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Information theory has become an increasingly important research field to better understand quantum me-
chanics. Noteworthy, it covers both foundational and applied perspectives, also offering a common technical
language to study a variety of research areas. Remarkably, one of the key information-theoretic quantities is
given by the relative entropy, which quantifies how difficult is to tell apart two probability distributions, or
even two quantum states. Such a quantity rests at the core of fields like metrology, quantum thermodynamics,
quantum communication, and quantum information. Given this broadness of applications, it is desirable to
understand how this quantity changes under a quantum process. By considering a general unitary channel, we
establish a bound on the generalized relative entropies (Rényi and Tsallis) between the output and the input of
the channel. As an application of our bounds, we derive a family of quantum speed limits based on relative
entropies. Possible connections between this family with thermodynamics, quantum coherence, asymmetry, and
single-shot information theory are briefly discussed.
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I. INTRODUCTION

Since its formulation decades ago by Shannon [1], in-
formation theory has played a major role in both applied
and fundamental science, ranging from neuroscience [2] to
quantum gravity [3,4], and along the way has impacted ther-
modynamics [5], finance [6], and evolutionary biology [7]. A
central element in this theory is the Shannon entropy, which
measure how much information is contained in a probability
distribution. Shannon entropy also plays a role on the speed of
evolution of classical stochastic processes [8]. However, when
the basic assumptions of the theory do not hold, e.g., exten-
sivity or very large data sets (nonasymptotic regime), other
information measures appear as generalizations of the Shan-
non entropy. Indeed, such a family of information-theoretic
measures include the paradigmatic cases of Tsallis [9] and
Rényi [10] entropies.

Each of these developments is based on the idea that
a physical process could be understood as an information
processing protocol. In such tasks, distinguishing classical
probability distributions or quantum states plays a funda-
mental role. The relative entropy (RE) [11], also called
divergence [12], stand as a remarkable information-theoretic
distinguishability metric, thus exhibiting distinct operational
meanings in several fields. For instance, relative entropy quan-
tifies the dissipated work in a driven evolution [13], the
amount of entanglement [14], and quantum coherence in a
given state [15,16]. Moreover, it unveils the role of entropy
production in thermal relaxation processes [17–19] and also
the asymmetry of a state or process [20].

Rényi relative entropy (RRE) determines an entire family
of second laws of thermodynamics in the quantum regime
[21], which also applies to black hole physics [22], and cut-
off rate in the hypothesis testing theory [23] and quantum
Gaussian states [24], to name only a few. Furthermore, RRE
is linked to an entropic energy-time uncertainty relation for
time-independent systems [25], also being related to the con-
cept of multiple quantum coherences [26].

Tsallis entropy is mainly considered in the field of
nonextensive statistical mechanics [27]. However, important
applications of this theory also appear in several other areas
[28]. Interestingly, it has been shown that Tsallis relative en-
tropies (TRE) define a bona fide quantum coherence quantifier
[29]. Furthermore, TRE satisfies a class of bounds derived
from Pinsker and Fannes–type inequalities [30].

Here we consider the fundamental problem of bounding
the change in the generalized relative entropies under an arbi-
trary unitary process. Specifically, we derive an upper bound
on both asymmetric and symmetric versions of RRE and TRE,
between the initial and final states. As an application of this
result, we show that this upper bound implies an entirely
family of quantum speed limits (QSLs).

The importance of our results is twofold. First, it es-
tablishes a bound on entropic quantifiers that are employed
in distinct fields from quantum communication to biology
[31,32]. In general, since the computation of relative entropies
are usually difficult, our main result can directly be applied in
all of these fields by providing bounds on central quantities.
Second, our family of QSLs provide nonasymptotic bounds
on the time evolution of quantum systems in the sense of the
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so-called single-shot information theory [33]. Furthermore,
due to the broadness application of RRE, it provides a bridge
among the speed of quantum evolution, thermodynamics [34],
and quantum resources, e.g., entanglement, coherence, and
asymmetry [35]. Importantly, since our results apply to TRE,
it also provides a nonextensive version of the QSL, which can
found several applications, both on fundamental and practical
aspects [36].

The paper is organized as follows. In Sec. II we briefly
review the main properties of Rényi and Tsallis relative en-
tropies, which in turn can be recasted in terms of a generalized
entropy. In Sec. III, we introduce the physical setting and
present an upper bound on those generalized entropies. Next,
in Sec. IV we discuss an entire family of QSLs derived
from the referred upper bound on Rényi and Tsallis rela-
tive entropies. In Sec. V we illustrate our findings via the
prototypical case of the single-qubit state, thus presenting
analytical results for the family of QSLs, and also discussing
the tightness of the main bound on generalized entropies.
Finally, in Sec. VI we close the paper discussing these results
and comment on possible applications.

II. GENERALIZED RELATIVE ENTROPIES

Let us start by defining our physical system, which is
described by a finite-dimensional Hilbert space H, with d =
dim(H). In general, the state of the system will be given by
a density matrix ρ ∈ �, where � = {ρ ∈ H | ρ† = ρ, ρ �
0, Tr(ρ) = 1} defines the convex space of density operators.
In this setting, given two states ρ, ω ∈ �, the Rényi (RRE)
and Tsallis (TRE) relative entropies are defined, respectively,
as [37]

Rα (ρ‖ω) = 1

α − 1
ln [gα (ρ, ω)], (1)

and

Hα (ρ‖ω) = 1

1 − α
[1 − gα (ρ, ω)], (2)

where gα (ρ, ω) = Tr(ραω1−α ) is the α-relative purity, also
called Petz-Rényi relative quasi-entropy [24], with the pa-
rameter α ∈ (0, 1) ∪ (1,+∞) labeling the family of quantum
relative entropies [38]. Equation (1) is also called Petz-Rényi
relative entropy [39], standing as the first quantum extension
of the classical RRE. Indeed, due to the noncommutativity of
quantum states, the nonuniqueness of quantum information-
theoretic quantifiers has triggered the search for a plethora of
quantum entropies, e.g., sandwiched Rényi relative entropy
[37,40–42], and α-z-relative Rényi entropy [43].

Importantly, relative purity satisfies the property
gα (ω, ρ) = g1−α (ρ, ω), i.e., it is skew symmetric with respect
to α. In particular, when ρ = ω we have gα (ρ, ρ) = 1 for all
α, and thus one gets Rα (ρ‖ρ) = Hα (ρ‖ρ) = 0. Noteworthy,
for α = 1/2 one recovers the so-called quantum affinity,
which is related to Hellinger angle [44]. In turn, Hellinger
angle is associated to Wigner-Yanase skew information metric
and characterizes the length of the geodesic path connecting
states ρ, ω ∈ � [45,46].

In the following we summarize the main properties of RRE
and TRE. A more complete presentation can be found in

Ref. [47]. Starting with RRE, the limit α → 1 recovers the
well-known quantum relative entropy R1(ρ‖ω) = S(ρ‖ω) :=
Tr(ρ ln ρ − ρ ln ω). For α = 0, RRE reduces to the min-
relative entropy R0(ρ‖ω) = − ln Tr(�ρ ω), with �ρ being the
projector onto the support of the state ρ [48]. Noteworthy,
for 0 � α � 2, RRE satisfies the data-processing inequality,
i.e., Rα (�(ρ)‖�(ω)) � Rα (ρ‖ω), thus being monotonic un-
der any completely positive and trace preserving map �(•)
[49]. This is a fundamental inequality not only within infor-
mation theory but also for physics (see, for instance, Ref. [50],
where the second law of thermodynamics is obtained from
such inequality). Moving to Tsallis relative entropy, it has
been shown that, for 0 � α < 1, TRE is (i) nonnegative, i.e.,
Hα (ρ‖ω) � 0 for all ρ, ω ∈ �, with the equality holding if
and only if ρ = ω; (ii) jointly convex; (iii) nonaditive; and (iv)
contractive under completely positive and trace preserving
maps [28,51,52]. Importantly, TRE also recovers the standard
quantum relative entropy in the limit α → 1, i.e., H1(ρ‖ω) =
S(ρ‖ω).

We shall stress that RRE and TRE are asymmetric with
respect to states ρ, σ ∈ �. However, a bona fide distance
measure within the information geometry theory is usually
symmetric. For instance, the so-called quantum Jensen-
Shannon divergence, i.e., the square root of symmetrized
quantum relative entropy, was proved to be a metric on the
space of density matrices [53]. For the case at hand, the
aforementioned entropies can be symmetrized as

Oα (ρ : ω) := Oα (ρ‖ω) + Oα (ω‖ρ), (3)

where index O ≡ {R, H} labels RRE and TRE, respectively.
We are now ready to present our main result.

III. BOUNDS ON GENERALIZED RELATIVE ENTROPIES

The dynamics of our system is governed by a time-
dependent Hamiltonian Ht ∈ B(H), with B(H) being the set
of bounded operators acting on H. In general, the Hamiltonian
Ht is not self-commuting at different times, i.e., [Hs, Ht ] �= 0
for s �= t . The initial state ρ0 ∈ � undergoes the unitary evo-
lution ρt = Ut ρ0U

†
t , for t ∈ [0, τ ], where Ut = T e−i

∫ t
0 ds Hs

is the time-ordered unitary evolution operator satisfying the
equation −i(dUt/dt ) = HtUt . From now on, we will work in
natural units, h̄ = kB = 1.

