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Diverse densest binary sphere packings and phase diagram
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We revisit the densest binary sphere packings (DBSPs) under periodic boundary conditions and present an
updated phase diagram, including newly found 12 putative densest structures over the x − α plane, where x
is the relative concentration and α is the radius ratio of the small and large spheres. To efficiently explore the
DBSPs, we develop an unbiased random search approach based on both the piling-up method to generate initial
structures in an unbiased way and the iterative balance method to optimize the volume of a unit cell while
keeping the overlap of hard spheres minimized. With those two methods, we have discovered 12 putative DBSPs
and thereby the phase diagram is updated, while our results are consistent with those of a previous study [Hopkins
et al., Phys. Rev. E 85, 021130 (2012)] with a small correction for the case of 12 or fewer spheres in the unit
cell. Five of the discovered 12 DBSPs are identified in the small radius range of 0.42 � α � 0.50, where several
structures are competitive to each other with respect to packing fraction. Through the exhaustive search, diverse
dense packings are discovered and, accordingly, we find that packing structures achieve high packing fractions
by introducing distortion and/or combining a few local dense structural units. Furthermore, we investigate the
correspondence of the DBSPs with crystals based on the space group. The result shows that many structural
units in real crystals, e.g., LaH10 and SrGe2−δ being high-pressure phases, can be understood as DBSPs. The
correspondence implies that the densest sphere packings can be used effectively as structural prototypes for
searching complex crystal structures, especially for high-pressure phases.
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I. INTRODUCTION

The densest sphere packings can be used as structural
models for many physical systems, e.g., crystals, colloids
[1,2], and glasses [3]. Atoms in crystals are sometimes ap-
proximated as spheres: In ion-bonded materials such as NaCl
[4], atoms are often spherically symmetrical because atoms
have closed-shell structures due to the charge transfer. In
intermetallic compounds such as AgCu [5], atoms are also
sometimes spherically symmetrical due to the bonds formed
by electrons populating in s orbitals. In materials under high
pressure, distances between atoms become so close that the
directional orientation of the bond is weakened due to the
strong repulsive force by Pauli’s exclusion principle [6]. Ac-
cordingly, many structural units in crystals can be understood
as sphere packings [7]. The correspondences indicate that the
densest sphere packings may be used effectively as structural
prototypes for searching complex crystal structures, especially
for high-pressure phases.

Identifying the densest sphere packings is one of the most
difficult mathematical problems. It was proved only in the
2000s that the Barlow packing is the densest packing of
monodisperse spheres in R3 [8]. There seems no general way
to determine the densest binary sphere packings (DBSPs) in
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a mathematically rigorous way despite considerable efforts
under limited conditions [9–11]. However, there have been
several studies that attempt to estimate the DBSPs by numer-
ical calculations [12–18]. Recently, Hopkins et al. explored
the DBSPs under the restriction that the number of spheres in
the unit cell is less than or equal to 12. They used the orig-
inal method to generate initial structures [19] and structural
optimization algorithms [20]. Accordingly, they constructed
the phase diagram for DBSPs [21,22]; hereafter, we call the
diagram the HST phase diagram. Eighteen distinct putative
DBSPs were identified on the HST phase diagram. The phase
diagram for the densest ternary sphere packings has not yet
been constructed.

An exhaustive search for packing structures becomes more
difficult with an increase in the number of spheres. The con-
siderable increase in the number of local minima is inferred
from the explosive increase in the number of permutations of
lining up spheres in a row. The number of cases with six large
and six small spheres is 924, whereas the number of cases
with 12 large and 12 small spheres is 2 704 156. In general,
the number of cases R with N large and N small spheres can
be calculated as

R = (2N )!

N!N!
. (1)

With Stirling’s formula, R can be estimated as

R ∼ 4N

√
πN

. (2)
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Equation (2) indicates that the number of local minima in
three-dimensional structures is getting larger exponentially
with an increase in the number of spheres.

Prediction of crystal structures faces the same difficulties.
Many algorithms to explore effectively in coordination spaces
have been devised for crystal structure prediction, e.g., the
evolutionary algorithm [23–27] and the particle-swarm op-
timization method [28–31]. It is also known that symmetry
constraints enhance the efficiency of finding the most sta-
ble structure [27–29,31]. Those methods have successfully
predicted many materials, followed by experimental confir-
mations [23–32].

The random structure searching method [33] is also a
powerful method for structure prediction. We consider that
the densest sphere packings should be searched by the ran-
dom structure searching method because we have no a priori
knowledge about what kinds of structures are the densest
multinary sphere packings. For example, the densest struc-
tures may not be highly symmetric; therefore, those structures
may not be found under symmetry constraints. On the other
hand, the random structure searching method has a drawback
that it is impossible to explore exhaustively in coordination
space unless structural optimization is efficient. However, in
the case of hard spheres, structural optimization is expected
to be efficient because repulsive forces occur only when two
spheres overlap each other. Therefore, the random structure
searching method is to be regarded as an effective way to
search for the densest packings.

