum phase transition (ESQPT). We first show that the time evolution of the diagonal entropy behaves as
an efficient indicator of the presence of an ESQPT. We also compute the probability distribution of the diagonal
entropy values over a certain time interval and we find that the resulting distribution provides a clear distinction
between the different phases of ESQPT. Moreover, we observe that the probability distribution of the diagonal
entropy at the ESQPT critical point has a universal form, well described by a beta distribution, and that a reliable
detection of the ESQPT can be obtained from the diagonal entropy central moments.
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I. INTRODUCTION

The notion of excited-state quantum phase transition (ES-
QPT) [1,2] was first introduced to describe the nonanalytical
properties in excited states of quantum systems and was
soon identified, both theoretically [3–10] and experimen-
tally [11–16], in various many-body systems. For a recently
published review on the subject, see Ref. [17]. Being a gen-
eralization of ground-state quantum phase transitions (QPTs)
[18,19], ESQPTs are manifested by the appearance of a sin-
gularity in the density of states -or in one of its derivatives-
at a critical energy value, for fixed Hamiltonian parameters
[17,20]. It has been found that ESQPTs play an important role
in several contexts, including quantum decoherence processes
[21–23], quantum chaos [24–27], and quantum thermodynam-
ics [28,29]. Many efforts have been devoted to understanding
the intriguing static [20,30–36] and dynamic [37–46] proper-
ties of this new type of phase transition.

Motivated by the recent advances on experimental tech-
niques, the study of nonequilibrium dynamics of isolated
quantum systems has received much attention in the past
few years [47–50]. Along this direction, it is natural and
important to explore how ESQPTs influence nonequilibrium
dynamics of isolated systems. To date, several remarkable dy-
namical effects of ESQPTs have been revealed: an enhanced
survival probability decay [41–43,45,51], an exponential
growth of out-of-time-order correlators [52], and singulari-
ties in the time evolution of observables [38]. Moreover, the
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investigation of how to dynamically probe ESQPTs is also
under an active development [10,23,37,39,45,46] and im-
plies possible ways of experimental exploration of ESQPTs
through their evidences in the dynamics of isolated quantum
many-body systems. In spite of these many works, quite a
few aspects of the dynamical signatures of ESQPTs are still
under discussion and more works are required in order to get
a deeper understanding of the properties of ESQPTs.

In this work, we consider the Lipkin-Meshkov-Glick
(LMG) model [53] and study the dynamical features of its
ESQPT by means of the diagonal entropy. The diagonal en-
tropy, for a given set of energy eigenstates, is defined as
Sd = −∑

n ρnn ln ρnn, where ρnn are the diagonal elements of
the density matrix ρ in the basis of energy eigenstates [54].
This definition connects this quantity with the Shannon infor-
mation entropy of the probability distribution corresponding
to the energy eigenbasis [46]. The diagonal entropy exhibits
most of the properties of a thermodynamic entropy, including
additivity. Hence, it remains constant in adiabatic processes
and it increases when systems are taken out of equilibrium.
That makes the diagonal entropy a fine option for the study of
nonequilibrium dynamics in isolated quantum [55–60]. More-
over, Sd is consistent with the well-known von Neumann’s
entropy for systems in equilibrium. It is also worth mentioning
that, since the diagonal entropy only involves the diagonal part
of the density matrix, in principle it can be experimentally
accessed [59].

In the present work, we first focus on the time evolution
of the diagonal entropy in a cyclic quench. We show that the
time evolution of the diagonal entropy reveals the ESQPT
existence displaying qualitatively distinct dynamics in the
different ESQPT phases. Then, we investigate the probability
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FIG. 1. (a) The quench protocol studied in this work, as de-
scribed in the text. (b) Schematic representation of the LMG model.
Spins are fully connected through an infinite range coupling and
in an external magnetic field with strength α along the z direction.
(c) Rescaled even-parity energy spectrum of the Lipkin model as a
function of α with N = 50 (left panel) and the rescaled density of
states of the LMG model for α = 0.4 with N = 5000 (right panel).
The green dots denote the numerical results, while the solid line is
obtained via Eq. (3). All quantities are dimensionless.

distribution of the diagonal entropy values over a certain time
interval. We show how the underlying ESQPT determines the
distribution statistical properties. In particular, at the ESQPT
critical energy, the diagonal entropy probability distribution
has a universal form, independent of the system size and the
Hamiltonian parameter values, that is in good agreement with
the beta distribution. We also show that it is possible to detect
the ESQPT from the values of the central moments of the
diagonal entropy probability distribution.

