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Simulations of multicomponent relativistic thermalization
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Multicomponent relativistic fluids have been studied for decades. However, simulating the dynamics of
the particles and fluids in such a mixture has been a challenge due to the fact that such simulations are
computationally expensive in three spatial dimensions. Here, we report on the development and application of a
multidimensional relativistic Monte Carlo code to explore the thermalization process in a relativistic multicom-
ponent environment in a computationally inexpensive way. As an illustration we simulate the fully relativistic
three-dimensional Brownian-motion-like solution to the thermalization of a high-mass particle (proton) in a bath
of relativistic low-mass particles (electrons). We follow the thermalization and ultimate equilibrium distribution
of the Brownian-like particle as can happen in the cosmic plasma during big-bang nucleosynthesis. We also
simulate the thermalization of energetic particles injected into the plasma as can occur, for example, by the
decay of massive unstable particles during the big bang.
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I. INTRODUCTION

Understanding the solution to the Boltzmann equation for
fluids is of fundamental importance for its practical implica-
tions in chemistry, biophysics, astrophysics, and cosmology.
Over the past decades considerable progress has been made
toward understanding these solutions for multicomponent
mixtures and in relativistic environments [1–6]. However,
until recently there has been little progress in solving the
relativistic multicomponent Boltzmann equation. Existing an-
alytic solutions are based on the nondegenerate limit of the
relativistic Boltzmann equation [7], or the Fokker-Planck
equation approximation to the relativistic Boltzmann equation
[1]. While a one-dimensional numerical simulation exists and
supports the theory [3], there currently exists no numerical
simulation supporting the theory in fully three spatial dimen-
sions (3D). Here, we present a Monte Carlo simulation built
to replicate the fully relativistic multicomponent Boltzmann
equation via a stochastic random walk process. Such a tool
should have widespread applications in the dynamics of mix-
tures of relativistic and mildly relativistic fluids.

A. Background

Currently, multicomponent relativistic simulations have
been performed only in one spatial dimension (1D) where
one can vary the number density of each species [3]. How-
ever, for three dimensions only approximate analytical and
numerical solutions for the relativistic Boltzmann equation
currently exist. These are based upon various interpreta-
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tions of the stochastic process for solving the corresponding
Fokker-Planck equation [1,7,8].

Cubero et al. [3] have discussed the difficulty in simulating
multispecies thermalization in two and three dimensions. The
difficulty being in modeling the complete electromagnetic
fields due to all the particles in space. This can be simplified
in one dimension by treating particles as only undergoing
pointlike elastic collisions. However, if one applies this sim-
plification in two or three dimensions, the collision probability
becomes vanishingly small even when including finite cross
sections. This increases the computational time for particles
to equilibrate. In this paper, however, we present a Monte
Carlo scheme which mimics the thermalization process from
the perspective of one particle undergoing many successive
collisions and thus can be studied in minimal computational
time. The Monte-Carlo thermalization code can be accessed
at Ref. [9].

B. Cosmological application

As an illustration, we consider here an application to the
thermalization of baryons during the epoch of big-bang nucle-
osynthesis (BBN). The relativistic thermalization simulation
described here has recently been applied in Ref. [7] to describe
the equilibrium kinetic energy distribution of baryons in the
BBN environment.

BBN occurs during an epoch of the early universe that lasts
from about 1 s to a few minutes and is responsible for the
synthesis of light nuclei such as 2H, 3He, 4He, and 7Li from
preexisting neutrons and protons remaining after the weak
reactions fall out of equilibrium.

For the most part, BBN involves two-body nuclear reac-
tions. In this case, each pair of nuclei is directly related to their
distribution function in relative velocity. That is, the reaction
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rate R(1+2→3+··· ) between two species is given by

R(1+2→3+··· ) = n1n2〈σv〉 = n1n2

∫
σv f (v)dv, (1)

where n1 and n2 are the number densities of colliding nuclei,
σ is the cross section, v is the relative velocity between the
two nuclei, and f (v) is the relative velocity distribution. This
distribution is determined from the individual velocity dis-
tributions. Among other things, the Monte Carlo simulation
described here aims to generate the individual velocity distri-
bution from first principles. This is then applied to various test
cases.

At the start of BBN, nuclei are immersed in a bath of
highly relativistic electrons, positrons, and photons. During
BBN the universe expands and cools from a temperature of
kT ≈ 1 MeV to kT ≈ 0.01 MeV. During this time frame the
electron-positron asymmetry begins to manifest as the temper-
ature falls below the electron rest mass (0.511 MeV). Initially,
the electron number density is orders of magnitude higher than
the baryon number density (see Table I in Ref. [7]). Even
though photons have a high number density with respect to
baryons (nb/nγ ∼ 10−9), they have a low cross section for
nuclear scattering. Hence, electron scattering dominates. This
implies that nuclei obtain thermal equilibrium, by elastically
scattering almost exclusively with mildly relativistic electrons
in the cosmic plasma.