In the present research, we revisit the DBSPs under peri-
odic boundary conditions. To efficiently explore the densest
sphere packings, first we invent the piling-up method to gen-
erate initial structures in an unbiased way; second, we develop
the iterative balance method to optimize the volume of a unit
cell while keeping the overlap of hard spheres minimized. The
piling-up method is developed based on the idea of stacking
spheres randomly one by one on top of a randomly generated
first layer. It enables us to search the densest packings unbi-
asedly from the vast coordination space. The iterative balance
method is developed based on the idea of repeating collision
and repulsion among spheres under pressure while the max-
imum displacement in position vectors and lattice vectors is
gradually decreased. The method not only generates a dense,
periodic packing of nonoverlapping spheres but also predicts
the maximum packing fraction with high accuracy. Those
two methods are implemented in our open-source program
package SAMLAI (Structure search Alchemy for MateriaL
Artificial Invention). With SAMLAI, we exhaustively search
the DBSPs with extending the unit cell compared to the previ-
ous study [22] and, as a result, we update the phase diagram,
including discovered 12 putative DBSPs over the x − α plane,
where x is the relative concentration and α is the radius ratio
of the small and large spheres. x is defined as

x ≡ s

S + s
, (3)

where S (s) is the number of large (small) spheres in the unit
cell. For the case of 12 or fewer spheres in the unit cell,
our phase diagram is consistent with that of a previous study
[22] with a small correction. Through the exhaustive search,
diverse monophase DBSPs are discovered; accordingly, we

find that high packing fractions are achieved by introducing
distortion and/or combining a few local dense structural units.
Furthermore, we investigate the correspondence of the DBSPs
with crystals based on the space group. The result shows
that many structural units in real crystals, e.g., LaH10 [34]
and SrGe2−δ [35] synthesized under high pressure, can be
understood as DBSPs. The correspondence implies that the
densest sphere packings can be used effectively as structural
prototypes for searching complex crystal structures, especially
for high-pressure phases.

The paper is organized as follows: Section II describes
our method to explore the densest sphere packings; Sec. III
discusses the numerical aspects of our method, e.g., the accu-
racy of the packing fraction and the distribution of generated
packing fractions; Sec. IV details the methodology for con-
structing the phase diagram for DBSPs; Sec. V presents the
phase diagram and discovered 12 putative DBSPs; Sec. VI
discusses the effectiveness of our method and the geometry
of DBSPs. In Sec. VII, we summarize this study.

II. OUR IMPLEMENTATION

To efficiently explore the densest packings, we develop an
unbiased random search method. The method is implemented
in our open-source program package SAMLAI. It consists of
two steps: (A) random generation of multi-layered structures
and (B) structural optimization. Step A is aimed at generating
initial structures and step B is aimed at optimizing the initial
structures for high packing fractions.

A. Generation of initial structures: Piling-up method

As discussed by Pickard and Needs [33], randomly gen-
erated structures may contain spheres that are very close
together or spheres may be crowded in a direction of a short
lattice vector instead of a long lattice vector. To avoid gen-
erating such an abnormal initial structure, we develop the
piling-up method to randomly generate appropriate initial
structures. The method is based on an idea of stacking spheres
randomly one by one on top of a randomly generated first
layer, since any periodic structure can be understood as a mul-
tilayered structure if it is extended in a direction perpendicular
to a chosen base plane.

The piling-up method consists of two steps. First, an initial
structure is generated randomly. Next, a multilayered structure
is constructed by expanding an initial structure.

1. Generation of seed structure

To generate an initial structure, first a large sphere is placed
at (0, 0, 0). Hereafter, the position of sphere (qi1, qi2, qi3) is
represented in the fractional coordinates and the maximum
radius of spheres is set to 1. All values we discuss in the paper
are dimensionless. The initial lattice vectors are set to

a1 = (a11, 0, 0), (4)

a2 = (a21, a22, 0), (5)

a3 = (a31, a32, a33), (6)

where we set a11 = 2 and a22 = 2; the a21 is set to a ran-
dom value in the range of −1 � a21 < 1 to allow a2 to have
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freedom of angle of 60◦ to 120◦ relative to a1. Next, zero
or more spheres are randomly selected to place on the first
layer spanned by a1 and a2. The selected spheres are placed
at (r, r′, 0), where r and r′ are random values in the range
of 0 � r, r′ < 1. These operations correspond to the random
generation of the first layer. The initial lattice vectors have
a very strong restriction as a11 = a22; furthermore, there can
be a large overlap between spheres placed on the first layer.
However, as discussed in the next subsection, these structural
features can be relaxed simultaneously by expanding the unit
cell with the steepest descent method. At this stage, we do not
expand the cell, but continue to generate the initial structure.