Based on this physical setting, our goal is to provide
a class of nontrivial upper bounds for RRE and TRE. In
Appendix A 2 we have proved that, for α ∈ (0, 1), RRE and
TRE satisfy the inequality

Oα (ρτ‖ρ0) �
τ

〈〈
GO

α (t )
〉〉
τ

|1 − α| , (4)

where 〈〈 • 〉〉τ = τ−1
∫ τ

0 • dt stands for the time average, and

GO
α (t ) := 
O

α

∥∥ρ1−α
0

∥∥
2

∥∥[
Ht , ρ

α
0

]∥∥
2, (5)

with ‖A‖2 =
√

Tr (A†A) being the Schatten 2-norm. Here 
O
α

is an auxiliary function which reads


O
α =

{|1 + (1 − α) ln(λmin(ρ0))|−1, for O ≡ R

1, for O ≡ H ,
(6)
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where λmin(ρ0) sets the smallest eigenvalue of the input state
ρ0. Noteworthy, Eq. (4) is the first main result of this article.
Remarkably, the bound mostly depends on ρ0 and Ht . Natu-
rally, a similar bound can be obtained for the case in which the
arrangement of states ρ0 and ρτ in Eq. (4) is swapped, which
is given by (see Appendix A 2)

Oα (ρ0‖ρτ ) �
τ

〈〈
GO

1−α (t )
〉〉
τ

|1 − α| . (7)

Furthermore, the corresponding inequality for symmetrized
forms of RRE and TRE is then obtained, roughly speaking,
by combining the two nonsymmetric upper bounds, and reads
(see details in Appendix A 3)

Oα (ρτ : ρ0) �
τ

〈〈
GO

α (t ) + GO
1−α (t )

〉〉
τ

|1 − α| . (8)

Remarkably, such bounds do not depend on the time-ordered
evolution operator Ut , neither on the evolved state of the
system. Thus, for states ρ0 and ρτ of a given closed quantum
system, our results provide a route to estimate both RRE
and TRE entropies which will depend mostly on the spectral
properties of the initial state ρ0 and the driving Hamiltonian.

Importantly, Eq. (4) can be recasted in terms of the
Fröbenius norm of the initial state of the system, while be-
ing a function of the time average of the Schatten 2-norm
of the Hamiltonian. To see this, we first point out that
for two arbitrary complex matrices X and Y , it has been
proved the Schatten 2-norm fulfills the inequality ‖[X,Y ]‖2 �√

2 ‖X‖2‖Y ‖2 [54–56]. Hence, from Eq. (5) one readily
obtains the upper bound GO

α (t ) �
√

2 ‖ρ1−α
0 ‖2 ‖ρα

0 ‖2 ‖Ht‖2.
Therefore, the bound in Eq. (4) can be recasted as

Oα (ρτ‖ρ0) �
√

2 τ 
O
α

∥∥ρ1−α
0

∥∥
2

∥∥ρα
0

∥∥
2 〈〈 ‖Ht‖2〉〉τ

|1 − α| . (9)

In particular, note that 〈〈 ‖Ht‖2〉〉τ = ‖H‖2 for the case in
which the Hamiltonian is time independent, i.e., Ht ≡ H .
Overall, the bound in Eq. (9) does requires minimal infor-
mation about the system, e.g., its initial state ρ0 and the
energy levels of the Hamiltonian Ht . Indeed, the latter comes
from the fact that, given the spectral decomposition Ht =∑d

j=1 ε j (t )|φ j (t )〉〈φ j (t )|, with d = dim H the dimension of
the Hilbert space, where the eigenvalues {ε j (t )} j=1,...,d and
eigenstates {|φ j (t )〉} j=1,...,d are time dependent, and thus one
obtains ‖Ht‖2

2 = ∑d
j=1 ε j (t )2.

Finally, regardless of the simplicity and usefulness of the
bound in Eq. (9), we shall point out the original bound in
Eq. (4) might stand as the general and tighter one. Before
discussing the physical significance of this bound, we will
make use of it to obtain a family of QSLs.

IV. QUANTUM SPEED LIMITS

The QSL signals the minimum time of evolution between
two quantum states undergoing an arbitrary dynamics. Indeed,
Mandelstam and Tamm addressed this question around 75
years ago for closed quantum systems, thus showing the QSL
time for orthogonal states is given by τQSL = h̄π/(2�E ),
where (�E )2 = 〈ψ0|H2|ψ0〉 − 〈ψ0|H |ψ0〉2 stands for the
variance of the Hamiltonian with respect to the initial state

|ψ0〉 of the system [57]. Later, Margolus and Levitin de-
rived the QSL time τQSL = h̄π/(2〈ψ0|H |ψ0〉) for the same
physical setting, i.e., closed quantum systems evolving be-
tween orthogonal states [58]. Importantly, both lower bounds
can be combined accordingly onto a tighter one as τ �
max{h̄π/(2�E ), h̄π/(2〈ψ0|H |ψ0〉)} [59]. In the last decade,
several bounds were introduced in the literature covering
the QSL time for different physical settings, e.g., addressing
pure and mixed states, for closed and open quantum systems
[60–72].

Here we will present a family of QSLs by time averaging
the right-hand side of Eq. (4), thus followed by a rearrange-
ment of the resulting inequality. Indeed, the time τ required
for an arbitrary unitary evolution driving a closed quantum
system from ρ0 to ρτ is lower bounded as

τ � τO
α := max

{
τO
α (ρτ‖ρ0), τO

α (ρ0‖ρτ ), τO
α (ρ0 : ρτ )

}
,

(10)
where

τO
α (ρτ‖ρ0) := |1 − α|Oα (ρτ‖ρ0)〈〈

GO
α (t )

〉〉
τ

, (11)

and

τO
α (ρ0‖ρτ ) := |1 − α|Oα (ρ0‖ρτ )〈〈

GO
1−α (t )

〉〉
τ

, (12)

while the QSL time due to symmetrized relative entropies
reads [see Appendix A 3]

τO
α (ρ0 : ρτ ) := |1 − α|Oα (ρ0 : ρτ )〈〈

GO
α (t ) + GO

1−α (t )
〉〉
τ

. (13)

Equation (10) stands as our second main result, thus estab-
lishing a family of entropic QSLs, i.e., RRE and TRE provide
lower bounds on the time of evolution between the initial and
final states of the quantum system. Recently, a related family
of QSLs, based on the relative entropy, were derived bounding
the time it takes to generate or consume a given quantum
resource such as entanglement, asymmetry, and athermality
[73]. These bounds, dubbed as resource speed limits (RSL)
were shown to be tighter than QSLs in several instances.
However, as RSLs are constructed using the standard relative
entropy (α → 1), thus being only meaningful in the asymp-
totic limit. RSLs for single shot scenarios requires working
with Rényi relative entropies. Here, we have taken the first
step in this direction.

We shall stress that the previous discussion is valid for
α ∈ (0, 1). In the following, we will discuss the limiting cases
α → 1 and α → 0, which crucially reduce to the standard
relative entropy and the so-called min-relative entropy, respec-
tively. Importantly, these results cannot be simply obtained
from the results above. While the case α → 1 is clearly deli-
cate from the definition of RRE and TRE given in Eqs. (1) and
(2), respectively, the case α → 0 must be carefully considered
since simply taking α = 0 in Eq. (4) would provide us a trivial
bound, independently of the initial state and the dynamics.

A. Limiting case of α → 1

Let us start by considering the limit α → 1, in which
both RRE and TRE recover the quantum relative entropy, i.e.,
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limα→1Oα (�‖ω) = S(�‖ω). In this case, it can be proved that
the following upper bound applies (see details in Appendix B)

S(ρτ‖ρ0) � τ ‖ ln ρ0‖2 〈〈 ‖[Ht , ρt ]‖2〉〉τ . (14)

In this case, the corresponding QSL family reads

τ � τRE
1 := max

{
τRE

1 (ρτ‖ρ0), τRE
1 (ρ0‖ρτ ), τRE

1 (ρ0 : ρτ )
}
,

(15)

where

τRE
1 (A‖B) := S(A‖B)

‖ ln ρ0‖2 〈〈 ‖[Ht , A]‖2〉〉τ , (16)

and

τRE
1 (ρ0 : ρτ ) := S(ρτ‖ρ0) + S(ρ0‖ρτ )

‖ ln ρ0‖2 〈〈 ‖[Ht , ρt ]‖2 + ‖[Ht , ρ0]‖2〉〉τ .

(17)
In particular, when the Hamiltonian is time in-

dependent, i.e., Ht ≡ H , one obtains ‖[H, ρt ]‖2 =
‖[H, ρ0]‖2 = 2

√
IL(ρ0, H ), where we have used the

fact that Schatten 2-norm is unitarily invariant. Here
IL(ρ0, H ) = (1/4) ‖[H, ρ0]‖2

2= − (1/4) Tr([ρ0, H]2) define
a time-independent quantum coherence quantifier
which sets a lower bound on Wigner-Yanase skew
information [74,75]. Now, since IL(ρ0, H ) � (�H )2,
where (�H )2 = Tr(ρ0H2) − [Tr(ρ0H )]2 is the squared
deviation of the Hamiltonian, thus Eq. (16) implies the
lower bounds τRE

1 (ρ0‖ρτ ) � S(ρ0‖ρτ )/(2 �H ‖ ln ρ0‖2), and
τRE

1 (ρτ‖ρ0) � S(ρτ‖ρ0)/(2 �H ‖ ln ρ0‖2).