The article is structured as follows. In Sec. II, we describe
the protocol used in this work and introduce the LMG model,
briefly reviewing its main properties. In Sec. III, we present
our main results and discuss how the signatures of ESQPT can
be identified in the dynamics of the diagonal entropy as well
as its statistical properties. Finally, we summarize the main
conclusions of this work in Sec. IV.

II. PROTOCOL AND MODEL

A. Protocol and diagonal entropy

Assuming the system under study is described by a Hamil-
tonian H (g), with g being a control parameter, we consider a
cycle protocol with sudden changes of the control parameter
at two different times. As depicted in Fig. 1(a), the protocol
consists of the following processes. (i) Initially, the control
parameter value is gi, the Hamilitonian is Hi, and the system
is in the state ρ (i)

n = |ψ (i)
n 〉〈ψ (i)

n |, where |ψ (i)
n 〉 is the nth Hi

eigenstate, with eigenvalue E (i)
n . (ii) At time t = 0, the control

parameter is suddenly changed (quenched) from the initial
value gi to a final value g f and the Hamiltonian of the system
is a new one, Hf , with eigenstates |ψ ( f )

n 〉 and eigenvalues E ( f )
n .

From t = 0 on, the dynamics of the system is governed by the
Hamiltonian Hf . (iii) At time t = τ , the system undergoes a
second quench, which changes the control parameter from g f

back to its initial value gi, completing the cycle protocol. From
now on, the system evolves under Hi for t � τ .

The state of the system at t = τ is given by ρτ =
e−iHf τ ρ (i)

n eiHf τ and, therefore, the diagonal entropy at t = τ in
the basis of eigenstates of the Hi Hamiltonian can be written
as

Sd (τ ) = −
∑

k

Ck (τ ) ln Ck (τ ), (1)

where Ck (τ ) = |〈ψ (i)
k |e−iHf τ |ψ (i)

n 〉|2 and |ψ (i)
k 〉 is the kth eigen-

states of Hamiltonian Hi [56]. As already mentioned, it has
been argued that the diagonal entropy fulfills the second law
of thermodynamics, namely, it grows when a system is taken
out of equilibrium, it saturates at the equilibration timescale,
it is an additive quantity, and it is conserved for adiabatic
processes [54,55]. Note that Ck (τ ) is equal to the well-known
survival probability when we take k = n and that, indepen-
dently of τ and Hf values,

∑
k Ck (τ ) = 1.

The diagonal entropy is a nonlinear function of the den-
sity matrix and, therefore, the long-time averaged diagonal
entropy, denoted as Sd (τ ), is not equal to the diagonal en-
tropy for the long-time averaged state, 〈Sd〉 [56,61]. It has
been conjectured that for a pure initial state, the deviation
between these two quantities, �, satisfies the inequality � =
〈Sd〉 − Sd (τ ) � 1 − γ , where γ = 0.5772 . . . is the Euler’s
constant [61]. As � fluctuations are minimal once the system
is in equilibrium, it has been employed to explore the connec-
tion between relaxation and transitions between integrability
and chaos in various quantum systems [56,57]. In the present
work, we pay heed to the ESQPT signatures in the nonequilib-
rium dynamics of a quantum isolated system, investigating the
dynamical and statistical properties of the diagonal entropy of
the LMG model, in which the above-mentioned cycle protocol
is implemented.

B. Lipkin-Meshkov-Glick model

The LMG model, originally introduced as a toy model in
nuclear physics [53], was later found to be useful in many
areas of physics [28,52,62–66] and has been realized with
high precision in different experimental platforms [67–70]. In
particular, it has been used as a paradigmatic model in the
study of ESQPTs [2,21–23,29,30,39,43]. This model can be
mapped to the transverse Ising model with infinite-range inter-
actions. Hence, the LMG model describes N fully connected
1/2-spin particles coupled to an external transverse field with
strength α; see Fig. 1(b) for a schematic representation of the
LMG model.