Next, the unselected spheres are stacked one by one. As the
first step in the second stage, a3 is set to

a3 = ra1 + r′a2 + (0, 0, a33), (7)

where r and r′ are random values in the range of −0.5 �
r, r′ < 0.5; a33 is set to

a33 =
∑

I

cI + 1, (8)

where ci is defined as the radius of the sphere i and I is the
labels of unselected spheres. Finally, all unselected spheres
are picked up one by one and they are placed at (r, r′, qi3)
where r and r′ are random values within 0 � r, r′ < 1 and the
qi3 is set so the z coordinate will be increased by the radius of
the sphere to be placed every time a sphere is placed.

2. Expansion

The generated unit cell seems to be very biased and gener-
ally there can be a large overlap between spheres. If we simply
scale the unit cell so the largest overlap can become zero,
the cell may expand explosively and the initial constraint of
a11 = a22 would nearly hold. However, if the initial structure
is expanded with the steepest descent method, the lattice vec-
tors are adjusted to the optimal length and angle, depending
on the sphere arrangement. For example, if many spheres are
piled up in a particular direction, the lattice vectors are greatly
expanded in that direction.

To apply the steepest descent method for the expansion,
we introduce a two body interaction potential between spheres
U (|r j + T − ri|), where ri is the position of sphere i and T is
the translational lattice vector. We also define the total energy
E per unit cell as

E = 1

2

∑
T

N∑
i=1

N∑
j=1

U (|r j + T − ri|), (9)

where N is the number of spheres in the unit cell. The two
body interaction potential U (|r j + T − ri|) is defined to be

U (|r j + T − ri|) ≡
{−z(T )

i j z(T )
i j � 0

0 0 < z(T )
i j ,

(10)

with

z(T )
i j ≡ |r j + T − ri| − (ci + c j ), (11)

where ci is the radius of sphere i. The characteristic features of
the potential are two folds: one is that the potential is nonzero
only when two spheres overlap with each other, and the other

is that the repulsive force is constant when overlapping. If the
potential U (|r j + T − ri|) is smoothly connected with z(T )

i j =
0, it becomes a pseudo-hard-sphere potential. The smoothness
causes an undesirable overlap between spheres when a finite
pressure is applied to increase the packing fraction, as dis-
cussed later.

To expand the unit cell, the extended coordinates defined
with

u ≡ (q11, q12, q13 · · · qN3, a11, a12, a13, · · · a33) (12)

is updated by the steepest descent method as

�u = −k1
∂E

∂u
, (13)

where k1 is the steepest descent prefactor. The steepest de-
scent method is repeated until the size of the gradient is
less than a threshold value. As a result, a multilayered struc-
ture is generated. We calculate the derivatives analytically in
Appendix C.

If the size of the gradient is more than a threshold value,
�u is scaled so the maximum displacement in the position
vectors and lattice vectors will be equal to the predetermined
value. The prefactor k1 is not set directly. The expansion step
is not aimed at optimizing structures but producing diverse
multilayered structures. Therefore, it makes sense to scale �u
to an optimal size that is neither too large nor too small. The
value of the maximum displacement is presented in Sec. III A.

The piling-up method is able to create diverse multilayered
structures with appropriate lattice vectors depending on the
sphere arrangement. With the iterative balance method dis-
cussed in Sec. II C, the generated structures can be optimized
to diverse packing structures, e.g., towerlike structures and
symmetric structures such as the fcc structure. The piling-up
method is very effective for searching densest sphere pack-
ings, as discussed in Sec. III F.

B. Global optimization

The generated multilayered structure contains a large gap,
which makes the packing fraction reduced. The large gap can
be filled by steepest descent method under pressure with the
hard-sphere potential defined as Eq. (10), since the method
can cause a repetition of collision and repulsion between
spheres. If the constant repulsive force is large enough, it
never balances with the pressure. The repulsion is dominant
when overlapping, leading to a structure without any overlap
as a result of the optimization. Once the optimization reaches a
structure without any overlap, the pressure is only the driving
force to change the structure because of the characteristic
feature of the two-body interaction defined by Eq. (10), and
the optimization leads to a structure with overlap again. This
means that the optimization cannot finish, but enables colli-
sion and repulsion between spheres to be repeated as long
as we continue. The pressure is necessary to minimize the
volume of the unit cell. In each steepest descent step, the
extended coordinates u is changed to minimize the enthalpy
per unit cell H as

�u = −k2
∂H

∂u
, (14)
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where k2 is the steepest descent prefactor and the enthalpy is
defined as H ≡ E + PV ; P is the pressure and V is the volume
of the unit cell. The operation is not aimed at converging the
enthalpy to a local minimum but transforming significantly an
initial structure to a dense structure with a large number of
the repetition of collision and repulsion. A lot of iteration is
essential for sufficient structural transformation. In fact, we
have confirmed that the linear minimization method does not
work. In the global optimization step, the steepest descent
method is repeated several thousand times.