B. Limiting case of α → 0

Considering now the case α → 0, in Appendix C we have
proved that Rényi min-relative entropy is upper bounded as

|R0(ρτ‖ρ0)| � τ
〈〈
Qt

0(ρ0,�ρ0 )
〉〉
τ
, (18)

with

Qt
0(A, B) := ‖A‖2 ‖[U †

t HtUt , B]‖2

|Tr(AUt BU †
t )| . (19)

Here �ρ0 is the projector onto the support of the initial state
ρ0. From Eq. (18), we can derive the QSL time as

τ � τR
0 := max

{
τR

0 (ρτ‖ρ0), τR
0 (ρ0‖ρτ ), τR

0 (ρ0 : ρτ )
}
, (20)

where

τR
0 (ρτ‖ρ0) := |R0(ρτ‖ρ0)|〈〈

Qt
0(ρ0,�ρ0 )

〉〉
τ

, (21)

and

τR
0 (ρ0‖ρτ ) := |R0(ρ0‖ρτ )|〈〈

Qt
0(�ρ0 , ρ0)

〉〉
τ

, (22)

while the QSL related to the symmetric min-entropy is given
by

τR
0 (ρ0 : ρτ ) := |R0(ρτ‖ρ0) + R0(ρ0‖ρτ )|〈〈

Qt
0(ρ0,�ρ0 ) + Qt

0(�ρ0 , ρ0)
〉〉
τ

. (23)

Noteworthy, the “speed” contribution Qt
0 is closely related

to the QSL derived with respect to Euclidean distance in the
Bloch sphere [76,77]. Importantly, when the density matrix

ρ0 has full-rank, i.e., dim(ρ0) = supp(ρ0), thus Rényi min-
relative entropy vanishes and implies that τ

(0)
R = 0. To see

this, let ρ0 = ∑d
�=1 p�|ψ�〉〈ψ�| be the spectral decomposition

of the input state, with d = dim(H). Note the projector �ρ0

onto the support of the full-rank state ρ0 is equal to the iden-
tity, �ρ0 = ∑

�:p� �=0 |ψ�〉〈ψ�| = I. Hence, it is straightforward
to verify the symmetric min-entropy is identically zero be-
cause R0(ρτ‖ρ0) = − ln[Tr(U †

τ ρ0Uτ )] = 0 and R0(ρ0‖ρτ ) =
− ln[Tr(Uτ ρ0U †

τ )] = 0. Furthermore, from Eq. (19) one read-
ily gets Qt

0(ρ0,�ρ0 ) = 0, while the functional Qt
0(�ρ0 , ρ0) =√

d ‖[U †
t HtUt , ρ0]‖2 remains finite for t ∈ [0, τ ].

V. EXAMPLE

We now provide an analytical example in order to make
clearer the physical implications of our results. Let us con-
sider a single-qubit state, whose Bloch sphere representation
is written as ρ0 = (1/2)(I + �r · �σ ), where �σ = (σx, σy, σz ) is
the vector of Pauli matrices, �r = r r̂ is the Bloch vector, with
r̂ = {sin θ cos φ, sin θ sin φ, cos θ}, 0 < r < 1, θ ∈ [0, π ] and
φ ∈ [0, 2π ], while I is the 2 × 2 identity matrix. Particularly,
for 0 < α < 1, the operator ρα

0 respective to the initial single-
qubit state is written as

ρα
0 = 1

2 [ξ+
α I + ξ−

α (r̂ · �σ )], (24)

where

ξ±
α = 2−α[(1 + r)α ± (1 − r)α]. (25)

The dynamics of the system is governed by the
time-dependent Hamiltonian Ht = � I + n̂t · �σ , where n̂t =
{nx

t , ny
t , nz

t } is a time-dependent unit vector, |n̂t | = 1, and
� ∈ R. In this case, the time ordered evolution operator
becomes Ut = e−it� [cos(|�ut |) I − i sin(|�ut |) (ût · �σ )], where
ût = �ut/|�ut | is a unit vector, with �ut := ∫ t

0 ds n̂s. In particu-
lar, if Ht ≡ H is time independent, i.e., n̂t = n̂ is a constant
unit vector, we directly obtain ût = n̂. Next, by performing
a lengthy but straightforward calculation, one may verify the
evolved single-qubit state becomes

ρα
t = Ut ρα

0 U †
t = 1

2 [ξ+
α I + ξ−

α (ν̂t · �σ )], (26)

with the unit vector ν̂t := r̂ + sin(2|�ut |) (ût × r̂) +
2 sin2(|�ut |)[(ût · r̂)ût − r̂]. Hence, by considering the range
0 < α < 1, from Eqs. (24) and (26) we thus have that
α-relative purity reads

gα (ρt , ρ0) = 1 − ξ−
α ξ−

1−α[1 − (ût · r̂)2]sin2(|�ut |). (27)

Interestingly, since relative purity is skew symmetric over
the index α, Eq. (27) implies that gα (ρt , ρ0) = g1−α (ρt , ρ0) =
gα (ρ0, ρt ). In turn, both RRE and TRE will satisfy the
constraint Oα (ρt‖ρ0) = Oα (ρ0‖ρt ) for single-qubit states.
Furthermore, from Eq. (27), note that α-relative purity is equal
to 1 for |�ut | = nπ , with n ∈ Z and t ∈ [0, τ ]. Furthermore,
gα (ρt , ρ0) = 1 if vectors ût and r̂ are parallel. Conversely,
α-relative purity becomes gα (ρt , ρ0) = 1 − ξ−

α ξ−
1−αsin2(|�ut |)

if vectors ût and r̂ are orthogonal. In Table I we summarize
the quantities required to evaluate the QSL bounds τO

α , τRE
1 ,

and τR
0 , for the case of a single-qubit state.

For simplicity, let us focus on a Hamiltonian with � =
0 and n̂t = γ −1{�, 0, vt}, with γ :=

√
�2 + (vt )2, where v
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TABLE I. Theoretical-information quantifiers related the single
qubit state ρ0 = (1/2)(I + �r · �σ ), evolving under the Hamilto-
nian Ht = � I + n̂t · �σ . Note that μ̂t := n̂t − sin(2|�ut |) (ût × n̂t ) +
2 sin2(|�ut |)[(ût · n̂t )ût − n̂t ], with ût = �ut/|�ut |, and �ut = ∫ t

0 ds n̂s. If
the Hamiltonian is time independent, i.e., n̂t = n̂, then one must
apply the changes ût → n̂, |�ut | → t , and μ̂t → n̂ into the listed
quantities.

Quantifier Analytical value

‖[Ht , ρ
α
0 ]‖2 ξ−

α

√
2[1 − (n̂t · r̂)2]

‖[Ht , ρ0]‖2 r
√

2[1 − (n̂t · r̂)2]

‖[Ht , ρt ]‖2 r
√

2[1 − (μ̂t · r̂)2]

S(ρt‖ρ0) r ln ( 1+r
1−r )[1 − (ût · r̂)2]sin2(|�ut |)

‖ln ρ0‖2

√
ln2( 1−r

2 ) + ln2( 1+r
2 )

‖ρα
0 ‖2

√
ξ+

2α

stands as a “level velocity” of the energies of the system,
and � is the level splitting [78]. Figure 1 shows the QSL
τR
α and τH

α as function of time τ and the parameter α, for
the initial single-qubit state with {r, θ, φ} = {1/4, π/4, π/4},
also setting the ratio �/v = 0.5. In Appendix D we provide a
complementary numerical study, thus exploiting in details the
qualitative behavior depicted in Fig. 1 for RRE and TRE.

Finally, we will investigate the tightness of our bounds for
nonsymmetric and symmetric relative entropies. Overall, the
tightness of the bounds is related with the tightness of the
QSL. To see this, we introduce the following figures of merit
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H α
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FIG. 1. Density plot of QSL (a) τR
α , and (b) τH

α , as a function of
time τ and α, for the time-dependent Hamiltonian Ht = n̂t · �σ , with
n̂t = γ −1{�, 0, vt}, and γ :=

√
�2 + (vt )2. Here the initial state is

defined by {r, θ, φ} = {1/4, π/4, π/4}, and the ratio �/v = 0.5.

for nonsymmetric RRE and TRE

δO1 (α, τ ) := τ
〈〈
GO

α (t )
〉〉
τ
− |1 − α|Oα (ρτ‖ρ0), (28)

and

δO2 (α, τ ) := τ
〈〈
GO

1−α (t )
〉〉
τ
− |1 − α|Oα (ρ0‖ρτ ), (29)

while for the symmetrized relative entropies one gets

δO3 (α, τ ) := δO1 (α, τ ) + δO2 (α, τ ), (30)

with O ≡ {R, H}. We note that Eqs. (28), (29), and (30)
will quantify how much the bounds deviate from the actual
value of RRE and TRE entropies, for both nonsymmetric and
symmetric cases. Hereafter, we will set the initial single-qubit
state parameterized as {r, θ, φ} = {1/4, π/4, π/4}, and also
fixing the ratio �/v = 0.5. Figure 2 shows the plot of the nor-
malized quantity δ̃Ol (α, τ ) = δOl (α, τ )/max[δOl (α, τ )], with
l = {1, 2, 3}. On the one hand, Figs. 2(a) and 2(b) show
that, for 0 � α � 1, both quantities δ̃R

1 (α, τ ) and δ̃R
2 (α, τ )

approaches zero for short times (0 � τ � 2). On the other
hand, Figs. 2(d) and 2(e) indicate that, as the time increases,
the figure of merit δ̃H

1 (α, τ ) will remain close to zero as
long as α � 0.4, while δ̃H

2 (α, τ ) approaches a small value for
α � 0.4 during the range 0 � τ � 4. Finally, Figs. 2(c) and
2(f) suggest that, for the chosen initial parameters, both quan-
tities δ̃R

3 (α, τ ) and δ̃H
3 (α, τ ) behave similarly, being slightly

tight in the time window 0 � τ � 2, for 0 � α � 1. Nonethe-
less, we stress that a more general analysis requires varying
those parameters to include a larger class of initial states and
Hamiltonians. Of course, this subject should deserve further
investigation, also including a detailed study of Eqs. (28),
(29), and (30), as well as the family of QSLs bounds presented
in Sec. IV, for higher-dimensional systems.