A motivation for the present work is that there has been
considerable recent interest in the possibility of a modification
of the baryon distribution function from Maxwell-Boltzmann
(MB) statistics. This modification can be in the form of Tsallis
statistics [10–13], the influence of inhomogeneous primordial
magnetic fields on baryons [14], nonideal plasma effects at
low temperature [15], the injection of nonthermal particles
(e.g., Refs. [16–22] and references therein), and small rela-
tivistic corrections to the MB distribution that arise due to
nuclear kinetic drag [23].

Another case in which a relativistic nonthermal distribu-
tion function can emerge during the early universe is in the
reheating epoch near the end of cosmic inflation [24,25].
As the universe enters the reheating phase the scalar field
responsible for driving inflation begins to decay into radiation
and particles. It has been argued, however, that thermalization
may not occur until well after reheating. This is because the
low density and high expansion rate cause the timescale of
thermalization to be so long that it delays the evolution of the
produced nonthermal particles toward an effective tempera-
ture [25]. The resulting temperature of the universe might then
be significantly altered from that obtained under the assump-
tion of instantaneous thermalization. However, in Ref. [24],
for example, it has been argued that thermalization might still
occur via small-angle scatterings. Clearly, this is a case where
a detailed Monte Carlo solution to the evolution of the particle
distribution functions in an expanding space-time could shed
light.

Yet another case that we study here explicitly is the effect
of injected nonthermal particles due, for example, to energetic
hadronic decays by relic massive (possibly supersymmetric)
particles formed during an earlier epoch. As hadrons are
injected into the primordial plasma, one must follow their evo-
lution along with the baryon distribution functions and their

time-dependent effects on the thermonuclear reaction rates.
Thus, it is worthwhile to develop a fully relativistic method to
describe the time-dependent evolution toward thermalization
within the BBN environment.

To demonstrate the viability of this Monte Carlo tech-
nique, we here apply our method to several test cases. The
cosmological environment poses a good test environment as
one component (the baryons) is much heavier than the other
(relativistic electrons and photons). Also, as the background
temperature changes, the lighter particles transition from be-
ing relativistic to nonrelativistic. This provides a test case
which includes regimes where heavy particles are submerged
in either a relativistic or nonrelativistic bath and are thermal-
ized by electron collisions.

C. The Monte Carlo simulation

In this paper, we describe a Monte Carlo simulation that
replicates the thermalization of charged nuclei in a back-
ground relativistic fluid. As an illustration, we first follow the
thermalization of a proton with zero initial momentum in a
bath of relativistic electrons. The simulation obeys general
physics conservation laws, including fully relativistic elas-
tic scattering dynamics, and endeavors to mimic how nuclei
would exchange energy with its surroundings. In principle,
the nuclear distribution obtained during and until the end of
thermalization would be the physical distribution contributing
to nuclear reaction rates. As a second test case we follow the
time evolution toward thermalization of an injected relativistic
10-GeV proton in the primordial plasma.

In a sense, this simulation provides an exact solution to
the multicomponent relativistic Boltzmann equation by a se-
quence of elastic scattering events in the same way that Nature
does. The Boltzmann equation for the one-particle distribution
functions ( fa) characterizes collisions of constituent a with
constituent particles b. This can be written

pα
a∂α fa =

r∑
b=1

∫
( f ′

a f ′
b − fa fb)Fbaσabd�

d3 pb

pb0
, (2)

where the right-hand side is the one-particle collision term.
The quantity Fba = √

(pα
a pbα )2 − mamb is the invariant flux,

while for our purposes σba is the invariant differential elas-
tic scattering cross section into an element of solid angle
d� that characterizes the collision of constituent a with
constituents b.

In Sec. II we discuss the algorithm we have developed
for simulating this process. That is followed in Sec. III by
numerical results we obtain for the illustrative case of protons
with zero initial momentum in a bath of relativistic electrons,
as would be the case in BBN. In Sec. IV we describe the
evolution of the distribution function of a relativistic 10-GeV
proton injected by decay into the primordial plasma. We dis-
cuss conclusions in Sec. V. In the Appendix we outline the
Lorentz transformations of the distribution functions utilized
in the Monte Carlo simulations.

II. METHOD

The Monte Carlo technique we have developed simulates
the response of a test particle to numerous elastic scattering
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events with the background particles. For the first case consid-
ered here the test particle is a light nucleus as encountered in
BBN. However, the particle mass and scattering cross section
with the background species can be modified to study any
other physical environment of interest. The background par-
ticles in this illustration are electrons and positrons for BBN,
and similarly their mass and cross section with the test particle
can be modified to study any other particle bath of interest.
In this paper, the terms “test particle” and the “nucleus” are
used interchangeably, as are the terms “background particle”
and “electron.” As noted above, we can assume that the test
particle scatters predominantly with the background species.
This corresponds to an environment in which the test particle
number density is much lower than that of the background par-
ticles as is the case during BBN. However, this restriction can
easily be lifted to simulate more general fluids and plasmas.

