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Distribution of the span of one-dimensional confined random processes before hitting a target
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We derive the distribution of the number of distinct sites visited by a random walker before hitting a target
site of a finite one-dimensional (1D) domain. Our approach holds for the general class of Markovian processes
with connected span—i.e., whose trajectories have no “holes.” We show that the distribution can be simply
expressed in terms of splitting probabilities only. We provide explicit results for classical examples of random
processes with relevance to target search problems, such as simple symmetric random walks, biased random
walks, persistent random walks, and resetting random walks. As a by-product, explicit expressions for the
splitting probabilities of all these processes are given. Extensions to reflecting boundary conditions, continuous
processes, and an example of a random process with a nonconnected span are discussed.
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I. INTRODUCTION

Quantifying the exploration of a domain by a random
walker is a longstanding question, which has applications in
a variety of problems, ranging from living organisms explor-
ing their environment to find resources to robots designed
to accomplish specific tasks such as cleaning or demining
[1–3]. In this context, the determination of first-passage time
statistics to target sites of interest in a domain has played an
important role in the literature [4–7]. The case of confined
geometries has proved to be particularly relevant in the field
of target search problems and has been the focus of many
theoretical works [8–13]. Beyond first-passage times, other
observables, such as cover times—time needed to explore
exhaustively a domain of interest [14–16]—or occupation
times—cumulative time spent in a subdomain of interest—
have also been studied [17–21].

Another classical quantifier of random exploration is given,
in a discrete setting, by the number of distinct sites visited
by a random walker after n steps [1,22,23]. In this paper, we
focus on a related observable S that is defined as the number
of distinct sites visited by a random walker before hitting a
target site of a finite domain, where it is assumed to be either
trapped or removed. The observable S therefore quantifies the
fraction of the domain that has been explored before a target
is found, which provides a further characterization of random
search processes. Note that this observable does not seem to
have received much attention in the literature, with the notable
exception of Ref. [24], where it was studied for a continuous
one-dimensional unconfined system.

Here we focus on one-dimensional geometries with peri-
odic boundary conditions and derive the full distribution of
S for the general class of Markovian processes with con-

nected span, i.e., whose trajectories have no “holes.” We show
that the explicit determination of this distribution amounts to
calculating splitting probabilities [4], i.e., probabilities that
the walker reaches a given site x1 before a second site x2.
We next apply these results to classical examples of random
processes with relevance to target search problems, such as
simple symmetric random walks, biased random walks, per-
sistent random walks, and resetting random walks [18,25,26].
As a by-product of our study, we provide explicit expressions
for the splitting probabilities of all these processes. Finally,
we extend our results to the case of reflecting boundary con-
ditions, continuous processes, and an example of a random
process with a nonconnected span.

II. GENERAL EXPRESSION OF THE DISTRIBUTION OF S

In what follows, unless specified otherwise, we consider a
Markovian random walker on a 1D periodic lattice of N sites,
labeled from 0 to N − 1. We denote by 0 the target (or exit)
site and by s0 the starting position. Let S be the number of
distinct sites visited by a trajectory that ends at 0, where by
convention 0 and s0 are included (see Fig. 1).

Importantly, we consider only processes with connected
span, for which unvisited sites can only be reached by
nearest-neighbor jumps, so that qualitatively trajectories have
no holes.

We first consider the case of a semi-infinite lattice (equiva-
lent to the limit N → ∞). The probability for the walker to
have visited exactly n sites when it escapes the domain is
then exactly given by the probability that it reaches the site
n − 1 and then escapes without going any further than n − 1.
(see Fig. 2).
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FIG. 1. Number of distinct sites visited by a random walker
before hitting a target site of a finite domain. Starting from s0, the
random walker visits all the light gray sites before reaching the red
target site 0. In this case, N = 24 and S = 9.

