
PHYSICAL REVIEW E 103, 032102 (2021)

Metastable Potts droplets
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The existence and limits of metastable droplets have been calculated using finite-system renormalization-
group theory, for q-state Potts models in spatial dimension d = 3. The dependence of the droplet critical sizes on
magnetic field, temperature, and number of Potts states q has been calculated. The same method has also been
used for the calculation of hysteresis loops across first-order phase transitions in these systems. The hysteresis
loop sizes and shapes have been deduced as a function of magnetic field, temperature, and number of Potts states
q. The uneven appearance of asymmetry in the hysteresis loop branches has been noted. The method can be
extended to criticality and phase transitions in metastable phases, such as in surface-adsorbed systems and water.
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I. INTRODUCTION: NONEQUILIBRIUM PROPERTIES
FROM AN EQUILIBRIUM CALCULATION

Recently equilibrium renormalization-group calculations
have been simply extended to the calculation of the properties
of metastable droplets of the nonequilibrium phase surviv-
ing inside the equilibrium thermodynamic phase [1]. This
method was illustrated with the Ising model in d = 3 spatial
dimensions. The limiting droplet sizes have been determined
as a function of temperature and magnetic field. The critical
magnetic fields, above which no metastable droplet can exist,
have been calculated as a function of temperature. The method
consists in making a finite-system renormalization-group cal-
culation of the magnetization [2] and matching the boundary
conditions of the outermost layer of the droplet. If this reverse
magnetization sustains inside the droplet, the droplet exists,
and otherwise not, for the given droplet size.

In the present paper, we have extended this work to q-
state Potts models for arbitrary q in d = 3. We determine the
threshold droplet sizes as a function of the number of states q
and find changes even at high values of q, similarly to the equi-
librium thermodynamic properties of the Potts models [3].
The method also naturally yields the calculation of hysteresis
loops, which yields a large variety as a function of q, domain
size, and temperature.

Our paper introduces a generalization of the position-
space renormalization-group methods—originally used for
equilibrium thermodynamic phases—to metastable droplets
with q states. Whereas traditional mean-field theories have
historically yielded important generic intuition on the
phase transition problem, position-space renormalization-
group methods on the other hand can be tailored to dis-
tinctive system attributes, for example, yielding experimental
phase diagrams [4–6], second-to-first-order phase transition
changeovers by effective vacancies [7,8], scaling chaos in
frustrated systems [9], first-to-second-order phase transition

changeovers by random magnetic fields [10,11], etc. An ex-
tension to nonequilibrium is certainly desirable.

II. MODEL AND METHOD

The Potts models are defined by the Hamiltonian

−βH =
∑
〈i j〉

{J[δ(si, s j ) − 1/q] + H[δ(si, 1) + δ(s j, 1)]},

(1)
where β = 1/kBT , at site i the spin si = 1, 2, . . . , q can
be in q different states, the delta function δ(si, s j ) = 1(0)
for si = s j (si �= s j ), and 〈i j〉 denotes summation over all
nearest-neighbor pairs of sites. We have used the trace-
less form of interaction in the first term of Eq. (1). Under
renormalization-group transformation, the Hamiltonian is
conveniently expressed as

−βH =
∑
〈i j〉

[E (si, s j ) + G]. (2)

The last term in Eq. (2) is the additive constant that is unavoid-
ably generated by the renormalization-group transformation
and that is essential in the calculation of the thermodynamic
densities, as seen below. With no loss of generality, after
each renormalization-group transformation, G is fixed so that
the largest energy E (si, s j )max of the spin-spin interaction is
zero [and all other E (si, s j ) < 0]. This formulation makes it
possible to follow global renormalization-group trajectories,
necessary for the calculation of densities for the point at the
onset of the renormalization-group trajectory, without running
into numerical overflow problems.

As the renormalization-group transformation, we use the
Migdal-Kadanoff approximation [12,13] with length rescal-
ing factor b = 2, which is also the exact transformation
for a d = 3 hierarchical lattice [2,14,15]. (However, it
will be seen below that our method is usable with any
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renormalization-group transformation. We have used the
Migdal-Kadanoff approximation here, as it is easily imple-
mented and has been quite successful in a variety of systems.)
This transformation consists in a bond moving followed by a
decimation, giving the renormalization-group recursion rela-
tions. The transformation is very simply expressed in terms of
the transfer matrix T(si, sj) = eE (si,s j ): Bond moving consists
of taking the power of each element of the transfer matrix,
T̃ (si, s j ) = [T (si, s j )]bd−1

. Decimation consists of matrix mul-
tiplication:

T′ = T̃ · T̃ eG̃, (3)

where G̃ is chosen so that the largest energy E ′(si, s j )max

of the spin-spin interaction is zero as explained above. The
recursion relation for the additive constant is then G′ = bd G +
G̃. The primes denote the quantities of the renormalized
system.

