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Topological phase transitions, which do not adhere to Landau’s phenomenological model (i.e., a spontaneous
symmetry breaking process and vanishing local order parameters), have been actively researched in condensed
matter physics. Machine learning of topological phase transitions has generally proved difficult due to the global
nature of the topological indices. Only recently has the method of diffusion maps been shown to be effective at
identifying changes in topological order. However, previous diffusion map results required adjustments of two
hyperparameters: a data length scale and the number of phase boundaries. In this article we introduce a heuristic
that requires no such tuning. This heuristic allows computer programs to locate appropriate hyperparameters
without user input. We demonstrate this method’s efficacy by drawing remarkably accurate phase diagrams in
three physical models: the Haldane model of graphene, a generalization of the Su-Schreiffer-Haeger model, and
a model for a quantum ring with tunnel junctions. These diagrams are drawn, without human intervention, from
a supplied range of model parameters.
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I. INTRODUCTION

Topological quantum phase transitions (TQPTs) are tran-
sitions between quantum states of matter with different
topological properties, typically indicated by a discontinu-
ous change in a topological invariant like the Chern number.
TQPTs differ from classical and quantum phase transitions in
that the former are described by Landau theory, based on the
emergence of a local order parameter that is usually associated
with a broken symmetry at the phase transition [1–3]. This
order parameter is nonzero in the ordered phase and zero in
the disordered phase. These ideas generalize to the case of
quantum phase transitions, wherein the Landau functional is
replaced by the action of the underlying quantum field theory.
TQPTs do not conform to this paradigm: the distinction be-
tween different phases is not a broken symmetry, but rather the
value of a topological index. These indices are fundamentally
associated with global features of the quantum state and are
not naturally described by local order parameters. The general
program of study for topological phase transitions in a given
model with a finite number of tunable parameters involves
computing the desired topological index as a function of the
parameters and identifying regions in the parameter space that
pertain to different indices. This requires prior knowledge of
the relevant topological invariant. Here, we present an un-
supervised machine learning algorithm that efficiently maps
the boundary of a TQPT without any foreknowledge of the
underlying topological invariant.

Machine learning programs have been previously estab-
lished in physics using neural networks as a variational ansatz
for many-body systems [4–6], modeling potential energy sur-
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faces with near ab initio accuracy [7–10], improved Monte
Carlo sampling [11,12], and beyond [13,14]. Within the field
of condensed matter physics, the identification of phases of
matter with machine learning has become an active area of
research [15–18]. Classifying phases of matter (a supervised
learning process) has been demonstrated with neural net-
works [15,16]. Perhaps more interestingly, other algorithms
are known to learn order parameters in an unsupervised man-
ner [17,18], meaning the identity of each phase was not
explicitly labeled for the algorithm a priori. For example,
computer programs were able to identify the magnetization
of a spin lattice as the key feature defining the phase transi-
tion by simply analyzing sampled spin configurations without
incorporating any model Hamiltonian or parameters into the
code.

Recently, unsupervised methods have distinguished differ-
ent topological phases of matter [19–22]. Manifold learning
has notably emerged as a tool for this problem [19–21].
The principle behind using manifold learning is that different
states sharing a global property may have a large Euclidean
separation (L2 norm of the difference between their local
variables) while lying on the same manifold in phase space.
Manifold learning tools are designed to correlate data points
living on the same manifold by a nonlinear manipulation of
the data. In this article we demonstrate the ability of a par-
ticular manifold learning routine, diffusion maps, to learn the
boundaries of topological phase transitions. Previous imple-
mentations of diffusion maps [19,20] could only accurately
draw phase diagrams after the number of boundaries were
specified. We present a heuristic in which the number of
phase boundaries in a cross section of parameter space is
automatically determined by a computer program. From this,
phase diagrams are drawn without human input as a set of
Hamiltonian parameters are swept.
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FIG. 1. (a) A data set is composed of classical XY spins with different winding numbers. Points on a single manifold in parameter space can
have a large pairwise separation, but a small diffusion separation as defined in Eq. (4). (b) The XY spins projected to two dimensions. The data
are plotted as a function of the angles in the first and last lattice sites. The data are stratified because of the presence of spin winding. However,
k-means clustering (color code) does not recognize the topological order of the full-dimensional data set. (c) The 20 largest eigenvalues of the
transition matrix Pi j for the data in (a), as a function of the resolution parameter ε in Eq. (2) (note the semilog scale). The timescale here was
chosen to be t = 500. Pi j is a probability matrix, and thus its eigenvalues (λk) vary between 0 and 1. The number of eigenvalues of order unity
roughly correspond to the number of manifolds in the data. Three eigenvalues survive for a large range of ε, indicating there are truly three
sets of topologically distinct data. The inset shows the eigenvalues for ε = 0.8. (d) The similarity matrix of the data for ε = 0.8, derived from
Eq. (2) using the L∞ norm. Much can be learned from visual inspection: (1) there are three manifolds in the data; (2) the manifolds are well
separated with weak interconnections and strong intraconnections; (3) each manifold is the same size; (4) the manifolds have the same density.
(e) The data set transformed to two dimensions by diffusion maps. The distribution of the data along the zeroth and first diffusion modes is
shown. Clearly, the spin data in diffusion space are clustered according to their winding numbers, and k-means analysis automatically relates
states of the same topological index. The intercluster distance is much larger than the intracluster distance.