A. Initial conditions for the algorithm

For the illustration considered here we adopt the following
initial conditions:

(a) The temperature of the electron gas is set to values
between kT = 1 MeV and 0.01 MeV. The BBN era starts
when the temperature of the universe is about 1 MeV and
stops when the universe cools down to 0.01 MeV.

(b) The mass and charge of the nucleus is set to that of the
proton (i.e. Z = 1, mp = 939 MeV).

(c) The mass of the electron is set to me = 0.511 MeV.
(d) The initial total relativistic energy of the test particle

nucleon is E =
√

m2c4 + p2c2 = m + (γ − 1)m. For the ex-
ample of a nucleon initially at rest, E = mc2 = 939 MeV. For
the example described in Sec. IV of a relativistic injected pro-
ton we set E = 10 939 MeV corresponding to (γ − 1)m = 10
GeV of initial relativistic kinetic energy.

From the initial state, we then evolve up to 107 scattering
events. This is because, for the most part, we notice that for
light nuclei during BBN a stationary distribution function is
usually obtained after about 3 × 106 scattering events. That
is, in the simulations the nucleus eventually experiences a
sufficient number of collisions that its initial state is “forgot-
ten” and becomes irrelevant. Nevertheless, the time it takes to
reach the equilibration distribution is of interest here as the
nucleus maintains a nonequilibrium distribution prior to the
equilibration time.

B. The algorithm with details and reasoning

The algorithm to describe the scattering of an electron from
the nucleus involves multiple rotations and Lorentz transfor-
mations so that the collision parameters are easier to acquire.
These steps are schematically illustrated in Figs. 1(a)–1(g).
The detailed steps of the algorithm are as follows:

(1) The simulation starts in the background rest frame. This
is the frame where the collective background momentum is
zero.

(2) We rotate the frame to have the velocity of the nucleus
be along the +x axis. We do this to simplify the collision
mechanics. This rotation does not affect the background due
to the isotropy of the background.

(3) We next make a Lorentz boost to the comoving frame
of the nucleus. We can then calculate the velocity-dependent
flux distribution of the electrons approaching the nucleus. This
samples the electron that will interact with the nucleus next.

(4) We determine the electron distribution in the comoving
frame using the derivation described in the Appendix. This
is obtained by applying number conservation between the
moving and rest frame, finding volume element conversion,
followed by converting all variables into their corresponding
Lorentz-transformed value. In 3D, the Fermi-Dirac (FD) dis-
tribution representative of the background fluid in a boosted
frame is given by

f ′
FD,3D(v′) =

(
1

n

)
γo

γ ′
V

γ ′5 1[
1 + exp

( γ ′γV (1+V v′
x )mc2

kT

)] . (3)

Here, 1/n is a normalization constant, and γ ′
V and γo are the

Lorentz factors for the speed of the frames, i.e., they should be
γo = 1 (for the cosmic frame, which is at rest with respect to
the background cloud) and γ ′

V = 1/
√

1 − V 2 (where V is the
speed of the boosted frame). v′ is the background electron ve-
locity and γ ′ = 1/

√
1 − v′2. f ′

FD,3D is the velocity distribution
in 3D in the boosted frame, i.e., the rest frame of the nucleus.

(5) We select an electron randomly based upon this distri-
bution. Specifically, we choose the electron’s velocity vector
from the incoming flux rate,

R(θ ) ∼ v′ f ′
FD,3D(v′). (4)

This electron will be the one that scatters off the nucleus for
this iteration and in the process changes the nuclear four-
momentum.

The electron bath surrounds the nucleus in all directions.
The angular part of the distribution of electron velocity depicts
the fraction of electrons moving in each direction. We select
an electron velocity from the distribution using a Monte Carlo
technique. The direction of the velocity is the direction in
which the electron approaches the nucleus starting from an
arbitrary distance away.

(6) We rotate the frame such that the electron approaches
the nucleus from the (−) x direction and is moving with a
positive velocity vx. Once the electron that collides with a
nucleus is chosen, we ignore the rest of the background and
this rotation makes it easier to describe the elastic scattering.

(7) We Lorentz transform to the center-of-momentum
(c.m.) frame of the nucleus-electron system. Moving to the
c.m. simplifies the collision. In this frame, the nucleus and
electron approach with equal and opposite three-momenta.
When the elastic collision happens, the total four-momentum
is conserved.