VI. DISCUSSION

The main contribution of this paper is to provide an upper
bound on generalized entropies when the physical system
undergoes a unitary transformation. As the first application
of our bound, we derived a family of QSLs in Eqs. (11), (12),
and (13). From this result, the minimum time required for the
state transformation is inversely proportional to a quantity that
involves the average energy of the system [see Eq. (5)]. In
turn, this determines the evolution speed, while being directly
proportional to Oα , and thus implying the entropies play the
role of distances. Furthermore, our derivations of QSLs, based
on RRE, is first step toward resource speed limits quantifying
consumption of resource in single shot scenarios [73].

Another interesting connection can be built based on
asymmetry monotones (AMs), which in turn characterize con-
servation laws for general quantum systems, in the sense
of Noether’s theorem [20]. In short, AM is a function f :
B(H) → R that quantifies how much the state of the system
breaks a given symmetry. Mathematically, the action of a sym-
metry group G on a quantum system is described by the oper-
ation Ug(ρ) = Ug ρ U †

g , where the variable g labels the group
elements. The key idea behind AMs is to recognize the orbit
of each quantum state as an encoding process, while the map
Ug(ρ0) → Ug(ρτ ) is viewed as data processing. This implies
that we can employ any contractive information measure to
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FIG. 2. Density plot of the normalized figure of merit δ̃Ol (α, τ ) = δOl (α, τ )/max[δOl (α, τ )], with l = {1, 2, 3} [see Eqs. (28), (29), and
(30)], for Rényi relative entropy (a) δ̃R

1 (α, τ ), (b) δ̃R
2 (α, τ ), and (c) δ̃R

3 (α, τ ); and for Tsallis relative entropy (d) δ̃H
1 (α, τ ), (e) δ̃H

2 (α, τ ), and (f)
δ̃H

3 (α, τ ). Here we set the initial single-qubit state with {r, θ, φ} = {1/4, π/4, π/4}, and also the ratio �/v = 0.5.

characterize the orbit of each state, which leads to an AM
satisfying f (Ug(ρ)) � f (ρ) [20].

Considering the range of α in which RRE and TRE are
contractive under the action of a completely-positive and
trace-preserving map, we immediately see the symmetrized
relative entropies in Eq. (3) (as well as its nonsymmetric
versions) define an entire family of AMs. Indeed, the standard
relative entropy (α → 1) was previously considered as an
asymmetry monotone [79].

Next, since Eqs. (4), (7), and (8) are valid for unitary
transformations encoding any unknown parameter into the
state of the system, i.e., it goes beyond the paradigmatic case
of time evolutions, thus we can replace t by the group variable
g. Indeed, this is due to the fact the unitary representation of
the symmetry group leads to the evolution equation dρg/dg =
−i[K, ρg], with K being the generator of the transformation.
Therefore, our results provide upper bounds on how much
the state breaks the symmetry generated by K . This sets up-
per bounds of how much the conservation of the associated
physical quantity can be broken. In the specific case of QSLs,
this implies the minimum evolution time is determined by the
asymmetry measure respective to nonsymmetric and symmet-
ric RRE and TRE, which in turn stands as a measure of how
much the initial state breaks the time-translation symmetry
[see Eqs. (11), (12), and (13)].

Finally, we will discuss the relation between our results and
the concept of nonequilibrium entropy production. We begin
by setting the initial state of the system as a thermal one, ρ0 =
ρβ = exp −βH0/Z , where Z is the partition function, and H0

is the “bare” Hamiltonian of the system, i.e., [H0, Ht ] �= 0 for
all t �= 0. From Eq. (16), one may verify the lower bound on
the time of evolution is proportional to S(ρτ‖ρβ ), which in
turn stands as the entropy production associated with the pro-
cess under consideration. Therefore, a natural question arises
about the extension of this connection to general entropies and
systems. Indeed, such a general picture could be addressed

by exploiting the entire family of second laws of thermody-
namics based on RRE [21,34]. This may open an avenue for
the comprehension of QSLs [57,58,60–62,80,81], asymmetry
monotones [79], and quantum thermodynamics [19,82–84],
based on a strictly geometric framework.

The results presented here raise another questions. First,
we could consider the extension of our results to open quan-
tum systems. Moreover, given the link between quantum
coherence and TRE [85], we could investigate the trade-off
among entropy production, QSL and quantum coherence in
this scenario. Furthermore, since our results also apply for the
min-entropy, i.e., the limit α → 0 regarding to RRE, they can
be employed in the single-shot information theory, where the
relations among asymmetry, QSL, and thermodynamics can
be further developed into the nonasymptotic regime.
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APPENDIX A: BOUND ON RELATIVE ENTROPIES

In this Appendix we will present in details the derivation
of the results discussed in Sec. II.

1. Bounding α-relative purity

Here we will derive a nontrivial lower bound on the
α-relative purity, which will be useful throughout this sup-
plemental material. Let ρ1, ρ2 ∈ � be two arbitrary density
matrices, with � ⊂ H, where � = {ρ ∈ H | ρ† = ρ, ρ �
0, Tr(ρ) = 1} sets the convex space of quantum states, while
H is a d-dimensional Hilbert space, with d = dim(H). The
TRE is defined as Hα (ρ1‖ρ2) = (1 − α)−1[1 − gα (ρ1, ρ2)]
where gα (ρ1, ρ2) = Tr(ρα

1 ρ1−α
2 ) stands for the α-relative pu-

rity [37]. In particular, for 0 � α � 1, it has been proved that
TRE is upper bounded as follows [86]:

Hα (ρ1‖ρ2) � S(ρ1‖ρ2), (A1)

where S(ρ1‖ρ2) = Tr[ρ1(ln ρ1 − ln ρ2)] is the “standard”
quantum relative entropy. Interestingly, from Eq. (A1), we
readily derive the lower bound on α-relative purity,

gα (ρ1, ρ2) � 1 − (1 − α)S(ρ1‖ρ2). (A2)

Noteworthy, bound in Eq. (A2) exhibits two important fea-
tures. On the one hand, for α = 1, it trivially saturates since
g1(ρ1, ρ2) = 1 for all states ρ1, ρ2 ∈ �. On the other hand, for
α = 0 one recovers the Klein’s inequality, S(ρ1‖ρ2) � 0, due
to the fact that g0(ρ1, ρ2) = 1 for all ρ1, ρ2 ∈ �, thus stating
the quantum relative entropy is nonnegative. Next, quantum
relative entropy satisfies the following lower bound [87,88]

S(ρ1‖ρ2) � − ln(λmin(ρ2)), (A3)

where λmin(•) sets the minimum eigenvalue of the referred
density matrix. Importantly, authors in Refs. [87,88] have
derived a plethora of lower and upper bounds on S(ρ1‖ρ2),
which in turn depend on some distance measures as the op-
erator norm, Schatten 1-norm, and Fröbenius norm. However,
we shall stress the bound in Eq. (A3) is more suitable for our
purposes, mostly because it stands as one of the simplest non-
trivial lower bounds on quantum relative entropy. Therefore,
by combining Eqs. (A2) and (A3), we thus have that

gα (ρ1, ρ2) � 1 + (1 − α) ln(λmin(ρ2)), (A4)

which implies the following upper bound on α-relative purity:

[gα (ρ1, ρ2)]−1 � [1 + (1 − α) ln(λmin(ρ2))]−1. (A5)

2. Bound on nonsymmetric relative entropies

Here we will address the upper bound for nonsymmetric
quantum relative entropies. From now on, we will focus on
both Rényi, Rα (ρt‖ρ0), and Tsallis, Hα (ρt‖ρ0), relative en-
tropies, where ρ0 is the initial state of the system, and ρt =
Utρ0U

†
t its respective evolved state, with Ut = T e−i

∫ t
0 ds Hs be-

ing the unitary time-ordered evolution operator. The absolute
value of the time derivative of RRE of states ρ0 and ρt is given
by∣∣∣∣ d

dt
Rα (ρt‖ρ0)

∣∣∣∣ = 1

|1 − α| gα (ρt , ρ0)

∣∣∣∣ d

dt
gα (ρt , ρ0)

∣∣∣∣. (A6)

In Appendix A 1 we have derived an upper bound on the
inverse of the α-relative purity, which in turn will exhbit
a logarithmic dependence on the smallest eigenvalue of the
initial state of the system. Indeed, by substituting Eq. (A5)
into (A6), one obtains the following inequality∣∣∣∣ d

dt
Rα (ρt‖ρ0)

∣∣∣∣ �
∣∣ d

dt gα (ρt , ρ0)
∣∣

|1 − α||1 + (1 − α) ln(λmin(ρ0))| . (A7)

For completeness, the absolute value of the time derivative of
TRE of states ρ0 and ρt is given by∣∣∣∣ d

dt
Hα (ρt‖ρ0)

∣∣∣∣ = 1

|1 − α|
∣∣∣∣ d

dt
gα (ρt , ρ0)

∣∣∣∣. (A8)

Next, the time derivative of relative purity gα (ρt , ρ0) =
Tr(ρα

t ρ1−α
0 ) is evaluated as follows. Because ρt evolves uni-

tarily, it is possible to verify the operator ρα
t = Ut ρα

0 U †
t

satisfies the von Neumann equation dρα
t /dt = −i[Ht , ρ

α
t ],

where we used the identity Ut (dU †
t /dt ) = −(dUt/dt )U †

t =
−iHt . Hence, we thus have that

d

dt
gα (ρt , ρ0) = −i Tr

(
ρα

t

[
ρ1−α

0 , Ht
])