We consider three cases. The first is an experiment which
illustrates how diffusion maps can identify classical XY spins
of different winding numbers. The second is applying the
new heuristic to draw two well-known phase diagrams: an ex-
tension of the Su-Schreiffer-Haeger (SSH) model [23] which
exhibits a phase transition between phases labeled by differ-
ent winding numbers as the hopping parameters are varied,
and the Haldane model of graphene [24] which involves a
transition in the Chern number as a function of the hopping
parameters and magnetic phases. The third example is to
investigate a novel topological phase transition in the ground
state of a single electron on a set of ideal, tunneling coupled
rings. As the tunneling between the rings is increased, the
winding number of the single particle ground state can change
abruptly.

II. AUTOMATIC PHASE DIAGRAM METHOD

A. Diffusion maps

Conventional clustering methods such as k means [25]
are not enough to discriminate the global indices of data.
The objective of k means in particular is to minimize the
squared Euclidean distance between data points and their
cluster centers which inherently depends on local information.
In general, entries in a data set may be well separated in pa-

rameter space despite sharing global properties. An example
is given in Fig. 1(a): a series of classical XY spins on a one-
dimensional (1D) lattice. A data set is constructed containing
spin arrays with winding numbers ν ∈ {0, 1, 2}. The dot prod-
uct between two spin arrays with the same winding number
can be small (or very negative) even though they live on
the same manifold in parameter space corresponding to their
global property. Therefore, the distance between two points
is not enough information to determine if they contain the
same topological index. A naive k-means analysis [Fig. 1(b)]
fails to cluster the pure spin data based on their winding
number. Meanwhile, linear transformations, e.g., principal
components analysis [25,26], cannot reduce these data down
to their topological invariants. The utility of manifold meth-
ods, like diffusion maps, is to cluster data in a nonlinear
manner.

Although data points on the same manifold (i.e., a given
winding number) can be well separated, adjacent points typi-
cally lie on the same manifold. Chains of locally similar data
can form globally similar structures across large regions in
the multidimensional phase space. If allowed to jump across
nearest-neighboring points, one could quickly diffuse through
a single manifold. From the speed of this diffusion, a new
distance metric can be formulated which will separate data
in a Euclidean manner.
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Imagine a set of random walkers allowed to diffuse through
a data set. The transition probability of a walker from data
point xi to point x j (Pi j) is the row-normalized Gaussian
similarity measure

Pi j = Ki j∑
j Ki j

, (1)

Ki j = exp

(
−|xi − x j |2p

ε

)
, (2)

where xi is the ith data point in the given parametrization,
ε is a resolution hyperparameter setting a length scale, and
| · |p denotes the Lp norm. Note that while a data point xi

is multidimensional in general, the matrix Pi j has dimensions
N × N where N is the number of points in the data set. These
walkers are likely to hop between nearest neighbors while
jumps across large distances are exponentially suppressed.
We introduce the eigenvalues λk and eigenvectors ψk of Pi j

defined by

Pi jψk = λkψk . (3)

The diffusion distance D(xi, x j ) between any two points xi

and x j in the data set after t time steps is defined by [27]

D2
t (xi, x j ) =

∑
k

λ2t
k [ψk (xi ) − ψk (x j )]