Employing the collective spin operators Jβ = ∑
l σ l

β/2,
where β = {x, y, z} and σ l

β are Pauli spin matrices for the lth
spin, the Hamiltonian of the LMG model can be written as

H = −4(1 − α)

N
J2

x + α
(

Jz + N

2

)
, (2)
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where N is the total number of spins and the control parameter
α ∈ [0, 1] is the strength of the magnetic field along the z
direction. For simplicity’s sake, we consider h̄ = 1 through-
out this work and set the quantities studied in this article as
dimensionless.

The Hamiltonian in Eq. (2) conserves the total spin J2 =
J2

x + J2
y + J2

z , whose eigenvalues are j( j + 1) with 0 � j �
N/2. We perform our calculations in the sector of maximum
angular momentum, j = N/2, with dimension N + 1. More-

over, as the parity operator 
 = eiπ (Jz+ j) also commutes with
H , the Hamiltonian matrix in j = N/2 sector can be further
split into two blocks, an even parity block, with dimension
N/2 + 1, and an odd parity block, with dimension N/2. We
further restrict our calculations to the even parity block, which
includes the system ground state.

The elements of the Hamiltonian matrix in the basis of
eigenstates of Jz, | j, mz〉, with −N/2 � mz � N/2, are given
by

〈 j, mz|H | j, mz〉 = qα

(N

2
+ mz

)
+ α − 1,

〈 j, mz + 2|H | j, mz〉 = −1 − α

N

√(N

2
− mz − 1

)√(N

2
− mz

)(N

2
+ mz + 1

)(N

2
+ mz + 2

)
,

where qα = [2(1 − α)mz/N] + 2α − 1.
The LMG Hamiltonian in Eq. (2) undergoes a second-

order ground-state quantum phase transition at the critical
point αc = 0.8 [71,72]. The system is in the broken-symmetry
phase when α < αc and in the symmetric phase for α � αc.
Another remarkable feature of the LMG model is the oc-
currence of an ESQPT for α < αc [2,21,22,44]. ESQPTs in
systems with a single effective degree of freedom, like the
LMG model, are characterized by a high density of excited
levels at a critical energy value, Ec. The level density is non-
analytical in the mean-field limit (large N limit) of the system
[17]. This is illustrated for the LMG model in the left panel of
Fig. 1(c), where it is clear how energy levels are piling up the
neighborhood of the critical energy Ec = 0.

The eigenvalues clustering at Ec = 0 leads to a cusp sin-
gularity in the density of states, ν(E ), defined as ν(E ) =∑

n δ(E − En). In the semiclassical limit N → ∞, ν(E ) can
be analytically calculated as [22,23]

ν(E ) = N

2π

∫
δ[E − Hcl (x, p)]dxd p, (3)

where Hcl is the classical counterpart of H in Eq. (2). The
right panel of Fig. 1(c) plots the density of states for the case
of α = 0.4 with N = 5000. We observe that ν(E ) obtained
by means of Eq. (3) has an excellent agreement with the
numerical data and it is evident the expected cusp divergence
at Ec = 0. In the following, we focus on the identification of
the signatures of this ESQPT in the dynamical and statistical
properties of the diagonal entropy.

III. THE LMG MODEL DIAGONAL ENTROPY

In the first hand, we focus on the dynamics of the diago-
nal entropy Sd (τ ), and in the second hand, we consider the
distribution of values of Sd (τ ) with τ � 0. We are mainly
interested in how the ESQPT affects the time evolution of
Sd (τ ) and the Sd (τ ) probability distribution, as well as the
moments of this distribution.

In our study, the above-described cycle protocol is achieved
as follows. Initially, the system is at the ground state, |ψ (i)

0 〉, of
Hamiltonian (2) with Hi = H , gi = 0, and ρ

(i)
0 = |ψ (i)

0 〉〈ψ (i)
0 |.

At time t = 0, we turn on an external magnetic field along

the z direction with strength λ. We thus have g f = λ and
Hf = H + λ(Jz + N/2). The external magnetic field is then
switched off at time t = τ to back to the starting point, com-
pleting the closed cycle. The diagonal entropy at time t = τ ,
Sd (τ ), is given by Eq. (1) with

Ck (τ ) = |〈ψ (i)
k |e−iHf τ |ψ (i)

0 〉|2 =
∣∣∣∣
∫

dE�k (E )e−iEτ

∣∣∣∣
2

. (4)

Here |ψ (i)
k 〉 is the kth eigenstate of H in Eq. (2) and

�k (E ) =
∑

m

〈
ψ

(i)
k

∣∣ψ ( f )
m

〉〈
ψ ( f )

m

∣∣ψ (i)
0

〉
δ
[
E − E ( f )

m

]
, (5)

with |ψ ( f )
m 〉 denotes the mth eigenstate of Hf corresponding

to the eigenvalue E ( f )
m . We point out that results qualitatively

similar to the reported ones are obtained for different choices
of the initial state.