(8) We select the scattering angle from the angular distri-
bution. To determine the scattering angle the differential Mott
cross section’s angular distribution is used. The differential
Mott cross-section formula is given by

dσ

d cos θ
= πZ2α2

2v2 p2 sin4 θ
2

(
1 − v2

c2
sin2 θ

2

)
, (5)

where θ is the scattering angle, α is the fine structure con-
stant, Z is the nuclear charge, and v and p are the velocity
and momentum of the electron. Given a unique incoming
electron velocity, the differential scattering cross section is a
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FIG. 1. Schematic illustration of the progression of rotations and transformations performed until the collision from (a) to (g). (a) Cosmic
rest frame. (b) Background rest frame rotated to make Vn in the x direction. (c) Nucleus frame after Lorentz boosting, with the electron that is
about to scatter from the nucleus next. (d) Nuclear frame after rotating to have Ve arrive along the x direction. (e) The electron approaching the
nucleus in the nuclear rest frame. (f) Lorentz boosting to the center-of-momentum (c.m.) frame. (g) The electron and nucleus after collision in
the c.m. frame. Following (g), we Lorentz transform the nucleus back to the original background fluid frame.

distribution of probabilities of the various scattering angles
based upon the impact parameter and thus obeys the scattering
angular distribution.

Note that the Mott cross section and its nonrelativistic
counterpart the Rutherford cross section are singular at a
zero scattering angle, i.e., at large impact parameters. Indi-

vidually these grazing scatterings, however, do not contribute
significantly towards exchanging momentum between the in-
teracting particles. Thus, they do not contribute significantly
towards thermalization in limited computational time. To
avoid having to simulate these numerous but insignificant
grazing scattering cases, we restrict our simulations to impact
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parameters less than three times the proton radius, i.e., ∼2.5
fm, and calculate the corresponding minimum scattering angle
using the relation

b = Z1Z2e2

4πε0mv2
cot

(
θ

2

)
. (6)

Hence, our scattering angles range from this minimum angle
to a maximum of 180◦ corresponding to a head-on collision.

We have also made a simplified version of the Monte Carlo
simulation that only allows head-on collisions, and hence does
not employ the Mott differential cross section for scattering
angle selection. We notice that the resultant equilibration rate
and equilibrium distribution are nearly identical to those ob-
tained when including the Mott cross section as described
here. Hence, this option can be used as in Ref. [7] to minimize
computation time.

(9) We calculate the final electron and nucleus momenta
based upon the scattering angle and the initial incoming mo-
mentum of the electron. The momentum calculations are done
using four-momentum conservation. However, for the head-on
only case in 3D and 2D and in the 1D case there are only
head-on collisions so that the momenta of the two particles
simply get exchanged.

Once the collision is completed, the electron is no longer
considered. The electron moves away from the nucleus and
under the assumption of molecular chaos does not interact
with the nucleus again. Hence, it is irrelevant and can be
ignored.

(10) From here we transform the nucleus back to the
background rest frame. The transformations that follow are
performed to obtain the velocity and energy of the nucleus in
the background rest frame. That is, we:

(11) Lorentz transform the velocity of the nucleus back to
the precollision rest frame of the nucleus.

(12) Rotate the velocity of the nucleus to have scattering
along the direction the electron was initially approaching.

(13) Lorentz transform the velocity of the nucleus to the
background rest frame.

(14) Repeat from the beginning of the algorithm with this
(moving) nucleus as the test particle.

For our test cases, repeated scattering between the nucleus
and electrons is sufficient to produce the distribution the nu-
cleus attains during BBN. However, for more complicated
fluids, involving more than one background species, one can
easily expand this simulation technique to include scattering
events from the different species onto one test particle. This
can be done by adding scattering events from the other species
and carefully selecting the incoming particle based upon the
reaction rate of the test particle with each of the background
species.

III. RESULTING DISTRIBUTION FOR A PROTON IN A
RELATIVISTIC ELECTRON BATH

We first tested our scattering algorithm in a simulation to
obtain the equilibrium thermalization for a proton initially
at rest as the nucleus in an electron bath with various fixed
temperatures relevant to the BBN environment. The procedure
was as described in Sec. II. We performed separate simu-
lations for different temperatures from the onset of BBN at

kT = 1 MeV to the conclusion of BBN at kT = 0.01 MeV.
For the most part, the thermal equilibration occurs at a rate
faster than the cosmic expansion timescale [23]. Hence, for
this first illustration it is adequate to approximate the thermal-
ization of nuclei at fixed constant temperatures. We also note
that since we are only concerned with the final equilibrium
distribution for this illustration, the choice of a particle ini-
tially at rest is arbitrary. We have also considered cases of the
proton injected with initially 0.001 or 10 MeV and even 10
GeV (see below) initially and the resultant final thermalized
distributions are indistinguishable. We also note that for this
illustration we do not consider the electron chemical potential
since for most of BBN the chemical potential is negligible.
This is because the e+-e− symmetry is not completely broken
until near the end of BBN at kT ∼ 0.01 MeV.