, (A9)

where we have used the cyclic property of trace. By
taking the absolute value of Eq. (A9), and applying
the Cauchy-Schwarz inequality, |Tr(A1A2)| � ‖A1‖2‖A2‖2,
with ‖A‖2 =

√
Tr(A†A), one readily gets∣∣∣∣ d

dt
gα (ρt , ρ0)

∣∣∣∣ � ∥∥ρα
0

∥∥
2

∥∥[Ht , ρ
1−α
0 ]

∥∥
2, (A10)

where we have used that ‖ρα
t ‖2 = ‖Utρ

α
0 U †

t ‖2 = ‖ρα
0 ‖2, i.e.,

Schatten 2-norm is unitarily invariant. Hence, by substituting
Eq. (A10) into Eqs. (A7) and (A8), one finds the generalized
upper bound ∣∣∣∣ d

dt
Oα (ρt‖ρ0)

∣∣∣∣ � |1 − α|−1GO
α (t ), (A11)

where we define the functional

GO
α (t ) := 
O

α

∥∥ρα
0

∥∥
2

∥∥[
Ht , ρ

1−α
0

]∥∥
2, (A12)

while the auxiliary function reads


O
α =

{|1 + (1 − α) ln(λmin(ρ0))|−1, for O ≡ R

1, for O ≡ H .
(A13)

Just to clarify, in the remainder of the paper the index O ≡
{R, H} will label RRE and TRE, respectively. Finally, by
integrating Eq. (A11) over the interval 0 � t � τ , we thus
obtain the upper bound

Oα (ρτ‖ρ0) � |1 − α|−1
∫ τ

0
dt GO

α (t ), (A14)

where we have invoked the inequality |∫ dx f (x)| �∫
dx| f (x)|, and used the fact that both RRE and TRE are

nonnegative, real-valued, information-theoretic measures.
Importantly, an analogous bound can be derived for the

case in which the states ρ0 and ρτ are swapped. We will
briefly sketch the proof since the calculations are similar to the
previous discussion. The property gα (ρ0, ρt ) = g1−α (ρt , ρ0)
for the relative purity implicates the skew symmetry

(1 − α)Oα (ρ0‖ρt ) = αO1−α (ρt‖ρ0), (A15)
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which holds for all ρ0, ρt and 0 < α < 1. In turn, the identity
in Eq. (A15) allow us to write down the time derivative∣∣∣∣ d

dt
Oα (ρ0‖ρt )

∣∣∣∣ = α

|1 − α|
∣∣∣∣ d

dt
O1−α (ρt‖ρ0)

∣∣∣∣. (A16)

Invoking Eq. (A11) and mapping α → 1 − α, one obtains
|dO1−α (ρt‖ρ0)/dt | � α−1GO

1−α (t ). Hence, by inserting this
expression into the right-hand side of Eq. (A16), we thus have
that ∣∣∣∣ d

dt
Oα (ρ0‖ρt )

∣∣∣∣ � |1 − α|−1GO
1−α (t ), (A17)

which implies the upper bound

Oα (ρ0‖ρτ ) � |1 − α|−1
∫ τ

0
dt GO

1−α (t ). (A18)

3. Bound on symmetric relative entropies

Here we will address the upper bound for symmetric quan-
tum relative entropies. We shall begin with the symmetric
relative entropy

Oα (ρt : ρ0) := Oα (ρt‖ρ0) + Oα (ρ0‖ρt ), (A19)

where ρ0 is the initial state of the system, while ρt = Utρ0U
†
t

is the evolved state. Let |d Oα (ρt : ρ0)/dt | be the absolute
value of the time derivative of Eq. (A19). Hence, by applying
the triangle inequality |a1 + a2| � |a1| + |a2|, one obtains∣∣∣∣ d

dt
Oα (ρt : ρ0)

∣∣∣∣ �
∣∣∣∣ d

dt
Oα (ρt‖ρ0)

∣∣∣∣ +
∣∣∣∣ d

dt
Oα (ρ0‖ρt )

∣∣∣∣.
(A20)

Based on Eqs. (A11) and (A17), it follows that∣∣∣∣ d

dt
Oα (ρt : ρ0)

∣∣∣∣ � |1 − α|−1
[
GO

α (t ) + GO
1−α (t )

]
. (A21)

Finally, by integrating Eq. (A21) over the interval t ∈ [0, τ ],
and using the fact that |∫ dx f (x)| � ∫

dx| f (x)|, one finds the
upper bound for symmetric relative entropies

|Oα (ρτ : ρ0)| � |α − 1|−1
∫ τ

0
dt

[
GO

α (t ) + GO
1−α (t )

]
. (A22)

APPENDIX B: RECOVERING RELATIVE ENTROPY

In this Appendix we present the details in the calculation
of the limit α → 1. The idea here is going back few steps and
pinpoint the main features needed to properly address such
nontrivial limit. For the two states ρ0 and ρt = Utρ0U

†
t , we

shall begin evaluating the limiting case α → 1 of the time
derivative of symmetric relative entropy defined in Eq. (A19),
i.e.,

lim
α→1

d

dt
Oα (ρt : ρ0)

= lim
α→1

d

dt
Oα (ρt‖ρ0)

+ lim
α→1

α

(1 − α)

d

dt
O1−α (ρt‖ρ0), (B1)

where we have used the fact that Oα (ρ0‖ρt ) is skew
symmetric [see Eq. (A15)]. Next, by taking the absolute

value of Eq. (B1), then applying the triangle inequality
|a1 + a2| � |a1| + |a2|, and finally integrating the resulting
expression over interval t ∈ [0, τ ], we thus have that∫ τ

0
dt

∣∣∣∣ lim
α→1

d

dt
Oα (ρt : ρ0)

∣∣∣∣
�

∫ τ

0
dt

∣∣∣∣ lim
α→1

d

dt
Oα (ρt‖ρ0)

∣∣∣∣
+

∫ τ

0
dt

∣∣∣∣ lim
α→1

α

(1 − α)

d

dt
O1−α (ρt‖ρ0)

∣∣∣∣. (B2)

Based on the definition of the relative entropy, S(A‖B) =
Tr[A(ln A − ln B)], note that one may write down

|S(ρτ‖ρ0) + S(ρ0‖ρτ )|
=

∣∣∣ lim
α→1

Oα (ρτ : ρ0)
∣∣∣

=
∣∣∣∣
∫ τ

0
dt lim

α→1

d

dt
Oα (ρt : ρ0)

∣∣∣∣
�

∫ τ

0
dt

∣∣∣∣ lim
α→1

d

dt
Oα (ρt : ρ0)

∣∣∣∣. (B3)

Just to clarify, here we assume that RRE and TRE are contin-
uous real-valued functions over the set α ∈ (0, 1) ∪ (1,+∞)
and t ∈ [0, τ ]. In this sense, we are formally able to switch the
limit on parameter α with the integration sign over variable t .
Thus, by combining Eqs. (B2) and (B3), one readily obtains

|S(ρτ‖ρ0) + S(ρ0‖ρτ )|

�
∫ τ

0
dt

∣∣∣∣ lim
α→1

EO
α (ρt , ρ0)

(1 − α)

d

dt
gα (ρt , ρ0)

∣∣∣∣
+

∫ τ

0
dt

∣∣∣∣ lim
α→1

EO
1−α (ρt , ρ0)

(1 − α)

d

dt
g1−α (ρt , ρ0)

∣∣∣∣, (B4)

where we have used that∣∣∣∣ lim
α→1

d

dt
Oα (ρt‖ρ0)

∣∣∣∣
=

∣∣∣∣ lim
α→1

EO
α (ρt , ρ0)

(1 − α)

d

dt
gα (ρt , ρ0)

∣∣∣∣, (B5)

and ∣∣∣∣ lim
α→1

α

(1 − α)

d

dt
O1−α (ρt‖ρ0)

∣∣∣∣
=

∣∣∣∣ lim
α→1

EO
1−α (ρt , ρ0)

(1 − α)

d

dt
g1−α (ρt , ρ0)

∣∣∣∣, (B6)

with the auxiliary functional EO
s (A, B) defined as

EO
s (A, B) =

{
[gs(A, B)]−1, for O ≡ R

1, for O ≡ H .
(B7)

Interestingly, one may verify the right-hand side of Eq. (B4)
exhibits an indeterminacy in the limit α → 1. Indeed, since
(dρs

t /dt ) = −i[Ht , ρ
s
t ], it follows that

lim
α→1

[dgα (ρt , ρ0)/dt]

= (−i) lim
α→1

Tr
(
ρ1−α

0

[
Ht , ρ

α
t

]) = 0, (B8)
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and also

lim
α→1

[dg1−α (ρt , ρ0)/dt]

= (−i) lim
α→1

Tr
(
ρα

0

[
Ht , ρ

1−α
t

]) = 0. (B9)

Similarly, one readily verifies that limα→1 (1 −
α)[EO

α (ρt , ρ0)]−1 = 0 and limα→1 (1 − α)[EO
1−α (ρt , ρ0)]−1 =

0, where we used the fact that limα→1 [EO
α (ρt , ρ0)]−1 = 1,

and limα→1 [EO
1−α (ρt , ρ0)]−1 = 1, for all O ≡ {R, H}. In this

case, one obtains

lim
α→1

EO
α (ρt , ρ0)

(1 − α)

d

dt
gα (ρt , ρ0) −→ 0

0
, (B10)

and

lim
α→1

EO
1−α (ρt , ρ0)