The system can be driven through the critical energy of ES-
QPT by varying the strength of the external magnetic field, λ.
We define the critical strength, denoted as λα

c , as the magnetic
field intensity that brings the system, initially in the ground
state, to the critical energy, Ec = 0. In the LMG model case
this critical strength can be obtained using the semiclassical
approach [21,22],

λα
c = 1

2 (4 − 5α), (6)

where α ∈ (0, 4/5). We point out that the ESQPT critical
strength, λα

c , differs from the critical strength for the ground-
state quantum phase transition, λα

c0 [22].

A. Dynamical behavior of Sd (τ )

As a starting point, we investigate the signatures of the ES-
QPT in the dynamics of the LMG diagonal entropy. In Fig. 2,
the diagonal entropy is depicted as a function of τ , Sd (τ ), for
three different values of λ. In all cases the control parameter
α = 0.4 and the system size N = 1000. In this case, according
to Eq. (6), we have λα

c = 1. From Fig. 2, it is clear that the
behavior of Sd (τ ) as a function of τ strongly depends on the
λ value. Specifically, for λ < λα

c , Sd (τ ) periodically oscillates
around a small value, as shown in Fig. 2(a). Increasing λ leads
to an increase in the Sd (τ ) value while the initially regular
oscillations gradually change toward an irregular pattern. As
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FIG. 2. Time evolution of Sd (τ ) for three different values of λ,
with control parameter α = 0.4 and system size N = 1000. The inset
in each panel shows the long time behavior of Sd (τ ) with τ in a range
from 104 to 1.5 × 104 for the corresponding λ values. The axes in all
figures are dimensionless.

can be seen from Fig. 2(b), once λ = λα
c = 1, Sd (τ ) displays a

fast growth which rapidly saturates at a maximum value with
tiny fluctuations. Notice that the suppression of the oscillating
behavior has also been found in the survival probability dy-
namics [51]. As it is shown in Refs. [51,73], this feature stems
from the fact that eigenstates having different structure are
dynamically entangled at the ESQPT critical energy. Above
the critical point, e.g., the λ = 2 case depicted in Fig. 2(c), we
observe that Sd (τ ) increases with time, with larger oscilla-
tions, until it irregularly oscillates around the same saturation
value as in the previous case.

The observed features in the dynamics of the diagonal en-
tropy indicate that the underlying system ESQPT has a strong
impact on the equilibration process of the quenched system.
Obviously, these features can be used to detect the existence of
an ESQPT, through the singular behavior of Sd (τ ) at λ = λα

c .
Moreover, different phases of an ESQPT can also be identified
by the distinct behaviors of the diagonal entropy for λ < λα

c
and λ > λα

c , respectively.
To understand the features exhibited by Sd (τ ), we note

that, as indicated in Eq. (4), Ck (τ ) is the square modulus of the
Fourier transform of �k (E ), defined in Eq. (5). Therefore, the
remarkably different dependence of τ for the Sd (τ ) depicted
in the different panels of Fig. 2 stems from the change of the
�k (E ) properties as the system straddles through the ESQPT.
The behavior of Sd (τ ) at the critical energy of the ESQPT can
be explained from the �k (E ) singular structure. To cast light
on this particular point, we plot �k (E ) and the corresponding
Ck (τ ) in Fig. 3. For the sake of comparison use the same λ

values than in Fig. 2 and, again, a control parameter value
α = 0.4 and a system size N = 1000.