Note that because the electron mass is ∼0.511 MeV, the
e+-e− background is relativistic at kT = 1 MeV, mildly rel-
ativistic at kT = 0.1 MeV, and nonrelativistic at kT = 0.01
MeV. Accordingly, in Fig. 2, the e+-e− background distri-
butions also differ significantly from the MB distribution
at kT = 1 MeV, and are nearly indistinguishable by kT =
0.01 MeV.

The equilibrium nuclear energy distribution histogram ob-
tained as a result of the simulation is shown in Fig. 2 as a blue
histogram. For reference, the figures also show the FD distri-
bution (black curve) for electrons and the MB distribution (red
curve) all at the same temperature as labeled. A note should
be made here that at these BBN temperatures the nuclei are
dilute and nonrelativistic (kT 
 mnc2 ∼ 939 MeV). Hence
their classical FD distribution, which is the exact distribution
in the absence of any other species in their surroundings,
approximates to an MB distribution.

We observe from Fig. 2 that at all temperatures the equi-
librium thermalized proton distributions closely resemble the
MB distribution corresponding to the background electron
temperature. This is independent of whether or not the back-
ground electrons were relativistic. This suggests that the two
species exchange energy in order to obtain the same analytical
distribution, i.e., relativistic FD distribution, with the same
temperature but with their respective masses for each species.
These distributions indeed indicate that, even at a common
temperature, the energy partition is not the same for species
with different masses. Rather, each species attains its indepen-
dent relativistic FD distribution which can, in the case of low
temperature and density, approximate to an MB distribution.
The simulation distributions corroborate the relativistic Boltz-
mann equation solution recently solved for a multicomponent
gas [3,7].

In a previous work [26] we reported having observed an
anomalous drift to higher energies in the nuclear energy dis-
tribution when subjected to a relativistic electron bath. The
anomaly arose due to the neglect of the instantaneous viscosity
experienced by the nucleus due to its motion with respect
to the background. Instantaneous viscosity is the effect that
among electrons moving in the opposite direction and others
moving in the same direction as the nucleus, the electrons
moving in the opposite direction are more likely to interact
with the nucleus due to their enhanced flux. This was implic-
itly ignored in Ref. [26] by assuming an isotropic distribution
of electrons in the frame of the nucleus in step (4). In the
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FIG. 2. Monte Carlo histogram (blue bars) of the kinetic energy
distribution of a nucleus scattering in a bath in three spatial di-
mensions consisting of a relativistic e+-e− plasma (black curve) (at
kT = 1 MeV, kT = 0.1 MeV, kT = 0.01 MeV), This is compared
to the kinetic energy distribution of a classical Maxwell-Boltzmann
distribution (red curve).

corrected method the incoming electron is chosen based on
its flux towards the nucleus weighted by v f (v). This correctly
samples the electron flux according to its velocity and direc-
tion of travel [27,28].

FIG. 3. Monte Carlo distribution (blue bars) of the kinetic energy
distribution of a nucleus scattering in baths of a two-dimensional
relativistic e+-e− plasma (black curve) (at kT = 0.1 MeV) (upper
panel) and a one-dimensional relativistic e+-e− plasma (black curve)
(at kT = 1 MeV) (lower panel). These are compared to the kinetic
energy distribution of a classical Maxwell-Boltzmann distribution
(red curve).

We note that this equilibrium simulation can easily be
expanded to more than one background species by adding an-
other set of instructions on how the test particle interacts with
the new species. One could then trace and study the specific
interactions and dynamics of a test particle undergoing this
kind of modified Brownian motion in such mixtures.

Figure 3 shows the resultant distributions of the same
two species mixture from simulations performed in 2D and
1D for kT = 0.1 MeV and kT = 1 MeV, respectively. These
simulations also show the same agreement between the equi-
librium nuclear energy distribution (blue histogram) and the
MB distribution (red curve) for the temperature corresponding
to the background electron temperature. The 1D case has been
previously studied by simulating a nondilute mixture of two
species with the resultant distribution of each species being
their respective FD distribution [3]. This leads to a classical
MB distribution when applied to our case where the nucleus is
nonrelativistic as we obtained by our Monte Carlo simulation.
Hence, these simulation results corroborate the result obtained
previously by Cubero et al. [3].
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IV. EVOLUTION TOWARD THERMALIZATION OF
RELATIVISTIC HADRONS

As another application we consider the injection of ener-
getic hadrons (e.g., protons) due, for example, to the decay
of a relic massive unstable particle generated during a pre-
vious epoch in the early universe. This could occur by
various scenarios described, for example, in Refs. [16–22].
As one injected particle equilibrates, another is injected, so
the equilibrium distribution function will then depend upon
the abundance and rate of injection of energetic particles by
decay.