(1 − α)

d

dt
g1−α (ρt , ρ0) −→ 0

0
, (B11)

which in turn suggests the right-hand side of Eq. (B4) is not
well behaved. We note, however, this such issue is readily

circumvented by applying the L’Hospital rule, leading us to

lim
α→1

EO
α (ρt , ρ0)

(1 − α)

d

dt
gα (ρt , ρ0)

= lim
α→1

d[d gα (ρt , ρ0)/dt]/dα

d
(
(1 − α)

[
EO

α (ρt , ρ0)
]−1)

/dα
, (B12)

and

lim
α→1

EO
1−α (ρt , ρ0)

(1 − α)

d

dt
g1−α (ρt , ρ0)

= lim
α→1

d[d g1−α (ρt , ρ0)/dt]/dα

d
(
(1 − α)

[
EO

1−α (ρt , ρ0)
]−1)

/dα
. (B13)

In the following, we will discuss in details each contribu-
tion in the right-hand side of Eqs. (B12) and (B13). Let us
start by evaluating the following derivatives:

lim
α→1

d

dα

(
d

dt
gα (ρt , ρ0)

)
= −i lim

α→1

d

dα

(
Tr

(
ρ1−α

0 [Ht , ρ
α
t ]

))
= −i lim

α→1

∑
j,�

d

dα

(
p1−α

j pα
�

)〈ψ j | [Ht ,Ut |ψ�〉〈ψ�|U †
t ] |ψ j〉

= −i
∑

j,�

p�(ln p� − ln p j ) 〈ψ j | [Ht ,Ut |ψ�〉〈ψ�|U †
t ] |ψ j〉

= i Tr(ln ρ0 [Ht , ρt ]), (B14)

and

lim
α→1

d

dα

(
d

dt
g1−α (ρt , ρ0)

)
= −i lim

α→1

d

dα

(
Tr

(
ρα

0

[
Ht , ρ

1−α
t

]))
= −i lim

α→1

∑
j,�

d

dα

(
pα

j p1−α
�

)〈ψ j | [Ht ,Ut |ψ�〉〈ψ�|U †
t ] |ψ j〉

= i
∑

j,�

p j (ln p� − ln p j ) 〈ψ j | [Ht ,Ut |ψ�〉〈ψ�|U †
t ] |ψ j〉

= −i Tr(Ut ln ρ0U
†
t [Ht , ρ0]), (B15)

where we have used that d (p1−α
j pα

� )/dα = (ln p� − ln p j )p1−α
j pα

� . Moving forward, note that

d

dα

(
(1 − α)

[
EO

α (ρt , ρ0)
]−1

)
= −[

EO
α (ρt , ρ0)

]−1 + (1 − α)
d

dα

[
EO

α (ρt , ρ0)
]−1

, (B16)

and
d

dα

(
(1 − α)

[
EO

1−α (ρt , ρ0)
]−1

)
= −[

EO
1−α (ρt , ρ0)

]−1 + (1 − α)
d

dα

[
EO

1−α (ρt , ρ0)
]−1

. (B17)

From Eqs. (B16) and (B17), we point out that
limα→1 [EO

α (ρt , ρ0)]−1 = 1, and limα→1 [EO
1−α (ρt , ρ0)]−1 =

1, for all O ≡ {R, H}. Hence, from now on it suffices to
proceed by showing the derivatives d [EO

α (ρt , ρ0)]−1/dα, and
d [EO

1−α (ρt , ρ0)]−1/dα, are indeed well behaved for α → 1.
On the one hand, for Tsallis relative entropy the auxiliary
functional becomes EH

α (ρt , ρ0) = EH
1−α (ρt , ρ0) = 1, for all α,

and the aforementioned derivatives are identically zero. In

this case, from Eqs. (B16) and (B17), one obtains

d

dα

{
(1 − α)

[
EH

α (ρt , ρ0)
]−1

}
= d

dα

{
(1 − α)

[
EH

1−α (ρt , ρ0)
]−1

}
= −1. (B18)

On the other hand, for Rényi relative entropy the auxil-
iary functional behave as [ER

α (ρt , ρ0)]−1 = gα (ρt , ρ0) and
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[ER
1−α (ρt , ρ0)]−1 = g1−α (ρt , ρ0), and the calculation is more

involved. To see this, let ρ0 = ∑
� p�|ψ�〉〈ψ�| be the spec-

tral decomposition of the initial state, with 0 � p� � 1 and∑
� p� = 1. In this case, given the evolved state ρt = Ut ρ0U

†
t ,

we thus have that ρα
t = ∑

� pα
� Ut |ψ�〉〈ψ�|U †

t , and the rela-
tive purity becomes gα (ρt , ρ0) = ∑

j,� p1−α
j pα

� |〈ψ j |Ut |ψ�〉|2.
Hence, the derivative with respect to the parameter α is simply
given by

lim
α→1

d

dα

[
ER

α (ρt , ρ0)
]−1

= lim
α→1

d

dα
Tr

(
ρα

t ρ1−α
0

)
= lim

α→1

∑
j,�

pα
� p1−α

j (ln p� − ln p j ) |〈ψ j |Ut |ψ�〉|2

= S(ρt‖ρ0), (B19)

and

lim
α→1

d

dα

[
ER

1−α (ρt , ρ0)
]−1

= lim
α→1

d

dα
Tr

(
ρ1−α

t ρα
0

)
= − lim

α→1

∑
j,�

p1−α
� pα

j (ln p� − ln p j ) |〈ψ j |Ut |ψ�〉|2

= S(ρ0‖ρt ). (B20)

Hence, by combining Eqs. (B16), (B17), (B18), (B19), and
(B20), we get the result

lim
α→1

d

dα

{
(1 − α)

[
EO

α (ρt , ρ0)
]−1}

= lim
α→1

d

dα

{
(1 − α) )

[
EO

1−α (ρt , ρ0))
]−1} = −1. (B21)

Therefore, by inserting Eqs. (B14), (B15), (B18), and (B21)
into Eqs. (B12) and (B13), we conclude

lim
α→1

EO
α (ρt , ρ0)

(1 − α)

d

dt
gα (ρt , ρ0)

= −i Tr(ln ρ0 [Ht , ρt ]), (B22)

and

lim
α→1

EO
1−α (ρt , ρ0)

(1 − α)

d

dt
g1−α (ρt , ρ0)

= i Tr(Ut ln ρ0U
†
t [Ht , ρ0]). (B23)

Finally, by substituting Eqs. (B22) and (B23) into
Eq. (B4), and then applying the Cauchy-Schwarz inequality,
|Tr(A1A2)| � ‖A1‖2‖A2‖2, with ‖A‖2 =

√
Tr(A†A), it

yields the result

|S(ρτ‖ρ0) + S(ρ0‖ρτ )|

� ‖ ln ρ0‖2

∫ τ

0
dt (‖[Ht , ρt ]‖2 + ‖[Ht , ρ0]‖2). (B24)

APPENDIX C: RECOVERING MIN-RELATIVE ENTROPY

In this Appendix we will discuss the case α = 0 for
symmetric Rényi relative entropy, which is related to the min-

relative entropy

R0(ρ : ω) := R0(ρ‖ω) + R0(ω‖ρ), (C1)

where R0(ρ‖ω) = − ln Tr(�ρ ω), with �ρ being the projector
onto the support of the state ρ. Here we will focus on the
time-independent initial state ρ0, and its evolved state ρt =
Utρ0U

†
t . By using the triangle inequality |a1 + a2| � |a1| +

|a2|, the absolute value of the time derivative of Eq. (C1) is
written as∣∣∣∣ d

dt
R0(ρt : ρ0)

∣∣∣∣ �
∣∣∣∣ d

dt
R0(ρt‖ρ0)

∣∣∣∣ +
∣∣∣∣ d

dt
R0(ρ0‖ρt )

∣∣∣∣. (C2)

From now on we will discuss the evaluation of each con-
tribution in right-hand side of Eq. (C2). In order to do so,
let ρ0 = ∑

j p�|ψ�〉〈ψ�| be the spectral decomposition of the
initial state ρ0 into the basis {|ψ�〉}�=1,...,d , with 0 � p� � 1
and

∑
� p� = 1. By hypothesis, the support of ρ0 has di-

mension dρ0 := dim[supp(ρ0)], and is given by supp(ρ0) =
span{|ψ�〉 : p� �= 0}. Thus, the projector onto the support of
state ρ0 is defined as �ρ0 := ∑

�: p� �=0 |ψ�〉〈ψ�|. The evolved

state is given by ρt = Utρ0U
†
t = ∑

j p�|ψ t
�〉〈ψ t

�|, with |ψ t
�〉 :=

Ut |ψ�〉, and its support is defined as supp(ρt ) = span{|ψ t
�〉 :

p� �= 0}. Noteworthy, since the unitary evolution does not
change the purity of the initial state, i.e., both states ρ0

and ρt share the same set of eigenvalues, we thus have
dim[supp(ρt )] = dim[supp(ρ0)]. The projector �ρt onto the
support of ρt read as

�ρt =
∑

�: p� �=0

∣∣ψ t
�

〉〈
ψ t

�

∣∣ =
∑

�: p� �=0

Ut |ψ�〉〈ψ�|U †
t = Ut �ρ0U

†
t .