For the case of λ = 0.1 < λα
c , as shown in Fig. 3(a),

nonzero �k (E ) values are rather localized at low Hf eigenen-
ergies and the main contribution is due to states with k � 3.
The simple structure of �k (E ) in this case explains the os-
cillations in τ of Ck (τ ), that occur for small k values, with
Ck (τ ) = 0 for other values of k, as it is illustrated in Fig. 3(d).
This implies that Sd (τ ) is a periodic function of τ as shown in
Fig. 2(a). As λ increases, the number of states contributing to
�k (E ) increases, involving states with larger k values. This,
in turn, involves an increase in the Sd (τ ) value. Once the

FIG. 3. Panels (a)–(c): �k (E ) as a function of the rescaled energy for the first five eigenstates (k = 0, 1, . . . , 4) with λ = 0.1, 1, 2. The
rescaled energy is defined as ε f

m = [E ( f )
m − E ( f )

0 ]/[E ( f )
max − E ( f )

0 ], where E ( f )
0 is the ground-state energy of Hf , while E ( f )

max denotes the maximum
energy of Hf . To offer a three-dimensional-like visualization, the different �k (E ) curves are shifted in the y direction by 0.4k (a), 0.05k (b), and
0.08k (c). The green dashed line in panel (b) indicates the rescaled ESQPT critical energy. Panels (d)–(f): Heat map plot depicting ln[Ck (τ )] as
a function of k and τ for the same values of λ as in panels (a)–(c). White color indicates Ck (τ ) = 0. In all cases the control parameter α = 0.4
and the system size is N = 1000. All quantities are dimensionless.
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critical point λ = λα
c = 1 is explored, we obtain the results

plotted in Fig. 3(b). As the involved values of k are larger,
the complexity of �k (E ) increases. However, in this particular
case, a most remarkable feature of �k (E ) is the cusplike shape
near the ESQPT critical energy [marked in Fig. 3(b) by a light
green dashed line], occurring at all k values. As shown in
Ref. [41], the same cusplike structure in �0(E ) leads to a fast
decay of the survival probability, C0(τ ), followed by random
oscillations with tiny amplitude. In the present work, we find
that cusps in �k (E ) for nonzero k have the same effect on
the time evolution of the correspondent Ck (τ ), as illustrated in
Fig. 3(e). Therefore, the behavior of Sd (τ ) at λ = λα

c can be
traced back to the cusplike structures in �k (E ) at the critical
energy of ESQPT. When λ = 2 > λα

c , the structure of �k (E )
at small values of k are regular, whereas as k increases the
structures of �k (E ) become more and more complex, in a
similar way to the case in Fig. 3(d). As a consequence, the
behavior of Ck (τ ) is initially regular, followed by small irreg-
ular oscillations with Ck (τ ) ≈ 0 [see Fig. 3(f)]. This explains
the slow growth of Sd (t ) at times close to zero for the λ = 2
case [see Fig. 2(c)].

These results strongly indicate that the LMG model ES-
QPT has a very significant impact on the equilibration
processes that follow a quench. Therefore, the time dependent
behavior of the diagonal entropy can be used to reliably distin-
guish among the different phases of the ESQPT. In addition to
this, at the critical point, the particular dynamical behavior of
the diagonal entropy acts as a good indicator of the presence
of ESQPT.

B. Statistical properties of Sd (τ )

In this subsection we explore the statistical properties of
the diagonal entropy to gain further insight on how the ESQPT
influences the nonequilibrium dynamics of the LMG model
after the quantum quench. To this end, we investigate the
distribution of values of the diagonal entropy in a long-time
interval, considering the probability distribution of Sd (τ ) val-
ues in a time window [τ0, τ0 + �τ ],

P(Sd ) = lim
�τ→∞

1

�τ

∫ τ0+�τ

τ0

δ[Sd (τ ) − Sd ]dτ, (7)

where the value of τ0 is much larger than the initial timescale.
The correct calculation of this distribution function implies
the consideration of all the Sd (τ ) intricacies (see, e.g.. the
insets in Fig. 2); which means that we need to evolve the
system for a long period of time. In our simulation, we take
τ0 = �τ = 104. We have carefully checked that the results
obtained for larger τ0 and �τ values do not modify the present
conclusions. The cumulative distribution function of Sd is
given by

F (Sd ) =
∫ Sd

S0

P(x)dx, (8)

where S0 is the minimal value of the distribution range and
P(x) is the probability distribution function in Eq. (7).