Since the forces and the pressure are never balanced, any
structure can transform into a dense structure. The effective-
ness comes from the hard-sphere potential defined as Eq. (10).

As with the expansion process discussed before, the steep-
est descent prefactor k2 is not set directly, but �u is scaled
so the maximum displacement in the position vectors and the
lattice vectors will be equal to the predetermined value. The
purpose of the global optimization is only to fill the waste-
ful gaps, so it is the most important how much the position
vectors and lattice vectors are allowed to displace. Setting the
maximum displacement has the advantage of allowing each
sphere to move enough even when the number of spheres in
the unit cell is large. Therefore, it makes sense to set �u to
an appropriate size so the wasted gaps can be filled. During
the global optimization, the maximum displacement is kept
constant. The pressure P is also kept constant as P = 0.1. The
other values are presented in Sec. III A.

Even after a large number of optimization steps, the overlap
never converges to zero, because z(T )

i j between neighboring
spheres oscillate around zero. The overlap converges to zero
with the local optimization, which we discuss next.

C. Local optimization: Iterative balance method

To optimize a structure to a periodic packing of nonover-
lapping spheres, all the overlaps have to be converged to
zero. In other words, all of the z(T )

i j have to be converged
to more than or equal to zero. To achieve the condition, we
develop the iterative balance method. The iterative balance
method optimizes the volume of a unit cell while keeping the
overlap of hard spheres minimized. The method is developed
based on the idea of repeating collision and repulsion among
spheres under pressure while the maximum displacement in
position vectors and lattice vectors is gradually decreased. The
pressure P is kept constant as P = 0.1 through the iterative
balance method.

In the iterative balance method, collision and repulsion
between spheres are also repeated with the steepest descent
method. As with the global optimization, the steepest descent
prefactor k2 is not set directly, but �u is scaled so the largest
displacement in the position vectors and lattice vectors will
be equal to a certain value. To converge all of z(T )

i j to more
than or equal to zero, the maximum displacement is gradually
decreased for each step.

To illustrate the convergence of z(T )
i j , we consider the

structural optimization in the one-dimensional case. Here, as
shown in Fig. 1, we assume that two spheres interact with the
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FIG. 1. The iterative balance method in the one-dimensional
case. Two spheres interact with the discontinuous force. With de-
crease in the displacement, z eventually converges to zero.

discontinuous force defined to be

f =
{

1 z � 0
−1 0 < z,

(15)

with

z ≡ r − (c1 + c2), (16)

where r is the distance between the two spheres. If the model
is optimized by the steepest descent method with a constant
prefactor, z oscillates around z = 0, and never reaches z = 0.
On the other hand, if the displacement is gradually reduced,
z eventually converges to zero. The convergence behavior is
shown in Fig. 1 together with the one-dimensional model and
the discontinuous force defined by Eq. (15) as in the inset.

The idea works even for the three-dimensional case we are
interested in. Once we control the prefactor so the maximum
displacement can be gradually reduced, the structure eventu-
ally reaches a packing structure with almost zero overlaps.
In this sense, z(T )

i j = 0 can be regarded as a balanced point.
This is the reason why we call it the iterative balance method.
The size of the maximum displacement is the same order as
the maximum overlap as discussed in Sec. III B, where the
maximum overlap is defined to be the maximum value in
−z(T )

i j . It should be clearly noted that the discontinuous change
of sign in forces produced by Eq. (10) is crucial to realize the
balanced point. Other potentials such as the squared potential
of z do not provide the interesting feature.

The iterative balance method can find the optimal distor-
tion because the pressure makes as many z(T )

i j converge to zero
as possible. That distortion is exactly what makes it possible
to minimize the volume of the unit cell. The feature indicates
that the iterative balance method can find the local maximum
of packing fractions, despite the fact that a large number of
optimization steps is necessary to find the maximum packing
fraction. The optimization parameters such as the optimiza-
tion step number are presented in Sec. III A.
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FIG. 2. Generation process of the (7-3) structure [22]. (a) Gen-
eration of a seed structure by piling-up method. (b) Expansion of
the seed structure by steepest descent method. (c) The final structure
obtained by iterative balance method. The bottom side is narrow and
the vertical direction is long. The feature corresponds to that of the
seed structure. Figures are generated by VESTA [36].