(C3)

Interestingly, starting from Eq. (C3), the projector �ρt

fulfills the von Neumann-like equation (d �ρt /dt ) =
−i [Ht ,�ρt ], where we applied the identity Ut (dU †

t /dt ) =
−(dUt/dt )U †

t = −iHt . Thus, the time derivative of
min-relative entropy R0(ρt‖ρ0) = − ln Tr(�ρt ρ0) read as

d

dt
R0(ρt‖ρ0)

= i Tr(ρ0[Ht ,�ρt ])

Tr(�ρt ρ0)
= i Tr(U †

t ρ0 Ut [U
†
t HtUt ,�ρ0 ])

Tr(�ρ0U
†
t ρ0 Ut )

,

(C4)

where we have explicitly used the property obtained in
Eq. (C3). By taking the absolute value of Eq. (C4), and
thus applying the Cauchy-Schwarz inequality, |Tr(A1A2)| �
‖A1‖2‖A2‖2, with ‖A‖2 =

√
Tr(A†A), one obtains∣∣∣∣ d

dt
R0(ρt‖ρ0)

∣∣∣∣ � ‖ρ0‖2 ‖[U †
t HtUt ,�ρ0 ]‖2

|Tr(�ρ0U
†
t ρ0 Ut )|

. (C5)

Let us now move to the second term in the right-hand
side of Eq. (C2), which is related to the time derivative of
R0(ρ0‖ρt ) = − ln Tr(�ρ0 ρt ). In this case, one readily obtains

d

dt
R0(ρ0‖ρt ) = i Tr(�ρ0 [Ht , ρt ])

Tr(�ρ0ρt )

= i Tr(U †
t �ρ0Ut [U

†
t HtUt , ρ0])

Tr(�ρ0Utρ0U
†
t )

, (C6)
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where we used the fact that ρt fulfills the von Neumann
equation (dρt/dt ) = −i [Ht , ρt ]. By taking the absolute value
of Eq. (C6), and thus applying the aforementioned Cauchy-
Schwarz inequality, one obtains∣∣∣∣ d

dt
R0(ρ0‖ρt )

∣∣∣∣ � ‖�ρ0‖2‖[U †
t HtUt , ρ0]‖2

|Tr(�ρ0Utρ0U
†
t )| . (C7)

Hence, by substituting Eqs. (C5) and (C7) into Eq. (C2),
we thus have that∣∣∣∣ d

dt
R0(ρt : ρ0)

∣∣∣∣ � Qt
0

(
ρ0,�ρ0

) + Qt
0

(
�ρ0 , ρ0

)
, (C8)

where the functional Q0(ρt , ρ) is defined as follows:

Qt
0(A, B) := ‖A‖2 ‖[U †

t HtUt , B]‖2

|Tr(AUt BU †
t )| . (C9)

Finally, by integrating Eq. (C8) over the interval t ∈ [0, τ ],
and thus applying the inequality |∫ dx f (x)| � ∫

dx| f (x)|, one
gets the inequality

|R0(ρτ : ρ0)|

�
∫ τ

0
dt

[
Qt

0

(
ρ0,�ρ0

) + Qt
0

(
�ρ0 , ρ0

)]
. (C10)

APPENDIX D: EXAMPLE: SINGLE-QUBIT STATE

1. Tsallis relative entropy

We shall begin showing that, for an initial single-qubit state
evolving unitarily according the physical setting presented in
Sec. V, the Tsallis relative entropy is given by

Hα (ρτ‖ρ0) = Hα (ρ0‖ρτ )

= 1 − gα (ρτ , ρ0)

1 − α

= ξ−
α ξ−

1−α |1 − (ûτ · r̂)2| sin2(|�uτ |)
1 − α

, (D1)

where the first equality follows from the property
gα (ρ0, ρτ ) = g1−α (ρτ , ρ0) = gα (ρτ , ρ0) which holds for
single-qubit states ρ0 and ρτ [see Eq. (27)]. From Eqs. (5)
and (6), we thus have that (see details in Table I)〈〈

GH
α (t )

〉〉
τ

= 
H
α

∥∥ρ1−α
0

∥∥
2

〈〈∥∥[
Ht , ρ

α
0

]∥∥
2

〉〉
τ

=
√

2 ξ+
2−2α ξ−

α

1

τ

∫ τ

0
dt

√
1 − (n̂t · r̂)2, (D2)

and 〈〈
GH

1−α (t )
〉〉
τ

= 
H
1−α

∥∥ρα
0

∥∥
2

〈〈∥∥[
Ht , ρ

1−α
0

]∥∥
2

〉〉
τ

=
√

2ξ+
2α ξ−

1−α

1

τ

∫ τ

0
dt

√
1 − (n̂t · r̂)2. (D3)

Based on Eqs. (D1), (D2), and (D3), the QSL time for TRE in
Eqs. (11) and (12) can be written, respectively, as

τH
α (ρτ‖ρ0) = ξ−

1−α |1 − (ûτ · r̂)2| sin2(|�uτ |)√
2 ξ+

2−2α

[
1
τ

∫ τ

0 dt
√

1 − (n̂t · r̂)2
] , (D4)

and also

τH
α (ρ0‖ρτ ) = ξ−

α |1 − (ûτ · r̂)2| sin2(|�uτ |)√
2 ξ+

2α

[
1
τ

∫ τ

0 dt
√

1 − (n̂t · r̂)2
] , (D5)

while the QSL time for symmetrized TRE in Eq. (13) reads

τH
α (ρ0 : ρτ )

=
√

2 ξ−
α ξ−

1−α |1 − (ûτ · r̂)2| sin2(|�uτ |)
(
√

ξ+
2−2α ξ−

α +
√

ξ+
2α ξ−

1−α )
[

1
τ

∫ τ

0 dt
√

1 − (n̂t · r̂)2
] .

(D6)

In Fig. 3 we plot the QSL time τH
α =

max{τH
α (ρτ‖ρ0), τH

α (ρ0‖ρτ ), τH
α (ρ0 : ρτ )}, as a function

of time τ and α, for the initial single qubit state
ρ0 = (1/2)(I + �r · �σ ) with {r, θ, φ} = {1/4, π/4, π/4},
and also varying the ratio (a) �/v = 0.5, (b) �/v = 1,
(c) �/v = 5, and (d) �/v = 10.

2. Rényi relative entropy

We shall begin showing that, for an initial single-qubit state
evolving unitarily according the physical setting presented in
Sec. V, the Rényi relative entropy is given by

Rα (ρτ‖ρ0) = Rα (ρ0‖ρτ )

= ln[gα (ρτ , ρ0)]

α − 1

= ln {1 − ξ−
α ξ−

1−α[1 − (ûτ · r̂)2]sin2(|�uτ |)}
α − 1

,

(D7)

where the first equality follows from the identity gα (ρ0, ρτ ) =
g1−α (ρτ , ρ0) = gα (ρτ , ρ0), which holds for single-qubit states
ρ0 and ρτ [see Eq. (27)]. From Eqs. (5) and (6), we thus have
that (see details in Table I)

〈〈
GR

α (t )
〉〉
τ

=
∥∥ρ1−α

0

∥∥
2

〈〈∥∥[
Ht , ρ

α
0

]∥∥
2

〉〉
τ

|1 + (1 − α) ln(λmin(ρ0))|

=
τ−1

√
2 ξ+

2−2α ξ−
α

∫ τ

0 dt
√

1 − (n̂t · r̂)2∣∣1 + (1 − α) ln
(

1−r
2

)∣∣ , (D8)

and

〈〈
GR

1−α (t )
〉〉
τ

=
∥∥ρα

0

∥∥
2

〈〈∥∥[
Ht , ρ

1−α
0

]∥∥
2

〉〉
τ

|1 + α ln(λmin(ρ0))|

=
τ−1

√
2ξ+

2α ξ−
1−α

∫ τ

0 dt
√

1 − (n̂t · r̂)2∣∣1 + α ln
(

1−r
2

)∣∣ . (D9)

Based on Eqs. (D7), (D8), and (D9), the QSL time for RRE in
Eqs. (11) and (12) can be written, respectively, as

τR
α (ρτ‖ρ0)

= |ln {1 − ξ−
α ξ−

1−α[1 − (ûτ · r̂)2]sin2(|�uτ |)}|√
2 ξ+

2−2α ξ−
α

[
1
τ

∫ τ

0 dt
√

1−(n̂t ·r̂)2
]

|1+(1−α) ln ( 1−r
2 )|

, (D10)
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FIG. 3. Density plot of QSL time τH
α , as a function of time τ and α, respective to the unitary evolution generated by the time-dependent

Hamiltonian Ht = n̂t · �σ , with n̂t = N−1{�, 0, vt} and N :=
√

�2 + (vt )2. Here we choose the initial single qubit state ρ0 = (1/2)(I + �r · �σ )
with {r, θ, φ} = {1/4, π/4, π/4}, and also setting the ratio (a) �/v = 0.5, (b) �/v = 1, (c) �/v = 5, and (d) �/v = 10.

and

τR
α (ρ0‖ρτ )

= |ln {1 − ξ−
α ξ−

1−α[1 − (ûτ · r̂)2]sin2(|�uτ |)}|√
2ξ+

2α ξ−
1−α

[
1
τ

∫ τ

0 dt
√

1−(n̂t ·r̂)2
]

|1+α ln ( 1−r
2 )|

, (D11)

while the QSL time for symmetrized RRE in Eq. (13) reads

τR
α (ρ0 : ρτ )

=
√

2 | ln {1 − ξ−
α ξ−

1−α[1 − (ûτ · r̂)2]sin2(|�uτ |)}|[ √
ξ+

2−2α ξ−
α

|1+(1−α) ln ( 1−r
2 )| +

√
ξ+

2α ξ−
1−α

|1+α ln ( 1−r
2 )|

][
1
τ

∫ τ

0 dt
√

1 − (n̂t · r̂)2
] .