2, (4)

where ψk (xi ) is the ith component of the kth eigenvector.
Data points separated by a small diffusion distance Dt are
understood to belong to the same manifold because Dt is
small when there are many paths comprised of short-ranged
hops connecting them. Thus, the diffusion distance is a useful
metric for the global similarity of data points and is used to
delineate manifolds. Diffusion distance is not typically cal-
culated explicitly, however. Instead, the original data set {xi}
[Fig. 1(a)] is transformed:

yi = {
λt

0ψ0(xi ), λ
t
1ψ1(xi ), . . . , λ

t
N−1ψN−1(xi )

}
, (5)

where the eigenvalues are in descending order. With these
transformed data {yi}, more routine data analysis can be ap-
plied. This is because the Euclidean distance between the
transformed points corresponds to the diffusion distance be-
tween the original entries [27]. Another nice feature of this
process is that the distance metric in Eq. (2) can be general-
ized. A physical picture for why diffusion maps work is to
interpret Pi j as the dynamical matrix of a set of point masses
connected by springs with a stiffness proportional to Ki j . A
data manifold corresponds to an eigenmode that moves in
phase due to their strong interconnections.

Because the transformation in Eq. (5) preserves the man-
ifold information of the original data set, it is understood
that only a few of the largest λk contribute to the calculation
of Dt (xi, x j ). The exact number of surviving eigenvalues is
determined by the connectivity of the data which in turn de-
pends on the resolution hyperparameter in Eq. (2). Figure 1(c)
shows the largest eigenvalues responding to the XY spin data
as a function of the resolution. When ε is small, there are
many surviving eigenvalues attributed to the large effective
separation between the data points. When this scale is small
enough, individual data points become isolated and register
as their own manifold. As ε is increased to the inherent length

scale of the data, the true structure is elicited by the number of
long-surviving eigenvalues. When ε is tuned very high, all but
one eigenvalue vanish due to the entire data set appearing as
a single tightly bound cluster. Indeed, just three eigenvalues
remain across a large range of resolution values hinting that
the data are truly structured in three separate manifolds. The
similarity matrix for a select resolution is shown in Fig. 1(d),
containing even more information about the connectivity of
the data. The L∞ norm was used to derive this similarity
[Eq. (2)] due to its ability to encode topological information
[20]. The manifold form of the data can be visualized in
diffusion space [Fig. 1(e)]. Since the diffusion distance of
the original data is roughly equated to the Euclidean dis-
tance between the transformed data points, the transformed
data appears in three tightly bound clusters. Finally, k-means
clustering can be applied to the diffusion modes to identify
topological structure. If the data in a set are ordered, then
changes in the k-means cluster labels are interpreted as a
phase boundary.

B. Optimization of resolution hyperparameter

Before diffusion maps can find phase boundaries in phys-
ical models, the resolution ε of the data in Eq. (2) must be
chosen. Conventionally, this is performed by inspecting the
probability eigenspectrum as a function of ε [as in Fig. 1(b)]
and selecting a value for ε that captures the manifold structure
of the data. The degeneracy of eigenvalues close to unity
corresponds to the number of manifolds. However, this pro-
cess is ill defined as it is generally unclear which resolution
scale “best” illustrates the global arrangement of the data. In
addition, this process must precede every experiment.

We introduce a heuristic that allows computer programs
to automatically choose a resolution hyperparameter, without
user input. We seek the resolution that minimizes an adjusted
mean squared distance between the similarity matrix in Eq. (2)
[K(ε)] and the “ideal” similarity matrix (Kideal)

MSE(n, ε) = n − 1

n

n∑
�=1

1

|S�|
∑
i∈S�

∑
j

[
Ki j (ε) − Kideal

i j

]2
, (6)

Kideal
i j =

⎧⎨
⎩

1, i, j are contained in identical
k-means clusters

0, otherwise
(7)

where n is the number of k-means clusters and S� is the set of
points in cluster �. We are defining the ideal similarity matrix
as having a zero similarity between points of different clusters,
and an intracluster similarity of one. The cluster assignments
for the ideal matrix are determined by a k-means clustering
application [25] on the data in diffusion space. With the form
given in Eq. (6), every cluster carries the same weight in the
squared difference between the target and functional similar-
ity matrices, no matter the relative sizes of the clusters. The
factor of (n − 1)/n cancels out some of the natural advantage
of assigning a large number of clusters to the MSE.