In Fig. 4, we plot the computed probability distribution
of the diagonal entropy and the corresponding cumulative
distribution for two values of the control parameter, α = 0.2
[Figs. 4(a)–4(c)] and α = 0.4 [Fig. 4(d)–4(f)] with a system

size, N = 1000. In both cases, we include values of λ be-
low, at, and above the critical value λα

c . From this figure it
can be observed that P(Sd ) is a doubly peaked distribution
at low λ values, due to the periodic oscillations in Sd (τ ).
Meanwhile, the small amplitude of the Sd (τ ) oscillations is
translated to nonzero values of P(Sd ) at low values of Sd . As
λ value increases, the growing in Sd (τ ) shifts P(Sd ) toward
higher values of Sd . We further observe that the increase in
λ also transforms P(Sd ) from a double-peaked form to an
asymmetric bell shape structure. This stems from the fact that
the greater the λ value, the larger the random oscillations of
Sd (τ ) at long times.

Further understanding of the properties of P(Sd ) can be
gained by noting that the values of the diagonal entropy in a
certain time window are limited to an interval of finite length
and P(Sd ) has different shapes at different values of λ. These
facts, together with the results presented by one of us that
concern the modeling of the statistical distribution of Shannon
entropy values [74], led us to fit the P(Sd ) values by a beta
distribution, defined as [75–77]

ϕB(x) = (x − S0)a−1(Sm − x)b−1

(Sm − S0)a+b−1B(a, b)
, (9)

where Sm denotes the maximal value of the distribution
range, a, b are the shape parameters of the distribution, and
B(a, b) = ∫ 1

0 ua−1(1 − u)b−1du is the beta function. The cu-
mulative distribution function of the beta distribution is given
by

�B(x) =
∫ x

S0

ϕB(y)dy, (10)

where x is such that S0 � x � Sm.
In Fig. 4, the fitted beta distribution in Eq. (9) and its

cumulative distribution for each case are denoted by a red
solid line in the main panel and a yellow dashed line in the
inset. One can immediately identify the obvious deviation
between P(Sd ) and the beta distribution when the value of
λ is far away from the critical value λα

c , in particular for
low λ values, as can be seen in the first and last columns of
Fig. 4. However, at the critical point, with λ = λα

c , the beta
distribution agrees extremely well with the numerical results,
as illustrated in Figs. 4(b) and 4(e). To quantitatively examine
the differences between P(Sd ) and the beta distribution, we
employ the root-mean-square error (RMSE), which quantifies
the deviation between predicted and observed values [78]. For
our purpose, we consider the RMSE, denoted by R, between
the cumulative distribution function of the diagonal entropy
and the fitted beta distribution

R =
√(

1

Sm − S0

)∫ Sm

S0

[F (z) − �B(z)]2dz, (11)

where F (z) and �B(z) are given by Eqs. (8) and (10), respec-
tively.

In Fig. 5, we plot the dependence of R with λ for different
system sizes and for α = 0.2 and 0.4. R shows an obvious
dip at the critical value λα

c , and the minimum value decreases
for increasing system size N . Therefore, the best agreement
of P(Sd ) with the beta distribution occurs at the critical point
of the ESQPT, as already shown in Fig. 4. Moreover, the
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FIG. 4. Panels (a)–(c): Probability distribution of the diagonal entropy P(Sd ) for λ = 0.1 (a), λ = λα
c = 1.5 (b), and λ = 2 (c). The control

parameter is fixed to α = 0.2. Panels (d)–(f): Probability distribution of the diagonal entropy P(Sd ) for λ = 0.1 (a), λ = λα
c = 1 (b), and λ = 2

with α = 0.4. In all cases the system size is N = 1000. The red solid line in each panel denotes the corresponding optimized beta distribution
from Eq. (9). The parameter values (a, b, S0, Sm) are (a) (1.722,1.038,0,1.295), (b) (23.705,6.637,4.316,5.582), (c) (18.172,4.638,4.101,5.692),
(d) (2.697,1.362,0,1.64), (e) (18.972,7.964,4.208,5.334), and (f) (12.292,4.676,4.109,5.567). The inset in each panel shows with a blue solid
line the cumulative distribution function of the diagonal entropy F (Sd ) and the corresponding result for the beta distribution (yellow dashed
line), respectively. All quantities are dimensionless.