In Ref. [17], for example, a Monte Carlo event generator
was used to calculate the spectrum of hadrons produced by the
decay of a long-lived exotic X particle. The evolution of the
hadronic shower was then studied along with its impact on the
production of light nuclei in BBN. The hadron shower itself
involves a complicated spectrum including relatively long-
lived π± and K0,± and nucleons (p, n, p̄, n̄). At later times
and lower temperatures, kT < 0.1 keV, mesons decay before
they interact with nuclei. However, the high-energy protons
and neutrons can continue to interact with the background
light elements produced during BBN. The injected spectrum
of these nucleons produced during the decay was analyzed
in Ref. [17]. It typically peaks around a kinetic energy of 10
GeV and spans a range of energies from zero up to about
20 GeV. These nucleons can scatter from and dissociate light
elements produced during BBN. However, it is important to
clarify the timescales for both thermalization and interaction
of the energetic nucleons as they are formed by X -particle
decay.

As an illustration of how the present code could be adapted
to this application we consider the simple case of 10-GeV
protons injected into the primordial plasma. That is, we follow
the evolution of a proton injected with a delta-function kinetic
energy of 10 GeV in a bath electrons at kT = 0.025 MeV. We
then follow the evolution of the distribution in time following
multiple scattering.

Figure 4 illustrates the evolution of the spectrum of the
injected particles in a log-log plot after 101, 102, 104, 105,
106, and 107 scatterings at a background temperature of kT =
0.025 MeV. This is compared with the expected thermalized
nucleon distribution, i.e., an MB distribution (red curve). The
spectrum of the proton starts as a delta function at 10 GeV, and
can be seen in Fig. 4(a) as a blue bar. The proton starts losing
energy to its surrounding as background electrons interact as
seen in the distributions in Figs. 4(b)–4(e). After having scat-
tered with the background enough times the protons assume a
MB distribution, as can be seen in Fig. 4(f).

The average scattering rate per nucleon 
 is approximately
given by 
 = neσv, where ne is the electron density, σ the
scattering cross section, assumed to be ten times the size of a
nucleus (to be consistent with our cutoff of impact parameters
stated in step 8 of our algorithm), and v is the average rela-
tive thermal velocity. So, for an average background electron
density of ∼1020 cm−3 at kT = 0.025 MeV, the many elastic
collisions shown in Figs. 4(a)–4(f), i.e., 101, 102, 104, 105,
106, and 107 scatterings, approximately corresponds to times
of order 35 μs, 0.35 ms, 35 ms, 0.35 s, 3.5 s, and 35 s during
the big bang. For that temperature of the universe as the

universe cools down and changes, the cosmic time changes by
less than the 35 s needed for the equilibrium to be achieved.
Thus, the remnant tail at high energy between 106 and 107

scattering events may remain and impact nuclear reaction
rates during BBN. This will be explored in a future work.
Note that for high-energy protons, such as those with 10 GeV
considered here, the most important energy loss process is
not via Coulomb scattering from electrons, but from strong
interaction scattering with background nucleons [29,30]. In
this case the equilibration times estimated here are upper
limits.

V. CONCLUSION

We have presented a Monte Carlo algorithm for the
simulation of multidimensional, multicomponent relativistic
thermalization. This method could be used for simulating a
bath of multiple different species to replicate environmental
conditions any one test particle experiences.

We illustrated two applications of this algorithm for the
solution of the distribution function for a heavy particle expe-
riencing Brownian-like scattering in a bath of relativistic light
particles. The test conditions were motivated from big-bang
nucleosynthesis, as charged nuclei interact with surround-
ing relativistic constituents, i.e., electrons and positrons. The
temperature range we chose was between 0.01 and 1 MeV
appropriate to BBN.

Our first test simulation of the equilibrium thermalized
distribution functions at various temperatures corroborates the
expected results, i.e., the proton distribution is found to be
very close to the MB distribution. To our knowledge this is
a fully relativistic multicomponent simulation in three spatial
dimensions of such relativistic Brownian motion.

As a second test we have evaluated the thermalization of
energetic hadrons injected into a background e+-e− plasma at
a temperature of 0.025 MeV. This illustrates how the nuclear
spectrum may be distorted due to a continuous injection of
nonthermal particles during the big bang.
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APPENDIX: DERIVATION OF LORENTZ
TRANSFORMATION OF f (v) TO f ′(v′ )

For our selection of the colliding background particle we
needed the background particle distribution in the rest frame
of the test particle. Such a distribution would have to be
obtained by performing a transformation from the distribution
in the cosmic frame. The difficulty in finding a Lorentz-
invariant distribution that also satisfies simulation results has
been discussed previously [31]. Here, we derive the Lorentz-
transformed distribution of a relativistic gas in a moving
frame. We start with relativistic distributions, i.e., relativis-
tic FD or its nondegenerate approximation Maxwell-Jüttner
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FIG. 4. The blue histogram shows the simulated progression of the normalized distribution function of protons after the indicated number
of scatterings. Protons were injected with 10 GeV of kinetic energy (total energy of 10.939 GeV) and are thermalized by electron scattering in
the background BBN plasma at kT = 0.025 MeV. The apparent rectangle at high energy in (a)–(e) is the result of small statistics on a log-log
plot for particles in those bins. The red line shows the distribution function expected for an MB distribution at this temperature.
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distribution in the rest frame, and find the equivalent distribu-
tion in the moving frame.