Just like the Torquato-Jiao sphere-packing algorithm [20],
in principle the iterative balance method allows us to eval-
uate the packing fraction of the dense sphere packings
while avoiding overlaps of spheres. The implementation is
straightforward and the computational time for the structural
optimization is very short, as discussed later on, since it re-
quires only simple calculations of forces and stress at each
steepest descent step. We will demonstrate the efficiency and
ability to find the putative densest structures in Sec. III.

D. Examples of structure generation

The (7-3) structure [22] is the towerlike DBSP with seven
small and three large spheres in the unit cell. The formation
process of the structure is shown in Fig. 2. First, the tow-
erlike structure is generated by stacking many spheres on
top of the small bottom plane as shown in Fig. 2(a), and
then the structure is expanded as shown in Fig. 2(b) with the
steepest descent method. The bottom plane corresponds to the
first layer generated by piling-up method. The final structure,
shown in Fig. 2(c), also has a small bottom plane and is long
in the vertical direction.

The (16-4) structure is the DBSP with 16 small and four
large spheres in the unit cell. The structure can be understood
as a two-layered structure except for four small spheres. The
formation process of the structure is shown in Fig. 3. For
visibility of the figures, the bottom plane, which is the first

FIG. 3. Generation process of the (16-4) structure. For visibility
of the figures, the bottom side, which is the first layer generated by
piling-up method, is arranged at the front side. (a) Generation of a
seed structure by piling-up method, where all the spheres are placed
in the first layer. (b) Expansion of the seed structure by steepest
descent method. (c) The final structure obtained by iterative balance
method.

layer generated by piling-up method, is arranged at the front
side. First, all the spheres are placed on the first layer as shown
in Fig. 3(a), and then the structure is expanded as shown in
Fig. 3(b). The final structure, shown in Fig. 3(c), can also be
regarded as a layer-by-layer structure with a small height.

E. Neighboring spheres

In the optimization process, if a packing structure suffi-
ciently converges to a dense structure, almost all the position
vectors do not displace significantly even after many opti-
mization steps. In addition, repulsive forces occur only when
two spheres overlap each other. Therefore, the computational
cost can be reduced significantly by predetermining the neigh-
boring spheres. Of course, we must reset the neighboring
list periodically because, accidentally, position vectors may
displace largely. In our code, the neighboring list is reset once
every 100 times in the global optimization step and once every
200 times in the local optimization step.

F. Treatment of similar initial multilayer structures

First, we define the word isomorphic: We regard two struc-
tures as isomorphic if the two structures are identical when the
Cartesian coordinates for one of them are displaced by a small
threshold value, where we select the threshold value within a
range so the change of the packing fraction can be less than
0.001. Unit cells are not necessarily the same. The variation
of packing fractions comes from the difference of distortions.
Distortion is necessary to achieve a high packing fraction.

One may consider that it is futile to optimize all sim-
ilar structures which converge to an isomorphic structure.
However, in some cases, the number of local minima of the
enthalpy is huge due to a large number of distortion patterns
and, accordingly, many structures are trapped at local minima.
Therefore, optimizing all similar structures is necessary to
determine the highest packing fraction. Hence, we optimize
all generated structures.

III. NUMERIC ASPECT OF OUR METHOD

In this section, we discuss the numerical aspects of our
method, including structural optimization parameters, accu-
racy of the packing fraction, and efficiency of our method.

A. Optimization parameters for exhaustive search

The efficiency of structural optimization depends on the
choice of parameters used in the optimization, and even the
reachable maximum packing fraction is varied, depending on
the parameters, in case many local minima have competi-
tive packing fractions. These parameters we have are listed
below:

(1) �expand,max: The maximum displacement in the expan-
sion step

(2) �global,max: The maximum displacement in the global
optimization step

(3) Nglobal: The iteration number in the global optimization
step

(4) �local,max: The maximum displacement in the local
optimization step
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TABLE I. Default values of optimization parameters. For each optimization process, �global,max and �local,max are determined randomly
from the range shown in the table. Each parameter is defined in Sec. III A.

Optimization parameter Default value for exhaustive search Default value for high-precision optimization

�expand,max 0.3 –
�global,max 0.03 � �global,max � 0.15 0.003 � �global,max � 0.05
Nglobal 2000 4000
�local,max 0.02 � �local,max � 0.10 0.001 � �local,max � 0.02
Nlocal 40000 80000
d 0.9997 0.9997

(5) Nlocal: The iteration number in the local optimization
step

(6) d: The decreasing factor of the maximum displace-
ment in the local optimization step

The default values for exhaustive search are given in
Table I. Here, we note that �global,max (�local,max) is chosen
randomly in the range of 0.03 � �global,max � 0.15 (0.02 �
�local,max � 0.05) for each structural optimization, as written
in Table I. The random choice of them enables us to obtain
various local minima. The default parameters lead to a con-
vergence that almost all the minimum value of z(T )

i j becomes
the same order as −10−7 to −10−6.