Figure 2(a) shows the adjusted MSE of the XY spin data
as a function of the resolution hyperparameter (n = 3) and
has a clearly defined optimum. Minimizing the MSE as a
function of ε is a routine task for a computer. Note this value
for ε in general exceeds the value that corresponds to the
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FIG. 2. (a) The augmented MSE (black, solid line) from Eq. (6)
of the spin data in Fig. 1(a) as a function of resolution given three
clusters. Also plotted are the five largest transition probability eigen-
values (red, dashed line) [Eq. (3)]. The minimum of the MSE can
be found with standard computer routines, and allows a program to
automatically select ε without an experimenter choosing the hyper-
parameter. (b) The similarity matrix when the MSE is minimized.
The resolution parameter is much larger here than in Fig. 1(c),
resulting in a more uniform matrix. (c) The “ideal” similarity which
the heuristic tries to match. (d) The error for different numbers of
k-means centroids on a log-log scale. The error reaches its smallest
possible value for n = 3 and ε = 18.2. Based on the heuristic, those
are the values with which diffusion maps are performed. The lack of
discontinuities in the n = 3 curve may also be evidence for the proper
number of cluster centers. The locations of the centroids smoothly
change for n = 3, suggesting the data are inherently triply clustered
in diffusion space.

expected number of degenerate eigenvalues close to one. The
objective of the heuristic is to make the (normally sparse)
similarity matrix very dense. Figure 2(b) features a smeared
similarity when the MSE is minimized. The ideal similarity

FIG. 3. The optimized resolution hyperparameter as a function
of XY spin chain length where three different winding numbers
are present (black, solid line). This value changes rapidly for small
lattices but gradually increases once the system is large enough to
find the topological features. Similar behavior is exhibited by the
MSE itself (green, dotted line).

is displayed in Fig. 2(c) for reference. In addition to the reso-
lution hyperparameter, the ideal number of k-means clusters
can be automatically determined by the smallest optimized
MSE as a function of n. Figure 2(d) features the MSE for
nclusters = {2, 3, 4}. The error is extremized for n = 3; this is
expected from the three distinct winding numbers present in
the data. Once this heuristic is established, a computer pro-
gram can efficiently determine both the resolution and number
of k-means clusters. This process is aided by the fact that there
are natural bounds for the scale of ε related to the shortest
and largest distance between each of the points in the original
data set. The final result is a fully programmatic approach to
perform diffusion maps on quantum states. More details are
given in Sec. III.

The stability of the automatic hyperparameter search can
be studied by varying the size of the lattice (or generically, the
mesh size). Figure 3 displays the optimized values for ε and
the MSE as a function of the number of spin sites in the case of
1D XY chains. Once the lattice grows sufficiently large such
that topological features (ν ∈ {0, 1, 2}) can be distinguished,
εmin and MSE(3, εmin) change very gradually. It is therefore
understood there is only a soft dependence on the size of
the mesh on these automatically determined values. The rate
of change of these parameters may be used as markers for
stability for the calculation.

III. RESULTS

A. Haldane model

We first test our procedure on the Haldane model of
graphene, a two-dimensional array of carbon atoms in a
honeycomb lattice with nearest- and next-nearest-neighbor
hopping [24]. This model realizes the integer quantum Hall
effect in graphene in the absence of a Landau level spectrum
by adding a magnetic phase to the second-nearest-neighbor
hopping parameters such that the net flux per plaquette is zero.
The Haldane Hamiltonian in momentum space is [24]

H (k) = d(k) · σ, (8)

dx(k) = cos(k · a1) + cos(k · a2) + 1, (9)
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FIG. 4. The learned phase boundaries (black dots) match that of
the known phase boundaries (black line) for the Haldane model. The
learned boundaries are in locations where the k-means labels of the
Bloch vectors transformed by diffusion maps change. Matter phases
are identified by their Chern number and are color coded here for
extra visibility.

dy(k) = sin(k · a1) + sin(k · a2), (10)

dz(k) = M + 2t2 sin(φ){sin(k · a1) − sin(k · a2)

− sin[k · (a1 − a2)]}, (11)

which is the Bloch vector form. Here, a1, a2 are the 2D lattice
vectors, t2 is the next-nearest-neighbor hopping parameter,
M is an onsite energy term that breaks inversion symmetry,
and φ is the magnetic phase associated with second-nearest-
neighbor hopping. In general, there is a nearest-neighbor
hopping term (t1), but here it is set to unity. The Hamiltonian
parameters of interest are M and φ.