In other words, one has

P(S = n) = πn−1,0(s0) π0,n(n − 1), (1)

where the Markov property has been used. Here πi, j (k) is the
splitting probability that the walker, starting from k, reaches
the site i before the site j. The exact distribution of S for the
walker in a finite 1D periodic geometry is obtained by using
the same idea. Taking into account the fact that S is bounded
by N and that the trajectories to the target can be sorted as
either “clockwise” or “counterclockwise,” we finally obtain

P(S = n) = 1s0+1�nπn−1,0(s0)π0,n(n − 1)

+ 1n�N−s0+1πN−n+1,N (s0)πN,N−n(N − n + 1),

(2)

where 1s0+1�n = 1 if s0 + 1 � n and 1s0+1�n = 0 otherwise;
1n�N−s0+1 is defined accordingly. Importantly, the expression
(2) is exact for all Markov processes with connected span and
can be easily extended to one-step non-Markovian processes,
such as the persistent walk considered below. In addition it is
fully explicit, provided that the splitting probabilities of the
process can be determined. We provide explicit examples in
what follows.

FIG. 2. Example of trajectory. Starting from s0, the walker first
reaches site n − 1 and then goes back on its tracks to exit at the
red site.

III. APPLICATIONS: EXPLICIT EXAMPLES

A. Symmetric nearest-neighbor random walk

Let us first consider the example of the classical symmetric
nearest-neighbor random walk. As mentioned above, this case
has been studied in the limit N → ∞ (unconfined system) in
the continuous space approximation in Ref. [24]. The splitting
probability is well known [1,27] and given by

0 � s0 � s1, πs1,0(s0) = s0

s1
, (3)

s1 � s0 � N, πs1,N (s0) = N − s0

N − s1
. (4)

The distribution of S is then explicitly determined by Eq. (2).
Figure 3 shows the exact distribution P(S) (confirmed by
numerical simulations) for examples of parameters s0 and
N . Note the two sharp jumps in the distribution located at
n = s0 + 1 and n = N − s0 + 1. These jumps are found to be
local maxima and reflect the fact that P(S) can be decom-
posed as the sum of two contributions [see Eq. (2)]: clockwise
and counterclockwise trajectories. For each set of trajectories
the most probable span is given by the distance to the exit
(therefore s0 or N − s0). As expected, these sharp jumps are
observed for s0 = O(N ) and N − s0 = O(N ), and the distri-
bution smoothens for N � s0 (or equivalently N � N − s0),
where the semi-infinite case is recovered.

B. Biased nearest-neighbor random walk

In many physical situations, external force fields can give
rise to biased diffusion. The corresponding model is that of the
biased random walk, defined in a discrete setting as follows: at
each step the walker steps to the right with probability p and
to the left with probability 1 − p [1]. The splitting probability
can be obtained from the classical backward equation [1,4],
which yields

0 � s0 � s1, πs1,0(s0) = αs0 − 1

αs1 − 1
, (5)

s1 � s0 � N, πs1,N (s0) = αs0 − αN

αs1 − αN
, (6)

where α = 1−p
p . The distribution of S is then explicitly de-

termined by Eq. (2). Similarly to the unbiased case above,
the distribution shows two sharp jumps for s0 = O(N ) and
N − s0 = O(N ), whose interpretation is unchanged; their rel-
ative weight is now controlled by the bias (see Fig. 4).

C. Persistent nearest-neighbor random walk

Another important example of random walk involved in
the context of search processes is the persistent random walk
[22,28], defined as follows. At each time step the walker
performs a step identical to the previous one with probability
p, and opposite with probability 1 − p. We also introduce the
probability a that the first step is clockwise. Even though its
derivation relies on rather standard tools, the expression of the
splitting probability for the persistent random walk does not
seem to be present in the literature; we therefore provide the
main steps of the derivation below.
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FIG. 3. Distribution P(S) for a symmetric nearest-neighbor random walker. (a) s0 = 20, N = 100. (b) s0 = 10, N = 1000. Exact results
are compared to 106 (left panel) and 105 (right panel) numerical simulations.