B. Maximum overlap

In the iterative balance method, the maximum displace-
ment of the position vectors and the lattice vectors are
gradually reduced. Figure 4 shows the maximum overlaps
at each optimization step. �local,max is set to 0.0546375.
The maximum overlap is defined as the maximum value of
−z(T )

i j . It is confirmed from Fig. 4 that the maximum overlap
decreases exponentially as the maximum displacement is de-
creased exponentially, and those values are the same order.
The relation can be understood from the fact that some of z(T )

i j
between neighboring spheres oscillate around zero.

FIG. 4. The maximum overlap at each optimization step where
the maximum overlap is defined as the maximum value of −z(T )

i j .
The maximum overlap decreases exponentially as the maximum
displacement is decreased exponentially.

C. Accuracy of packing fraction

In the radius ratio of α �
√

2 − 1, the XYn structures ap-
pear on the phase diagram. The XYn structures are defined
as packing structures in which large spheres X constitute the
fcc densest structure and small spheres Y penetrate into the
tetrahedral and octahedral sites constituted by X. The packing
fractions of the XYn structures can be calculated analytically
as

φ = π

3
√

2
(1 + nα3). (17)

In the radius ratio of α �
√

2 − 1, as discussed by Hopkins
et al., six XYn structures of XY, XY2, XY4, XY8, XY10,
and XY11 [22] appear on the phase diagram. An octahedral
site of XY structure is occupied by one small sphere, an
octahedral site of XY2 structure is occupied by two small
spheres, an octahedral site of XY4 structure is occupied by
a tetrahedron consisting of four small spheres, an octahedral
site of XY8 is occupied by a cubic consisting of eight small
spheres, a tetrahedral site of XY10 structure is occupied by
one small sphere and an octahedral site of XY10 is occupied
by a cubic consisting of eight small spheres, and a tetrahedral
site of XY11 structure is occupied by one small sphere and
an octahedral site of XY11 is occupied by a bcc structure
consisting of nine small spheres, respectively.

It was relatively easy to calculate the packing fractions
of the XYn structures with our method because there is no
distortion in the fcc structure constituted by large spheres.
However, when the optimization parameters are set to the
default values, in some cases an error of the packing fraction
becomes the same order as 10−6 due to overlap, which is also
the same order as 10−6. As discussed in the next section, by
optimizing again with changing the optimization parameters,
the maximum overlap can be decreased to the same order as
10−13. In that case, the packing fractions agree by more than
ten decimal points with the analytical solution of Eq. (17).

As discussed in Sec. II C, the iterative balance method can
minimize the volume of a unit cell. Therefore, high-precision
reoptimization enables us to find the highest packing fractions
with high accuracy because of a small overlap and a mini-
mized volume of a unit cell.

D. High-precision structural optimization

As discussed in Sec. III C, the local optimization with de-
fault values for exhaustive search presented in Table I cannot
reduce an overlap enough. The overlap causes an error in the
packing fraction after the six decimal points. The error can be
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reduced by a high-precision reoptimization. With an increase
in the number of local optimization steps, the overlap can be
decreased because the maximum displacement is decreased as
the number of optimization steps is increased. As discussed in
Sec. III B, the maximum overlap and the size of the maximum
displacement is the same order.

When the number of local minima is getting larger, more
structures are trapped at local minima, so the global minimum
might not be found during an exhaustive search. Therefore,
it is necessary to reoptimize the putative densest structure
many times to identify the global minimum. The optimization
results depend on the initial structure and the optimization
parameters, such as �global,max and �local,max. Therefore, slight
fluctuations are given to the structure before reoptimization
and the range of �global,max and �local,max is set to be large.
When the number of local minima is small, almost all the fluc-
tuated structures converge to the densest packing. On the other
hand, when the number of local minima is large, we obtain
many packing fractions corresponding to diverse distortion
patterns. In some cases, tens of thousands of reoptimizations
are necessary to determine the maximum packing fraction. As
discussed in the next subsection, the computational time for
the structural optimization is very short, so the necessity of
the several thousand reoptimizations is not a serious problem.

The default parameters for reoptimization are given in
Table I. If we use the default parameters, in almost all cases,
the minimum values of z(T )

i j become the same order as −10−13

to −10−12.

E. Speed of structure generation

The computational cost for calculating forces with the
hard-sphere potential is very low because repulsive forces
occur only when two spheres overlap each other. In addition, if
a packing structure converges to a dense packing, the positions
of the spheres do not change significantly even after many
optimization steps. Therefore, as discussed in Sec. II E, the
computational cost can be significantly reduced by predeter-
mining the neighboring spheres. In fact, if the number of
spheres in the unit cell is about ten, it takes less than 0.1
seconds from generation to optimization using a single core of
Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60 GHz. Therefore,
our method can generate a large number of packing structures.
The efficiency enables us to find the densest packing from the
vast coordination space.