The densities are calculated by the density recursion
relation of the renormalization-group transformation, M =
b−d M′ · R, where M = [1, 〈δ(si, m)δ(s j, n)〉] are the densities
conjugate to the energies K = [G, E (m, n)], where m and n
span the Potts states (1, . . . , q) and n = m is not included in

FIG. 1. Metastable droplet magnetizations M = [〈δ(si, 1)〉 −
1/q]/(1 − 1/q) as a function of droplet size, at temperature T/TC =
JC/J = 0.25. The droplet exists when the magnetization is negative.
In each panel for each number q of Potts states, the lines are for mag-
netic fields H = 0.1, 0.5, 1, 2, 3, 4.5 from right to left. The maximal
droplet size is the average of the lengths at each end of the rise from
negative to positive calculated magnetization.

K, since in our calculation these correspond to the leading
energies and are always set to zero as explained above, by
fixing G̃. The recursion matrix is R = ∂K′/∂K. By mul-
tiply self-imbedding this density recursion relation, M(0) =
b−nd M(n) · R(n) · ... · R(1), where M(m) are the densities at
the energies K(m) reached after the (m)th renormalization-
group iteration. Our calculation of the densities M(0) is done
by using the droplet boundary condition for M(n) where
L = bn is the size of the would-be droplet. We perform
our metastable droplet calculations for H > 0 in Eq. (1),
so that the magnetization M = [〈δ(si, 1)〉 − 1/q]/(1 − 1/q)
is positive (negative) in the equilibrium thermodynamic
phase (metastable phase) and 〈δ(si, m �= 1)δ(s j, m)〉 = 1 is
the metastable droplet boundary condition.

III. RESULTS: METASTABLE DROPLETS

The calculated metastable droplet magnetizations M =
[〈δ(si, 1)〉 − 1/q]/(1 − 1/q) as a function of droplet size L are
given in Fig. 1, for temperature T/TC = JC/J = 0.25, where

FIG. 2. Maximal droplet sizes as a function of the number q of
Potts states, for different magnetic fields, at temperature T/TC =
JC/J = 0.25. The multistepped curves are, from top to bottom
in each panel, for H = 0.001, 0.005, 0.01 (top panel), 0.05,0.1,0.5
(middle panel), 1,2,3 (bottom panel). Note from vertical axis values
the wide range of droplet sizes under different conditions. A trend is
seen in the droplet size values, but not in the step occurrences.
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1/JC is the equilibrium critical temperature, obtained [2,3] for
each q from the solution of x = (x8 + q − 1)/(2x4 + q − 2),
where x = eJC . The droplet exists when its magnetization is
negative. As explained at the end of Sec. II, positive magne-
tization means predominantly being in the one state favored
by the magnetic field and negative magnetization means pre-
dominantly being in any one of the q − 1 states not favored
by the magnetic field. The magnetic field in Eq. (1) is defined
so as to favor one of the Potts states. Thus all possible Potts
state droplets are covered in our paper. In each panel of Fig. 1
for each number q of Potts states, the lines are for magnetic
fields H = 0.1, 0.5, 1, 2, 3, 4.5 from right to left. The magne-
tization discontinuity occurs at the maximal droplet size LC

for each q and H . Higher magnetic field H energetically fa-
vors the equilibrium thermodynamic phase, moves the system
away from H = 0 where the metastable phase also becomes
a stable thermodynamic phase, and represses the metastable
droplet.

The thus calculated maximal droplet sizes as a function of
the number q of Potts states for different magnetic fields, at
temperature T/TC = JC/J = 0.25, are given in Fig. 2. From
vertical axis values, a wide range of droplet sizes under
different conditions is seen. The multistepped curves show
changes even at unusually high values of q, namely, in the
hundreds. This is akin to the equilibrium properties of the
Potts models, where the phase transition temperature does
not saturate as a function of q, unlike the similar clock
models [3].