agreement improves when increasing the system size, N . At
the critical point, we further find that the decrease in R with
the system size N is replaced by a tiny fluctuation around
a vanishingly small value when N > 1000, regardless of the
value of λα

c , as shown in the insets of Fig. 5.
The next question to address is whether the probability

distribution of the diagonal entropy, P(Sd ), has an universal

FIG. 5. R in Eq. (11) as a function of λ for different system size
N = 500 and 1000, with control parameter values α = 0.2 (a) and
α = 0.4 (b). The inset in (a) shows R as a function of system size
N for α = 0.2 and λα

c = 1.5, while the inset in (b) plots R as a
function of N for α = 0.4 and λα

c = 1.0. The axes in all figures are
dimensionless.

form at the critical point of ESQPT. In what follows, we show
that this is indeed in our case. To this end, we standardize
the probability distribution and consider a shifted and rescaled
diagonal entropy, denoted by Sd , defined as

Sd = Sd − Sd√
�

, (12)

where Sd = ∫
dSd P(Sd )Sd is the averaged Sd and � =∫

dSd P(Sd )(Sd − Sd )2 is the variance of Sd . We now inves-
tigate the probability distribution of Sd , P(Sd ), at different
values of λα

c and for several system sizes N .
Our numerical results are shown in Fig. 6. We observe that

numerical data for different λα
c and N collapse in a single

distribution, indicating that P(Sd ) is the universal distribution
for the ESQPT. Moreover, the distribution P(Sd ) can also
be well fitted by the beta distribution in Eq. (9), with fitting
parameters (a, b, S0, Sm) = (22.308, 6.692,−10, 3). The de-
viations between P(Sd ) and the fitted beta distribution are
vanishingly small at different λα

c and are also almost indepen-
dent of the system size, N , as depicted in the inset of Fig. 6.
This further confirms the universality of P(Sd ) at the critical
point of ESQPT.

C. Central moments of P(Sd )

Once defined the probability distribution of the diagonal
entropy, we now turn to identify the signatures of the ESQPT
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FIG. 6. Probability distribution of the shifted and rescaled di-
agonal entropy, i.e., (Sd − Sd )/

√
�, at different λα

c and for several
system sizes, N . Here, Sd denotes the averaged Sd , and � is the
variance of Sd . The cyan solid line denotes the fitted beta distri-
bution [cf. Eq. (9)] with fitting parameters (a, b, S0, Sm ) given by
(22.308, 6.692, −10, 3). Inset: The RMSE, R, between P[(Sd −
Sd )/

√
�] and the fitted beta distribution as a function of λα

c for
different system sizes, N . The axes in all figures are dimensionless.

in the statistical properties of P(Sd ), by investigating the cen-
tral moments of P(Sd ). The nth central moment of P(Sd ) is
defined as

μS
n = E[(Sd − Sd )n] =

∫ +∞

−∞
dSd P(Sd )(Sd − Sd )n. (13)

The first central moment, μS
1, is always zero, and thus we

mainly focus on the moments with n = 2, 3, 4, the variance,
skewness, and kurtosis of the distribution, respectively. These
central moments provide information about the distribution
shape.

In Fig. 7, we plot μS
2, μ

S
3, and μS

4 as a function of λ for
different values of the α control parameter and the system size
N . In this figure, it is evident that the three central moments
have a nonanalytic behavior, with cusps in the neighborhood
of the λα

c critical values. Specifically, cusps in μS
2 and μS

4
display as minima that tend to zero as N increases. As the
second and fourth central moments measure the fluctuations

FIG. 7. Second, third, and fourth central moments (as labeled)
of P(Sd ) as a function of λ for α = 0.2, 0.3, . . . , 0.6 and a system
size value N = 500 (left column) and N = 1000 (right column). The
vertical dashed lines in each panel mark the critical values λα

c for
each corresponding α. The axes in all figures are dimensionless.

FIG. 8. Critical value λα
c , extracted from different central mo-

ments (as labeled), as a function of α for different system sizes
N . For each central moment, the location of its extreme value has
been identified as the critical value λα

c . The solid line denotes the
analytical result, which gives by Eq. (6). The axes in the figure are
dimensionless.

and the heaviness of the tail of a probability distribution, the
minima values in μS

2 and μS
4 indicate that P(Sd ) has negli-

gible fluctuations and becomes a light-tailed distribution in
the vicinity of the ESQPT critical point, in accordance with
the results observed in Figs. 4(b) and 4(e). The third central
moment, μS

3, is always less than zero, independently of the
values of the control parameter α and the system size N . It is
known that the third central moment quantifies the distribution
asymmetry. Therefore, negative μS

3 values imply that the area
under the left tail of P(Sd ) is larger than the one under the
right tail, as shown in Fig. 4. For values of the control param-
eter λ = λα

c , the third central moment μS
3 shows a cusplike

dependence toward zero, which is sharper for larger values of
N . This means that the system P(Sd ) distribution has its most
symmetric shape at the ESQPT critical point, as can be seen
in Figs. 4(b), 4(e) and 6.