We consider the case 0 < s0 < s and aim at determining
πs,0(s0, a); the case s < s0 < N will then be deduced by
taking s → N − s, s0 → N − s0 and a → 1 − a. Boundary
conditions yield πs,0(s, a) = 1 and πs,0(0, a) = 0. It is use-
ful to define us,0(s0) as the probability to reach s before 0,
knowing that the step that led to s0 was to the right, with
the boundary condition us,0(s) = 1. Similarly, we introduce
vs,0(s0) as the probability to reach s before 0, knowing that
the step that led to s0 was to the left, with the boundary
condition vs,0(0) = 0. Partitioning over the first step of the
walk, we obtain the following equation satisfied by πs,0(s0, a)
for 0 < s0 < s:

πs,0(s0, a) = aus,0(s0 + 1) + (1 − a)vs,0(s0 − 1). (7)

Similarly, a set of equations for u and v is given by

us,0(s0) = pus,0(s0 + 1) + (1 − p)vs,0(s0 − 1),

vs,0(s0) = pvs,0(s0 − 1) + (1 − p)us,0(s0 + 1),
(8)

which can be rewritten as

us,0(s0 + 1) − 2us,0(s0) + us,0(s0 − 1) = 0,

vs,0(s0) = 1

1 − p
[us,0(s0 + 1) − pus,0(s0 + 2)]

(9)

FIG. 4. Distribution P(S) for a biased random walker starting at
s0 = 10 with rightward drift p = 0.53. The rightmost peak has much
higher weight because the walker has a strong tendency to escape
clockwise, even though the counterclockwise exit is closer. Exact
results are compared to 105 numerical simulations.

Enforcing the boundary conditions leads to the following de-
termination of us,0(s0), vs,0(s0):

us,0(s0) = 1 + B(s0 − s),

vs,0(s0) = Bs0,
(10)

where

B = p − 1

(1 − s)(1 − p) − p
. (11)

Finally, the splitting probability reads for 0 < s0 < s as

πs,0(s0, a) = Bs0 + a(1 + 2B − Bs) − B (12)

or, equivalently,

πs,0(s0, a) = p − 1

(1 − p)(1 − s) − p
s0 + 1 − p − a

1 + p(s − 2) − s
.

(13)

Note that the splitting probability is an affine function of
s0, as in the case of the normal random walk. However, the
slope for the persistent random walk is controlled by both p
and s. As expected, the case of the normal walk is recovered
by taking p = a = 1/2. The distribution of S is then explicitly
determined by Eq. (2) and reads as follows:

P(S = n)

= 1s0+1�nπn−1,0(s0, a)π0,n(n − 1, p)

+ 1n�N−s0+1πN−n+1,N (s0, a)πN,N−n(N − n + 1, 1 − p).

(14)

Figure 5 shows P(S) for a = 0.8 and p = 0.8. Again, the
distribution shows two sharp jumps for s0 = O(N ) and N −
s0 = O(N ). Here, the corresponding peaks are sharpened as
the persistence time of the random walk (controlled by the
parameter p) is increased.

D. Resetting random walk

We now turn to the resetting walk, which is another ex-
ample of the search process that has recently been given
much attention [25,26]. This process has been mostly stud-
ied in continuous space and time, with the exception of
Refs. [29,30]; we consider here a discrete version. At each
time step, the walker either performs a nearest-neighbor jump
(drawn symmetrically) with probability 1 − λ or resets to its
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FIG. 5. Distribution P(S) for a persistent random walker with
s0 = 10, N = 100, p = 0.8, and a = 0.8. Exact results are compared
to 5 × 105 numerical simulations.

initial position s0 with probability λ. Note that despite the
resetting jumps whose range can cover many sites, the span
of the process remains connected, because unvisited sites can
only be reached by nearest-neighbor jumps (indeed resetting
jumps all lead to the initial site).