We begin with the conservation relation regarding the dis-
tribution functions [27,32],

f ′(x′, u′) = f (x, u), (A1)

where the prime (′) denotes quantities in the moving frame
and the unprimed quantities are in laboratory frame, i.e., the
frame at rest with respect to the background fluid. x are
the spatial coordinates and u = γ v = p

m are spatial parts of
the four-velocity. Using this we want to find f ′(v′), and we
know f (v) and f (u) are a relativistic FD distribution and a
Maxwell-Jüttner distribution for the two cases, for electrons
as they are in the background fluid’s rest frame.

First, solving for f ′(u′) using Eq. (A1),

f ′(x′, u′)d3x′ = f (x, u)d3x′ (A2)∫
f ′(x′, u′)d3x′ =

∫
f (x, u)d3x × d3x′

d3x
. (A3)

Note that here and in the the rest of the appendix × indicates
a simple multiplication of two scalars and not a cross-product.
We know, in our case, f (x, u) and f ′(x′, u′) are position
independent, i.e., we expect the distribution to be indepen-
dent of coordinates, but only different in different reference
frames. Hence, the integration simply gives the volume in the
two frames, albeit contracted by the relevant Lorentz factors.
Therefore,

⇒ f ′(u′) = f (u) × γo

γ ′
V

, (A4)

where γ ′
V and γo are the Lorentz factors for the speed of the

two frames, i.e., they should be γo = 1 (for the laboratory
frame, which is at rest with respect to the gas cloud) and
γ ′

V = 1√
1−V 2 (where V is the speed of the moving frame).

1. One dimension

Now since we want f ′(v′), we multiply Eq. (A4) by du′ to
get

f ′(u′)du′ = f (u) × γo

γ ′
V

du′. (A5)

But we know that in 1D, the change of variable from u′ to v′
is as

f ′(u′)du′ = f ′(v′)dv′. (A6)

Therefore, by combining the last two equations, we have

f ′(v′)dv′ = f (u) × γo

γ ′
V

du′ (A7)

⇒ f ′(v′) = f (u) × γo

γ ′
V

du′

dv′ . (A8)

Since

u′ = γ ′v′ (A9)

⇒ u′ = 1√
1 − v′2 v′ (A10)

⇒ du′ = γ ′3dv′, (A11)

we have

f ′(v′) = γo

γ ′
V

f (u)γ ′3, (A12)

and we know

fFD,1D(u) =
(

1

n

)
1[

1 + exp
(

γ mc2

kT

)] , (A13)

fMJ,1D(u) = exp
(− γ mc2

kT

)
2mcK1

(
mc2

kT

) , (A14)

where 1/n is an approximate normalization constant. The
factors independent of γ are irrelevant for our purpose as they
are independent of v and u. Plugging fFD,1D(u) and fMJ,1D(u)
in Eq. (A12) gives

f ′
FD,1D(v′) =

(
1

n

)
γo

γ ′
V

γ ′3 1[
1 + exp

(
γ mc2

kT

)] , (A15)

f ′
MJ,1D(v′) = γo

γ ′
V

γ ′3 exp
(− γ mc2

kT

)
2mcK1

(
mc2

kT

) . (A16)

Substituting γ = γ ′γV (1 + V v′) from Ref. [27] gives

f ′
FD,1D(v′) =

(
1

n

)
γo

γ ′
V

γ ′3 1[
1 + exp

(
γ ′γV (1+V v′ )mc2

kT

)] , (A17)

f ′
MJ,1D(v′) = γo

γ ′
V

γ ′3 exp
(− γ ′γV (1+V v′ )mc2

kT

)
2mcK1

(
mc2

kT

) . (A18)

This is the needed Lorentz-transformed distribution. This dis-
tribution agrees with the previous study that obtained this
distribution by building a 1D thermalization simulation with
all the background particles tracked [4]. In our 1D simulation
we use |v′| f ′(v′) for sampling the velocity v′ at which elec-
trons come to scatter from the nucleus.

2. Two dimensions

For the 2D and 3D cases we employ the same analytical
procedure as was outlined in the 1D case to obtain the 2D and
3D Lorentz-transformed velocity distribution.