In addition, since the number of optimization steps is set
externally, the computational cost can be estimated as O(N ),
where N is the number of spheres. Hence, it is possible to
conduct an exhaustive search for the long periodic densest
packings.

F. Distribution and update history of packing fractions

In this subsection, we discuss the distribution and updating
history of packing fractions during the exhaustive search, to
show that our method can find the densest packings from the
vast coordination space.

First, we conducted an exhaustive search for the
monophase DBSPs at the radius ratio of α = 0.445 and the
composition ratio of x = 14/19. The unit cell contains 14

FIG. 5. The distribution of the packing fractions during the ex-
haustive search. (a) The distribution for 14-5 system; the unit cell
contains 14 small spheres and five large spheres. The radius ratio
is α = 0.445. (b) The distribution for 16-4 system; the unit cell
contains 16 small spheres and four large spheres. The radius ratio
is α = 0.455.

small spheres and five large spheres. In that case, the (14-5)
structure with the packing fraction of 0.765259 is the densest.
The number of structures generated during the exhaustive
search is 250 182. The distribution of the packing fractions is
shown in Fig. 5(a). The number of structures having a packing
fraction between 0.6875 and 0.6900 is 15959 and the largest.
On the other hand, the number of structures having a packing
fraction between 0.7650 and 0.7675 is only 58. The result
indicates that our method can find the densest packings from
the vast coordination space. Figure 6(a) shows the updating
history of the highest packing fraction. The structure with
a packing fraction of 0.765256 is generated at the 9372nd
step, while the densest structure with the packing fraction of
0.765259 is generated at the 50 155th step.

Similarly, we conducted an exhaustive search for the
monophase DBSP at the radius ratio of α = 0.455 and the
composition ratio of x = 16/20. The unit cell contains 16
small spheres and four large spheres. In that case, the (16-4)
structure with the packing fraction of 0.759629 is the densest.
The number of structures generated during the exhaustive
search is 351 124. The distribution of the packing fractions
is shown in Fig. 5(b). The number of structures having the
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FIG. 6. The updating history of packing fractions during the ex-
haustive search. (a) The updating history for 14-5 system; the unit
cell contains 14 small spheres and five large spheres. The radius ratio
is α = 0.445. (b) The updating history for 16-4 system; the unit cell
contains 16 small spheres and four large spheres. The radius ratio is
α = 0.455.

packing fraction between 0.6850 and 0.6875 is 24 303 and the
largest. On the other hand, the number of structures having
the packing fraction between 0.7575 and 0.7600 is only eight.
The result also indicates that our method can find the densest
packings from the vast coordination space. Figure 6(b) shows
the updating history of the packing fraction. The densest struc-
ture with the packing fraction of 0.759629 is generated at the
51 097th step.

IV. METHOD FOR PHASE DIAGRAM

In the previous sections, we have already discussed the
details of our methods implemented in SAMLAI and the
numerical aspects. In this section, we discuss how the phase
diagram for DBSP is constructed with SAMLAI.

A. Exhaustive search conditions

To determine the densest phase separation at each composi-
tion ratio x and each radius ratio α, first the monophase DBSPs
have to be identified at each (x, α).

To identify the monophase DBSPs at each (x, α), up to one
million structures are generated with SAMLAI. We terminate
the exhaustive search when the highest packing fraction is not
updated 200 000 or 300 000 times, and regard the structure
with the highest packing fraction as putative densest packing.

The radius ratio α is changed by a step of 0.02 in the range
of 0.20 � α � 0.64 while the radius ratio is changed by a
step of 0.005 in the radius range of 0.42 � α � 0.50. In total,
the 35 radius ratios are investigated in the construction of the
phase diagram.

The number of spheres in the unit cell is set between six
and 24 while the number of spheres in the unit cell is set
between 12 and 32 in the radius range of 0.42 � α � 0.50.
Under the condition, all possible compositions are investi-
gated with the constraint that the number of small spheres is
equal to or larger than that of large spheres. In the former case,
there are 138 compositions and in the latter case there are 220
compositions, respectively. In general, the number of possible
compositions is n2/4 if the maximum number of spheres is set
to n, where n is an even number and the minimum number of
spheres is set to two.

The optimization parameters are set to the default as dis-
cussed in Sec. III A.

B. Reoptimization

Almost all of the generated structures have an overlap of
about 10−7 to 10−6. Therefore, packing fractions may have
an error on the sixth digit. In addition, the highest packing
fraction may not be found due to a large number of local
minima. Therefore, putative densest packings have to be re-
optimized for determining the highest packing fractions with
high accuracy. In some cases, tens of thousand steps for the re-
optimization are necessary to find the highest packing fraction
from the huge number of local minima. The reoptimization
parameters are set to the defaults discussed in Sec. III D in
most cases. In many cases, the reoptimization does not update
the packing fractions while it updates the fourth digit and be-
yond of the packing fraction for cases that many local minima
exist.