We first determine the splitting probability πs,0(s0), which
has not been given explicitly in the literature for discrete pro-
cesses to the best of our knowledge, even if related quantities
have been studied for continuous resetting processes [31,32].
It is convenient to introduce an auxiliary site sp (not neces-
sarily equal to s0), where resetting jumps end. The backward
equation satisfied by πs,0(s0) can then be written as

πs,0(s0) = 1 − λ

2
[πs,0(s0 + 1) + πs,0(s0 − 1)] + λπs,0(sp)

(15)
or, equivalently,

Ls0πs,0(s0) = − 2λ

1 − λ
πs,0(sp), (16)

with

Ls0πs,0(s0) = πs,0(s0 + 1) − 2

1 − λ
πs,0(s0) + πs,0(s0 − 1).

(17)

The backward equation is completed by the boundary condi-
tions πs,0(0) = 0 and πs,0(s) = 1. The solution of the linear
equation (16) is then given by the sum of the homogeneous
solution hs(s0) and a particular solution p(s0). The homoge-
neous solution, defined by

Ls0 hs(s0) = 0 (18)

and hs(0) = 0 and hs(s) = 1, can be written as

hs(s0) = rs0+ − rs0−
rs+ − rs−

, (19)

where r± = 1
1−λ

±
√

1
(1−λ)2 − 1. In turn, the particular so-

lution can be constructed using the Green function of the
problem defined by

Ls1 G(s1, s2) = δs1,s2 , (20)

FIG. 6. Splitting probability of a resetting random walker on the
interval [0,100], as a function of the initial position for different
values of the resetting probability λ. Exact result of Eq. (25).

with vanishing boundary conditions

G(0, s2) = G(s, s2) = 0. (21)

One obtains

G(s1, s2) = 1s1�s2 G−(s1, s2) + 1s1>s2 G+(s1, s2), (22)

where

G−(s1, s2) = A(s2)−1(rs1+ − rs1−
)
,

G+(s1, s2) = A(s2)−1 rs2+ − rs2−
rs2+ − rs2−

rs+
rs−

(
rs1+ − rs1−

rs
+

rs−

)
,

and

A(s2) = (
rs2+ − rs2−

)(
rs2+ − rs2−

rs
+

rs−

)−1(
rs2+1
+ − rs2+1

−
rs
+

rs−

)

− 2

1 − λ

(
rs2+ − rs2−

) + (
rs2−1
+ − rs2−1

−
)
.

Finally, the particular solution can be written as

p(s0) = − 2

1 − λ
πs,0(sp)

∑
s2

G(s0, s2). (23)

Taking now s0 = sp and writing πs,0(s0) = hs(s0) + p(s0) pro-
vides a self-consistent equation for πs,0(sp), which finally
yields

πs,0(sp) = hs(sp)

1 + 2λ
1−λ

∑
s2

G(sp, s2)
. (24)

The splitting probability for arbitrary sp and s0 can then be
obtained as

πs,0(s0) = hs(s0) − hs(sp)2λ
∑

s2
G(s0, s2)

1 − λ + 2λ
∑

s2
G(sp, s2)

, (25)

which covers in particular the case of resetting to the initial
position sp = s0 that we consider in this paper. Interestingly,
as λ increases, the splitting probability takes a steplike shape
(see Fig. 6), which has important consequences on the dis-
tribution of the covered territory S, obtained as before from
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FIG. 7. Distribution P(S) for a resetting random walker, with s0 = 10 and N = 100: (a) λ = 0.001, (b) λ = 0.005, (c) λ = 0.02, and (d)
λ = 0.05. Exact results are compared to 5 × 105 numerical simulations.

Eq. (2). Figure 7 reveals an interesting behavior: as λ in-
creases, a spike in the distribution grows at 2s0. This can be
interpreted as follows. Let us assume s0 < N/2 and define
D = 1/2 as the discrete diffusion coefficient of the walk. As
expected, for λ � D/s2

0, resetting jumps can be neglected
and one recovers the case of the symmetric nearest-neighbor
random walk. In turn, for λ � D/s2

0, many resetting events,
which lead to a symmetric exploration of the domain around
s0 occur before the target is reached. The explored territory be-
fore exit is thus approximately 2s0, which yields the observed
peak in the distribution.