Since we want f ′(v′), multiply Eq. (A4) by d2u′ to get

⇒ f ′(u′)d2u′ = f (u) × γo

γ ′
V

d2u′. (A19)

However, we know that in 2D, the change of variable from u′
to v′ is as

f ′(u′)d2u′ = f ′(v′)d2v′. (A20)

Therefore, by combining the last two equations,

f ′(v′)d2v′ = f (u) × γo

γ ′
V

d2u′ (A21)

⇒ f ′(v′) = f (u) × γo

γ ′
V

d2u′

d2v′ . (A22)
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To find d2u′
d2v′ we need to find the Jacobian matrix

J =
[

∂ux
∂vx

∂ux
∂vy

∂uy

∂vx

∂uy

∂vy

]
. (A23)

The change in the volume element in the change of the space
of integration is given by the determinant of the Jacobian |J|,
i.e.,

d2u′

d2v′ = |J ′| = γ ′4. (A24)

Therefore, we have

f ′(v′) = γo

γ ′
V

f (u)γ ′4, (A25)

and we know

fFD,2D(u) =
(

1

n

)
1[

1 + exp
(

γ mc2

kT

)] , (A26)

fMJ,2D(u) = c2m2

2πkT (mc2 + kT )
exp

(
− (γ − 1)mc2

kT

)
, (A27)

where 1/n is the appropriate normalization constant. Plugging
fFD,2D(u) and fMJ,2D(u) in Eq. (A25) gives

f ′
FD,2D(v′) =

(
1

n

)
γo

γ ′
V

γ ′4 1[
1 + exp

(
γ mc2

kT

)] , (A28)

f ′
MJ,2D(v′) = γo

γ ′
V

γ ′4 c2m2

2πkT (mc2 + kT )
exp

(
− (γ − 1)mc2

kT

)
.

(A29)

Then substituting γ = γ ′γV (1 + V v′
x ) from Ref. [27] gives

f ′
FD,2D(v′) =

(
1

n

)
γo

γ ′
V

γ ′4 1[
1 + exp

( γ ′γV (1+V v′
x )mc2

kT

)] , (A30)

f ′
MJ,2D(v′) = γo

γ ′
V

γ ′4 c2m2

2πkT (mc2 + kT )

× exp

(
− (γ ′γV (1 + V v′

x ) − 1)mc2

kT

)
. (A31)

This distribution is a different result. In our 2D simulation
we use σ (v′)|v′| f ′(v′) for sampling the velocity v′ at which
electrons scatter from the nucleus.

3. Three dimensions

Since we want f ′(v′), we multiply Eq. (A4) by d3u′ to get

⇒ f ′(u′)d3u′ = f (u) × γo

γ ′
V

d3u′. (A32)

But we know in 3D the change of variable from u′ to v′ is

f ′(u′)d3u′ = f ′(v′)d3v′. (A33)

Therefore, by combining the last two equations,

f ′(v′)d3v′ = f (u) × γo

γ ′
V

d3u′ (A34)

⇒ f ′(v′) = f (u) × γo

γ ′
V

d3u′

d3v′ . (A35)

To find d3u′
d3v′ we again need to find the Jacobian matrix

J =

⎡
⎢⎢⎣

∂ux
∂vx

∂ux
∂vy

∂ux
∂vz

∂uy

∂vx

∂uy

∂vy

∂uy

∂vz

∂uz

∂vx

∂uz

∂vy

∂uz

∂vz

⎤
⎥⎥⎦. (A36)

The change in the volume element in the change of space of
integration is given by the determinant of the Jacobian |J|.
Thus,

d3u′

d3v′ = |J ′| = γ ′5, (A37)

so that

f ′(v′) = γo

γ ′
V

f (u)γ ′5, (A38)

and we know

fFD,3D(u) =
(

1

n

)
1[

1 + exp
(

γ mc2

kT

)] , (A39)

fMJ,3D(u) = m

4πckT K2
(

mc2

kT

) exp

(
−γ mc2

kT

)
, (A40)

where 1/n is the approximate normalization constant. As
noted above, the constants independent of γ are irrelevant
for our purpose as they are independent of v and u. Plugging
fFD,3D(u) and fMJ,3D(u) in Eq. (A38) gives

f ′
FD,3D(v′) =

(
1

n

)
γo

γ ′
V

γ ′5 1[
1 + exp

(
γ mc2

kT

)] , (A41)

f ′
MJ,3D(v′) = γo

γ ′
V

γ ′5 m

4πckT K2
(

mc2

kT

) exp

(
−γ mc2

kT

)
. (A42)

Substituting γ = γ ′γV (1 + V v′
x ) from Ref. [27] gives

f ′
FD,3D(v′) =

(
1

n

)
γo

γ ′
V

γ ′5 1[
1 + exp

( γ ′γV (1+V v′
x )mc2

kT

)] , (A43)

f ′
MJ,3D(v′) = γo

γ ′
V

γ ′5 m

4πckT K2
(

mc2

kT

)
× exp

(
−γ ′γV (1 + V v′

x )mc2

kT

)
. (A44)

This distribution is another result we found. In our 3D
simulations we use σ (v′)|v′| f ′(v′) for sampling the velocity
v′ at which electrons scatter from the nucleus. The resultant
distribution obtained for the nucleus corroborates with analyt-
ical solutions [7] and is hence tested via simulation.
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