The topological invariant associated with the integer quan-
tum Hall effect is the Chern number [28]. For a Hamiltonian
of the form in Eq. (8) at half-filling, the Hall conductivity is
given by σxy = e2

h C where C is the Chern number defined as

C = 1

2π

∫∫
BZ

dkxdky Fxy(k) (12)

with Berry curvature Fxy(k) = 1
2εabcd̂a∂id̂b∂ j d̂c and d̂a =

da/|d|. This integral is over the entire first Brillouin zone (BZ)
which is spanned by the reciprocal lattice vectors. The Chern
number can be interpreted as the winding number of the map
k → d̂ from the BZ to a 2-sphere and is always an integer.
It is well understood [24,29–32] that as M and φ are varied,
the Haldane Hamiltonian undergoes phase transitions and can
realize Chern numbers of 0, −1, and 1 (solid line in Fig. 4).

To test the heuristic’s ability to draw the Haldane phase
diagram, a data set is composed of Bloch vectors from Eq. (8).
A single data point xi is a normalized Bloch vector d̂ = d/|d|
defined across the two-dimensional BZ mesh. For a given
value of φ we build a data set by uniformly sweeping M ∈
[−7, 7] in 1000 points. The set {xi} is then a collection of
normalized Bloch vectors corresponding to a vertical slice
of a phase diagram (Fig. 4). The diffusion map resolution
parameter and number of k-means centroids for a particular
sample is determined via the procedure detailed in Sec. II B.

FIG. 5. SSH model with next-next-nearest-neighbor hopping en-
abled, corresponding to the Hamiltonian of Eq. (13).

K-means analysis automatically assigns cluster labels to each
point of the transformed data {yi}. Each of these clusters
are understood to correspond to different topological phases.
Because the original data set is composed of Bloch vectors
that were sampled in an ordered manner (i.e., by monotoni-
cally increasing M), the boundary between k-means clusters is
interpreted as a Haldane phase transition. On a phase diagram,
the location in which the k-means labels change corresponds
to the phase boundary. This process is repeated for many
choices of φ. In Fig. 4 we show a comparison between the
boundary discovered by machine learning and that predicted
by theory. Without prior training, the algorithm can accurately
determine the boundaries in the multiphase system.

B. Extended SSH model

Next we look at a generalized version of the Su-Schrieffer-
Heeger (SSH) model describing electrons traveling across a
1D lattice with staggered lattice sites and next-next-nearest-
neighbor hopping (Fig. 5). Like the Haldane model, the
Hamiltonian in momentum space can be written in Bloch
vector notation [33]

dx(k) = t1 + t2 cos(k) + t3 cos(2k),

dy(k) = t2 sin(k) + t3 sin(2k),

dz(k) = 0. (13)

When t3 = 0 this reduces to the standard SSH model. Phases
of the SSH model differ by their winding number

ν = 1

2π

∫ π

−π

dk

(
d̂ × d

dk
d̂
)

z

. (14)

Again, the machine learning heuristic is tested against the
known phase diagram (Fig. 6) by building a data set through
ordered changes in the model parameters. Each data point
xi is the normalized Bloch vector d but now defined across
32 points in the one-dimensional BZ, k ∈ [−π, π ]. The au-
tomatic phase diagram process is applied by sweeping the
relevant hopping parameters in Eq. (13). In one experiment
[Fig. 6(a)], data sets are composed of 1000 Bloch vectors for
t2 ∈ [−5, 5] on a grid of 20 t1 values, while t3 = 0. In another
experiment [Fig. 6(b)], 1000 data points are generated where
t3 ∈ [−5, 5] for slices of t2. Here, t1 = 1 is fixed. In replicating
the phase diagram of the standard SSH model (t3 = 0), the
heuristic approach displays remarkable accuracy. When long-
range hopping is turned on (t3 �= 0), the learning method still
captures the true structure of the phase diagram despite the
more complicated features in the data. Even in regions where
there are many phase boundaries (|t2| < 2), the approach is
successful. This illustrates the heuristic’s ability to identify
topological order in small regions of parameter space.
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FIG. 6. (a) Learned phase diagram of the standard SSH model
(t3 = 0), matching theory to high precision. (b) When next-next-
nearest hopping is allowed (t3 �= 0, t1 = 1), the heuristic is markedly
less accurate but still close to the ground truth diagram. Topological
phases are identified even when they occupy a small volume of pa-
rameter space. The ability of the heuristic to draw several boundaries
simultaneously is also demonstrated.