IV. EXTENSIONS

Let us summarize our results. So far, we have provided
an analytical expression for the probability distribution of the
territory explored before exit [Eq. (2)]. This expression holds
for discrete Markovian random processes with a connected
span on one-dimensional periodic lattices. Below, we extend
this result in several directions.

A. Reflecting boundary condition

We first consider the case of reflecting boundary condi-
tions. We thus consider a discrete Markovian random process
with a connected span on a 1D lattice of N sites. The tar-
get site is still denoted by 0, and we assume that there is
a reflecting boundary at site N − 1: this effectively means
that all nearest-neighbor jumps from site N − 1 lead to site
N − 2. The distribution of S is then readily obtained and can

be written as follows:

P(S = n) = 0 if n � s0,

P(S = n) = πn−1,0(s0)π0,n(n − 1) if s0 < n < N,

P(S = n) = πN−1,0(s0) if n = N.

(26)

As in the case of periodic boundary conditions, this expression
only involves splitting probabilities.

B. Connection to the distribution of the maximum

In this paragraph, we propose an alternative expression of
the distribution of the territory explored before exit P(S) for
discrete random processes with a connected span, in terms of
the distribution σ (s0, s) [respectively, μ(s0, s)] of the maxi-
mum (respectively, minimum) s reached by the random walker
starting from s0 positive (respectively, negative) before exiting
the domain at site 0. In the case of periodic boundary condi-
tions, it is clear that

P(S = n) = 1s0+1�nσ (s0, n − 1)

+ 1N−s0+1�nμ(s0 − N, 1 − n), (27)

which takes the following simpler form in the case of a sym-
metric random walk:

P(S = n) = 1s0+1�nσ (s0, n − 1)

+ 1N−s0+1�nσ (N − s0, n − 1), (28)

where σ (s0, s) can be simply expressed in terms of splitting
probabilities according to

π0,s(s0) =
s−1∑
k=s0

σ (s0, k). (29)
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Equivalently, one has

σ (s0, s) = π0,s+1(s0) − π0,s(s0). (30)

Note that the Markov property has not been used to obtain
Eq. (28). For Markov processes with a connected span, an
alternative expression is given by

σ (s0, s) = πs,0(s0)π0,s+1(s), (31)

which, together with Eq. (28), immediately yields Eq. (2).
Note also that Eqs. (31) and (30) yield the following equality
that is valid for Markov processes:

π0,s+1(s0) − π0,s(s0) = πs,0(s0)π0,s+1(s), (32)

which can be obtained by a direct probabilistic argument.

C. Moments 〈Sp〉
As a by-product, the expression (28) of the distribution

P(S) gives access to all moments of S according to

〈Sp(s0)〉 = N pπ0,N (s0) + N pπ0,N (N − s0)

−
N−1∑
n=s0

[(n + 1)p − np]π0,n(s0)

−
N−1∑

n=N−s0

[(n + 1)p − np]π0,n(N − s0). (33)

D. Continuous limit

We now consider the continuous-space limit of the prob-
lem; we are interested in continuous-space random processes
with a connected span taking place on the [0, L] ring with
periodic boundary conditions. This can be readily done by
making use of Eq. (27), which can be rewritten as

P(S = x) = 1x0�x σ (x0, x) + 1L−x0�x μ(x0 − L,−x) (34)

and in the symmetric case as

P(S = x) = 1x0�x σ (x0, x) + 1L−x0�x σ (L − x0, x), (35)

where

σ (x0, x) = d

dx
π0,x(x0). (36)

Similarly to Eq. (33), any moment of S can be written as
follows:

〈Sp(x0)〉 = π0,L(x0)Lp + π0,L(L − x0)Lp

− p
∫ L

x0

xp−1π0,x(x0)dx

− p
∫ L

L−x0

xp−1π0,x(L − x0)dx.