The different features displayed by the central moments of
P(Sd ) suggest that for a given system the critical value of λ can
be obtained numerically from the extreme, cusplike, values
of the central moments. By identifying the critical point as
the location of the extreme values in the central moments, we
have plotted the estimated λα

c as a function of α in Fig. 8. We
also depict in the same figure the analytical result of λα

c from
Eq. (6). As can be seen from the figure, numerical results show
a good agreement with the analytical solution, in particular
for the results from μS

3 and μS
4. Moreover, the agreement can

be enhanced increasing the system size. Therefore, we can
confirm that the ESQPT has strong effects on the statistical
properties of the probability distribution of the diagonal en-
tropy, P(Sd ). Besides, the central moments of P(Sd ) can be
used to reliably detect the critical point of the ESQPT.

IV. CONCLUSION

We have studied in detail the effects of the ESQPT on the
dynamics and statistics of the diagonal entropy in a quantum
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many-body system, the LMG model, which undergoes an
ESQPT at a certain critical energy. We have shown that the
diagonal entropy exhibits a significant change in its time de-
pendence as the system goes through the critical energy of the
ESQPT. Hence, the existence of an ESQPT can be ascertained
from the calculation of the dynamics of the diagonal entropy,
which also allows us to efficiently distinguish between the
different phases of the ESQPT. To understand the different dy-
namical behaviors of the diagonal entropy, we have explored
the connections between the energy dependence of �k (E )
[cf. Eq. (5)] and the dynamics of the diagonal entropy. The
results indicate the qualitative differences in time evolution
of the diagonal entropy resulting from changes in �k (E ). In
particular, at the critical energy of the ESQPT the diagonal
entropy follows a very particular dynamics, that can be traced
back to the highly nontrivial cusp structures in �k (E ).

The features observed in the dynamics of the diagonal
entropy imply that the ESQPT has a significant influence on
the probability distribution of the diagonal entropy. We have
demonstrated that the distribution of the diagonal entropy
transforms from a double peak form to an asymmetric bell
shape, once the system crosses the ESQPT. In particular,
we have found that the distribution of the diagonal entropy
can be well described by a beta distribution at the critical
point of the ESQPT. Hence, the distribution of the diagonal
entropy can be considered as a useful tool for the ESQPT
exploration. An intriguing and remarkable result of our study
is the universal behavior exhibited by the distribution of the
diagonal entropy at the critical point of ESQPT. We have
confirmed that the distribution of the diagonal entropy values
at the critical point is independent of both the system size and
the control parameter value, and it is in good agreement with
the beta distribution. Additionally, to examine more closely
the effects of the ESQPT on the statistical properties of the
diagonal entropy, we have analyzed the second, third, and
fourth central moments of the diagonal entropy distribution.
Our results suggest that the nonanalyticities in the central mo-
ments make them valid probes to identify the ESQPT critical
point.

The universality of the diagonal entropy distribution at the
critical point can be traced back to the nature of the diagonal
entropy time dependence in the ESQPT, which stems from the
cusps in the structure of �k (E ). We would like to emphasize
that the same cusps have been found for ESQPTs in various
systems [41,51], which makes us expect that our results
are robust and hold in other quantum many-body systems
other than the LMG model, such as the Dicke model [3],
the kicked-top model [5], and the Rabi model [6]. A very
interesting topic for future work would be a systematic study
of the statistical properties of the diagonal entropy in different
many-body systems. The present results pave the way to a
deeper understanding of ESQPT properties and shed light
on ESQPTs influence on the nonequilibrium dynamics of
quantum systems. Moreover, we have also investigated the
dynamical signatures of ESQPTs in classical phase space in
one of our recent work [79]. Finally, the diagonal entropy
measurement in quantum simulators is expected to be quite
efficient [59], which make us believe that the obtained results
could be experimentally verified in a near future.
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