Maximal droplet sizes as a function of magnetic field,
at temperature T/TC = JC/J = 0.25, are given in Fig. 3.
As seen in Fig. 2, the maximal droplet size occurs at

FIG. 3. Maximal droplet sizes as a function of magnetic field,
at temperature T/TC = JC/J = 0.25. As seen in Fig. 2, the maximal
droplet size occurs at large q. A crossover in power-law behavior
is clearly seen, from LC ∼ H−0.99 at low H to LC ∼ H−0.33 at very
low H .

large q. A crossover in power-law behavior is clearly
seen, from LC ∼ H−0.99 at low H to LC ∼ H−0.33 at very
low H .

IV. RESULTS: HYSTERESIS LOOPS

Other common nonequilibrium occurrences are hysteresis
loops, where, in scanning across a first-order phase transition,
the system retains the memory of previous steps, via pinned
spins at the boundaries of microdomains or at impurities,
or slow dynamics. Our method is easily applicable to this
phenomenon. In performing our density calculation for a finite
microdomain, we keep the boundary condition pinned at the
q = 1 phase when scanning down in magnetic field and at the
q �= 1 phases when scanning up in magnetic field. Thus, in
all of our results seen in Figs. 4–6, the upper (lower) branch
of the hysteresis loop is obtained for scanning down (up) in
magnetic field.

Hysteresis loops for different temperatures, for q = 3, are
shown in Fig. 4. From outer to inner, the loops are for temper-
atures T/TC = JC/J = 0.25, 0.50, 0.75. As the temperature
approaches TC , the hysteresis loops get narrower and the two
branches composing the loop acquire curvature starting from
the nonleading side with respect to the scanning direction.
Hysteresis loops for different sizes, for q = 3 and tempera-
ture T/TC = JC/J = 0.50, are given in Fig. 5. As the system
size increases, the hysteresis loops get narrower and acquire
vertical edges. At infinite system size, the single discontin-
uous curve of the equilibrium first-order phase transition is
obtained. Hysteresis loops for different number of states q,
for temperature T/TC = 0.25 and L = 32, are given in Fig. 6.
As the number of states decreases, the hysteresis loops get
narrower and acquire curvature at the nonleading side of each
branch.

FIG. 4. Hysteresis loops for different temperatures, for q = 3.
From outer to inner, the loops are for temperatures T/TC = JC/J =
0.25, 0.50, 0.75. As the temperature approaches TC , the hysteresis
loops get narrower and the two branches composing the loop acquire
curvature starting from the nonleading side with respect to scanning
direction.
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FIG. 5. Hysteresis loops for different sizes, for q = 3 and temperature T/TC = JC/J = 0.50. From outer to inner, the loops are for sizes
L = 4, 8, 16 (on left) and 32,64,128 (on right). As the system size increases, the hysteresis loops get narrower and acquire vertical edges.

V. CONCLUSION: METASTABLE CRITICALITY

It is seen that metastable phase droplet properties can read-
ily be calculated, using finite-system renormalization-group
theory, for a variety of systems. Furthermore, critical phe-
nomena and phase transitions in metastable phases have been
discussed, in the past, for important physical systems, such
as surface-adsorbed systems [16,17] and water [18,19]. Our
method can be applied to study such metastable criticality
and phase transitions. The extension of our method to q-state

FIG. 6. Hysteresis loops for different number of states q, for
temperature T/TC = 0.25 and L = 32. From outer to inner, the loops
are for q = 20, 10, 6, 5, 4, 3. As the number of states decreases, the
hysteresis loops get narrower and acquire curvature at the nonleading
side with respect to scanning direction of each branch.

Potts models thus increases the range of possible experimental
applicability [4–6].

In going from the metastable Ising droplets [1] to the
metastable Potts droplets of the current paper, we have found
a very wide range of metastable droplet sizes under different
number q of Potts states and magnetic field conditions. For
a fixed number q of Potts states, the two branches compos-
ing the hysteresis loops acquire curvature as the temperature
is increased towards the critical temperature, starting from
the nonleading side with respect to the scanning direction.
An identical effect occurs for a fixed temperature, the two
branches composing the hysteresis loops acquiring curvature
starting from the nonleading side with respect to the scanning
direction, as the number q of Potts states is increased. It was
previously shown, within the context of antiferromagnetic
Potts models, that increasing temperature and increasing q
have similar entropic effects [20,21].

Finally, we hope that numerical experiments, namely, com-
puter simulations, will check the maximum metastable droplet
and hysteresis loop phenomena predicted by our theory. An
important extension of our theory would be to the dynamics
of metastable droplet disappearance. Thus, the droplet disap-
pearance, either from the interior or from the periphery, would
be distinguished by its effects.
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