C. Triple junction quantum ring array: An esoteric case

Lastly, we investigate a system where a topological phase
transition is known only through numerical analysis: single
electrons on knotted systems of tunneling-coupled one-
dimensional quantum rings. One-dimensional quantum wires
can be wrapped to form rings in several topologically distinct
ways. One such configuration is a single self-connected wire
wrapped into a trefoil knot (Fig. 7). If one allows δ-function
tunnel coupling where the wire crosses itself, interesting ef-
fects of frustration and topology appear [34]. These effects are
made richer by applying a magnetic field such that the tunnel-
coupling matrix elements pick up a complex Aharonov-Bohm
phase factor.

Experimentally, this phase factor can be changed by adjust-
ing the strength of an applied magnetic field. As this phase
is swept from −π to π , it becomes energetically favorable
for the wave function to accommodate this magnetic phase
“twist” by changing how the phase of the wave function itself
winds about the knot in real space. This manifests in a sponta-
neous change in the winding number of the ground state wave

FIG. 7. A schematic of the triple-ring junction, which can be
understood as a single ring wrapped into the “trefoil” pattern. At
points where the wires cross, there is a δ-function coupling that
allows an electron to tunnel from one loop to the next.

FIG. 8. The phase diagram of the single-electron wave function
across a triple-ring junction in Fig. 7. As one varies the real and
imaginary parts of the δ-function coupling at the junctions, the wave
function features stark shifts of its winding numbers as defined in
Eq. (15). The machine learning method (dotted line) is faithful to the
explicit calculation of the winding number (solid line).

function, defined as

n = − i

2π

∫
z∗ ∂z

∂s
ds, (15)

where z = ψ/|ψ |. The exact coupling phase where this tran-
sition occurs is dependent on the magnitude of the tunnel
coupling.

In Fig. 8 we show the phase boundary determined by
two numerical approaches. The first is simply to explicitly
calculate the phase winding in Eq. (15) from the numerically
calculated wave functions, for different values of coupling
strength and magnetic field. The second is to use the diffusion
map heuristic where each data point xi is the ground state
wave function normalized so that the phase at a particular po-
sition starts as pure real. For different values of the tunneling
amplitude, wave functions across the trefoil were calculated
for many values of the tunneling phase. The diffusion map
approach identifies precisely the same phase boundaries even
though it does not have the winding number explicitly coded
into its algorithm. This result reemphasizes the heuristic’s
ability to identify changes in generic topological structure.

IV. CONCLUSIONS

Using the method of diffusion maps, we have used com-
puter learning to draw several very accurate phase diagrams
of systems undergoing change in topological order. These di-
agrams were determined with no human intervention beyond
a supplied range of physical parameters. This process was
used in models of different nature: two were well-established
Hamiltonians defined in momentum space and the other was
a calculated transition in a topological quantity in a lesser-
known system. The heuristic is successful even when many
phase boundaries are encountered. Furthermore, parts of the
presented algorithm can be adjusted such as the distance met-
ric to determine local similarity. The result is a very general
procedure to draw boundaries for TQPTs and beyond. This
approach could be used to investigate systems in which there
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is currently no known topological behavior. For quantum
systems the algorithm only requires the relevant wave func-
tion(s) across phase space and a distance metric. Because of
this the code may be used for exotic phases of matter that arise
from many-body physics.

The heuristic presented in this paper does have some lim-
itations. First, there is no clear way to consider the absence
of a phase transition. This manifests because the MSE in
Eq. (6) does not reach a finite value for n = 1. Because of this,
the program will draw a phase boundary somewhere simply
because it is forced to. Meanwhile for large n, the heuristic
may not perform well due to the (n − 1)/n prefactor in Eq. (6)
approaching unity. Therefore, the algorithm will only work as
intended in models where small numbers of topological clus-
ters are expected. Second, it is possible the heuristic chooses

an exceedingly large value for the resolution hyperparameter
in cases where the similarity matrix is otherwise extremely
sparse. As a result, the true phase boundaries may not be
accurately obtained. This is a consequence of trying to match
the similarity matrix with one that has sharply defined clusters
in the objective function, Eq. (6). The resolution hyperparam-
eter is tuned very high to get similarity values of 1 between
many pairs of data points. A simple diagnostic for this is to
examine the sparseness of Ki j directly. This is straightforward
since even with multidimensional data the similarity matrix
is two dimensional. If it is exceedingly sparse, alternative
approaches may be necessary.

The code for the diffusion map and automatic resolution
determination is available [35].
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