(D12)

In Fig. 4 we plot the QSL time τR
α =

max{τR
α (ρτ‖ρ0), τR

α (ρ0‖ρτ ), τR
α (ρ0 : ρτ )}, as a function

of time τ and α, for the initial single qubit state
ρ0 = (1/2)(I + �r · �σ ) with {r, θ, φ} = {1/4, π/4, π/4},
and also varying the ratio [Fig. 4(a)] �/v = 0.5, [Fig. 4(b)]
�/v = 1, [Fig. 4(c)] �/v = 5, and [Fig. 4(d)] �/v = 10.

3. Relative entropy

For the case of single-qubit states ρ0 and ρτ discussed in
Sec. V, it is possible to show that relative entropy fulfills the
identity S(ρτ‖ρ0) = S(ρ0‖ρτ ), with (see Table I)

S(ρτ‖ρ0) = r ln

(
1 + r

1 − r

)
[1 − (ûτ · r̂)2]sin2(|�uτ |). (D13)

Next, by using the results in Table I, one readily obtains the
time averages

〈〈‖[Ht , ρt ]‖2〉〉τ =
√

2 r
1

τ

∫ τ

0
dt

√
1 − (μ̂t · r̂)2, (D14)

and

〈〈‖[Ht , ρ0]‖2〉〉τ =
√

2 r
1

τ

∫ τ

0
dt

√
1 − (n̂t · r̂)2. (D15)

Based on Eqs. (D13), (D14), and (D15), the QSL time related
to the relative entropy in Eq. (16) implies that

τRE
1 (ρτ‖ρ0) = ln

(
1+r
1−r

)
[1 − (ûτ · r̂)2]sin2(|�uτ |)

√
2

√
ln2

(
1−r

2

) + ln2
(

1+r
2

)[
1
τ

∫ τ

0 dt
√

1 − (μ̂t · r̂)2
] , (D16)
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FIG. 4. Density plot of QSL time τR
α , as a function of time τ and α, respective to the unitary evolution generated by the time-dependent

Hamiltonian Ht = n̂t · �σ , with n̂t = N−1{�, 0, vt} and N :=
√

�2 + (vt )2. Here we choose the initial single qubit state ρ0 = (1/2)(I + �r · �σ )
with {r, θ, φ} = {1/4, π/4, π/4}, and also setting the ratio (a) �/v = 0.5, (b) �/v = 1, (c) �/v = 5, and (d) �/v = 10.

and by swapping the arrangement of states ρ0 and ρτ , it follows

τRE
1 (ρ0‖ρτ ) = ln

(
1+r
1−r

)
[1 − (ûτ · r̂)2]sin2(|�uτ |)

√
2

√
ln2

(
1−r

2

) + ln2
(

1+r
2

)[
1
τ

∫ τ

0 dt
√

1 − (n̂t · r̂)2
] , (D17)

while the QSL time for the symmetrized relative entropy in Eq. (17) reads

τRE
1 (ρ0 : ρτ ) =

√
2 ln

(
1+r
1−r

)
[1 − (ûτ · r̂)2]sin2(|�uτ |)√

ln2
(

1−r
2

) + ln2
(

1+r
2

){
1
τ

∫ τ

0 dt
[√

1 − (μ̂t · r̂)2 +
√

1 − (n̂t · r̂)2
]} . (D18)

In Fig. 5 we plot the QSL time τRE
1 =

max{τRE
1 (ρτ‖ρ0), τRE

1 (ρ0‖ρτ ), τRE
1 (ρ0 : ρτ )}, as a func-

tion of time τ and �/v, for the initial single qubit
state ρ0 = (1/2)(I + �r · �σ ) with [Fig. 5(a)] {r, θ, φ} =
{1/4, π/4, π/4}, [Fig. 5(b)] {r, θ, φ} = {1/4, π/3, π/4},
[Fig. 5(c)] {r, θ, φ} = {1/2, π/4, π/4}, and [Fig. 5(d)]
{r, θ, φ} = {1/2, π/3, π/4}.

4. Min-relative entropy

Here we will present the details of the QSL time re-
lated to the min-relative entropy, with the latter defined as
R0(ρ‖ω) = − ln Tr(�ρ ω), with �ρ being the projector onto
the support of the state ρ. From now on, we will choose
the initial state ρ0 being a pure one, i.e., a non-full-rank
density matrix. In particular, for a single-qubit state such a

condition is equivalent to imposing the purity value r = 1, i.e.,
ρ0 = (1/2)(I + r̂ · �σ ), which in turn implies the spectral de-
composition ρ0 = ∑

�=± p�|ψ�〉〈ψ�|, with eigenvalues p+ =
1 and p− = 0, and eigenstates |ψ+〉 = |θ, φ〉 and |ψ−〉 = |θ −
π, φ〉, with |θ, φ〉 := cos(θ/2)|0〉 + e−iφ sin(θ/2)|1〉. Just to
clarify, here |0〉 = (1 0)T and |1〉 = (0 1)T define the stan-
dard states of the computational basis. In this case, the
projector onto the support of ρ0 read as �ρ0 = |ψ+〉〈ψ+|.
Moving forward, one may proceed the calculation as
follows:

Tr(�ρ0Uτ ρ0U
†
τ )

= Tr(ρ0Uτ�ρ0U
†
τ )

= |〈ψ+|Uτ |ψ+〉|2 = 1 − [1 − (ût · r̂)2] sin2(|�ut |). (D19)
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FIG. 5. Density plot of QSL time τRE
1 , as a function of time τ and the ratio �/v, respective to the unitary evolution generated by the

time-dependent Hamiltonian Ht = n̂t · �σ , with n̂t = N−1{�, 0, vt} and N :=
√

�2 + (vt )2. Here we choose the initial single qubit state ρ0 =
(1/2)(I + �r · �σ ) with (a) {r, θ, φ} = {1/4, π/4, π/4}, (b) {r, θ, φ} = {1/4, π/3, π/4}, (c) {r, θ, φ} = {1/2, π/4, π/4}, and (d) {r, θ, φ} =
{1/2, π/3, π/4}.

Next, by using the result of Eq. (D19), the min-relative en-
tropy becomes

R0(ρτ‖ρ0) = R0(ρ0‖ρτ )

= − ln{1 − [1 − (ût · r̂)2] sin2(|�ut |)}. (D20)

Furthermore, given that 〈ψ+|(U †
t HtUt )2|ψ+〉 = 1 + � 2 +

2� (μ̂t · r̂) and also 〈ψ+|U †
t HtUt |ψ+〉 = � + μ̂t · r̂, one ob-

tains
‖[U †

t HtUt , ρ0]‖2
2

= ‖[U †
t HtUt ,�ρ0 ]‖2

2

FIG. 6. Density plot of QSL time τR
0 , as a function of time τ and the ratio �/v, respective to the unitary evolution generated by the time-

dependent Hamiltonian Ht = n̂t · �σ , with n̂t = N−1{�, 0, vt} and N :=
√

�2 + (vt )2. Here we choose the initial pure single qubit state ρ0 =
(1/2)(I + r̂ · �σ ) with r = 1 and (a) {θ, φ} = {π/4, π/4}; (b) {θ, φ} = {π/3, π/4}; (c) {θ, φ} = {π/4, π/3}; and (d) {θ, φ} = {π/3, π/3}.
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= 2[〈ψ+|(U †
t HtUt )

2|ψ+〉 − 〈ψ+|U †
t HtUt |ψ+〉2]

= 2[1 − (μ̂t · r̂)2]. (D21)

From Eqs. (D19) and (D21), and also using the Schat-
ten 2-norms ‖ρ0‖2 = ‖�ρ0‖2 = 1, we thus conclude that
Qt

0(ρ0,�ρ0 ) = Qt
0(�ρ0 , ρ0) [see Eq. (19)], which implies the

following:

〈〈
Qt

0

(
ρ0,�ρ0

)〉〉
τ

= 〈〈
Qt

0

(
�ρ0 , ρ0

)〉〉
τ

=
√

2

τ

∫ τ

0
dt

√
1 − (μ̂t · r̂)2

|1 − [1 − (ût · r̂)2] sin2(|�ut |)|
.

(D22)

Based on Eqs. (D20) and (D22), the QSL time for min-
entropy defined in Eqs. (21) and (22) satisfy the following

constraint:

τR
0 (ρτ‖ρ0) = τR

0 (ρ0‖ρτ )

= | ln[1 − (1 − (ût · r̂)2] sin2(|�ut |))|
√

2
{

1
τ

∫ τ

0 dt
√

1−(μ̂t ·r̂)2

|1−[1−(ût ·r̂)2] sin2(|�ut |)|
} , (D23)

while the QSL time for the symmetrized min-relative entropy
reads [see Eq. (23)]

τR
0 (ρ0 : ρτ ) = | ln{1 − [1 − (ût · r̂)2] sin2(|�ut |)}|

√
2

{
1
τ

∫ τ

0 dt
√

1−(μ̂t ·r̂)2

|1−[1−(ût ·r̂)2] sin2(|�ut |)|

} . (D24)

In Fig. 6 we plot the QSL time τR
0 =

max{τR
0 (ρτ‖ρ0), τR

0 (ρ0‖ρτ ), τR
0 (ρ0 : ρτ )}, as a function of

time τ and �/v, for the initial pure single qubit state
ρ0 = (1/2)(I + r̂ · �σ ) with r = 1 and [Fig. 6(a)] {θ, φ} =
{π/4, π/4}; [Fig. 6(b)] {θ, φ} = {π/3, π/4}; [Fig. 4(c)]
{θ, φ} = {π/4, π/3}; and [Fig. 6(d)] {θ, φ} = {π/3, π/3}.
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