(37)

As an example, we consider the resetting random walk in
continuous time and space with the constant resetting rate λ

and the diffusion constant D. The splitting probability obeys
the following backward equation:

d2

dx2
πx,0(x0) − r2πx,0(x0) = r2πx,0(xp), (38)

where xp denotes the resetting site, x0 denotes the starting

position, and r =
√

λ
D . The complete solution reads (see also

Ref. [32])

πx,0(x0) = sinh(rx0)

sinh(rx)
+ πx,0(xp)

sinh(rx)

× {sinh(rx) − sinh[r(x − x0)] − sinh(rx0)}.
(39)

Taking x0 = xp and using π0,x(x0) = 1 − πx,0(x0), one obtains

π0,x(xp) = sinh[r(x − xp)]

sinh[r(x − xp)] + sinh(rxp)
, (40)

which finally yields

σ (xp, x) = r sinh(rxp) cosh[r(x − xp)]

{sinh(rxp) + sinh[r(xp − x)]}2
. (41)

The distribution of S is then obtained from Eq. (28).

E. An example of a process with a nonconnected span: The
golden coupon problem

So far, all the results that we have discussed apply to ran-
dom walks with a connected span. Here we consider a typical
example of a random walk with a nonconnected span, which
belongs to the family of intermittent random walks [2,33]. We
assume that at each time step, the random walker jumps to a
site drawn uniformly from the set of N sites. For this process,
determining the distribution of the territory explored before
exit amounts to solving the following simple coupon problem.
Assume that a coupon is drawn randomly out of N different
coupons labeled from 1 to N . The experiment is repeated until
the coupon N (the golden coupon) is drawn. Recall that the
random walk defined above starts from a given site s0 �= 0.
Denoting p(n) the probability that n distinct coupons have
been drawn before the golden one, one has

P(S = n + 1) = p(n|n > 0) = N

N − 1
p(n). (42)

This problem can be solved as follows. We denote by Sk,n

the number of surjections from [[0, k − 1]] to [[1, n]]. The
probability p(n) of receiving n distinct coupons before N now
reads

p(n) =
(

N − 1

n

) ∞∑
k=0

1

Nk
Sk,n

1

N

=
(

N − 1

n

)
1

N

∞∑
k=0

1

Nk

n∑
j=0

(−1)n− j

(
n

j

)
jk

=
(

N − 1

n

)
1

N
(−1)n

n∑
j=0

(−1) j

(
n

j

)
1

1 − j
N︸ ︷︷ ︸

A

, (43)

where A can be shown to be given by

A = (−1)n n!

(N − 1) · · · (N − n)
,

A = (−1)n(N−1
n

) ,

(44)
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yielding

p(n) = 1

N
. (45)

Finally, using Eq. (42) we obtain the strikingly simple exact
result:

∀n � 2, P(S = n) = 1

N − 1
. (46)

Note that the result (45) can be interpreted as follows. Let
us consider that the experiment is repeated until all different
coupons are drawn at least once. This event eventually occurs
with probability 1. For symmetry reasons, the order of appear-
ance of the golden coupon N is uniformly distributed, which
directly yields (45).

V. CONCLUSION

To conclude, we have derived the full distribution of the
territory S explored by a one-dimensional random walker
before it exits a finite domain. This result applies to the
general class of Markovian processes with a connected span.

We have demonstrated that this distribution can be expressed
in terms of splitting probabilities only, which can in general
be derived from backward equations. We have applied our
approach to various examples of random processes, which
have appeared in the literature in the context of target search
problems. These include simple symmetric random walks,
biased random walks, persistent random walks, and resetting
random walks. As a by-product, we have provided explicit
expressions for the splitting probabilities of discrete persis-
tent random walks and discrete resetting random walks. We
have finally discussed several extensions of our approach,
namely, to the case of reflecting boundary conditions, con-
tinuous processes, and an example of a random process with
a nonconnected span. We now wish to inquire about higher
dimensions and study S thoroughly in different setups. Of
note, our approach is by nature limited to one-dimensional
processes with a connected span, for which the explored terri-
tory has a simple geometry parametrized by a single scalar
parameter; the cases of higher-dimensional problems or of
general processes with nonconnected spans call for alternative
methods.
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