C. Phase separation

As Hopkins et al. have shown, for any given composition
of m kinds of spheres, there is at least one phase separation
with the densest packing fraction that consists of two or
fewer structures when every structure is periodic [22]. We also
proved it in a way that seems more intuitive to us. The proof
is given in Appendix A. The densest phase separations are
determined from all possible phase separations.

V. RESULT

In this section, we describe the discovered 12 putative
DBSPs and the updated phase diagram. Next, we detail the
geometry of DBSPs. Finally, we discuss geometric features of
the monophase DBSPs.

A. Overview

We have discovered the 12 putative DBSPs and accord-
ingly updated the phase diagram over the x − α plane, where
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FIG. 7. The phase diagram in the radius ratio of 0.20 � α � 0.40. When the highest packing fraction is achieved by phase separation into
a DBSP � and the fcc densest packing consisting of small or large spheres, only the symbol of the DBSP � is plotted. On the other hand,
when the highest packing fraction is achieved by phase separation into two DBSPs, those two symbols are plotted together.

x is the relative concentration and α is the radius ratio of the
small sphere relative to the large sphere. The phase diagram
is shown in Fig. 7 for 0.20 � α � 0.40, Fig. 8 for 0.420 �
α � 0.500, and Fig. 9 for 0.52 � α � 0.64, respectively. On
the phase diagrams, 24 DBSPs are plotted. Some DBSPs are
not plotted, e.g., the (12-1) structure and the (9-4) structure,
because they appear in a very narrow region. For the case
of 12 or fewer spheres in the unit cell, our phase diagram
is consistent with the HST phase diagram [22] with a small
correction.

The XYn structures are defined as DBSPs in which large
spheres X constitute the fcc densest structure and the small
spheres Y penetrate into the tetrahedral and octahedral sites
constituted by X. If the XYn structures are excluded, there are
21 putative DBSPs. Most of those structures are named (m-n)
structures. A (m-n) structure contains m small spheres and n

large spheres. Their packing fractions are shown in Tables III–
V.

For binary systems, the highest packing fraction is gener-
ally achieved by phase separation into two or fewer densest
packings. When the highest packing fraction is achieved by
phase separation into a DBSP � and the fcc densest pack-
ing consisting of small or large spheres, only the symbol of
the DBSP � is plotted on the phase diagram. On the other
hand, when the highest packing fraction is achieved by phase
separation into two DBSPs, those two symbols are plotted
together on the phase diagram. For example, in the area of
0.30 � α � 0.34 and 6/7 < x, the highest packing fraction is
achieved by the phase separation into the (6-1) structure and
the fcc densest structure consisting of small spheres, and in
the area of 0.30 � α � 0.34 and 1/2 < x < 6/7 the highest
packing fraction is achieved by the phase separation into the
XY structure [22] and the (6-1) structure [22].

FIG. 8. The phase diagram in the radius ratio of 0.420 � α � 0.500. The rule in plotting symbols follows that explained in the caption of
Fig. 7.
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FIG. 9. The phase diagram in the radius ratio of 0.52 � α � 0.64. The rule in plotting symbols follows that explained in the caption of
Fig. 7.

For 0.20 � α � 0.40, the exhaustive search is conducted
for 11 radius ratios of 0.20, 0.22, 0.24, 0.26, 0.28, 0.30, 0.32,
0.34, 0.36, 0.38, and 0.40. The number of spheres in the unit
cell is set between six and 24. By the exhaustive search, we
have discovered six putative DBSPs: the XY12 structure, the
(22-1) structure, the (12-1) structure, the (20-1) structure, the
(8-2) structure, and the (2-1) structure. The XY12 structure and
the (22-1) structure appear on the phase diagram at α = 0.20
and 0.203. The (12-1) structure appears on the phase diagram
at α = 0.203; it can be understood as an extended XY12 struc-
ture. The (12-1) structure is not plotted on the phase diagram
of Fig. 7, because it appears in a very narrow region. The (8-2)
structure and the (20-1) structure appear on the phase diagram
at α = 0.26. The (8-2) structure is a distorted XY4 structure.
The (2-1) structure appears on the phase diagram at α = 0.28;
it is distorted XY2 structure.

For 0.420 � α � 0.500, the exhaustive search is con-
ducted for 17 radius ratios of 0.420, 0.425, 0.430, 0.435,
0.440, 0.445, 0.450, 0.455, 0.460, 0.465, 0.470, 0.475, 0.480,
0.485, 0.490, 0.495, and 0.500. The number of spheres in
the unit cell is set between 12 and 32. By the exhaustive
search, we have discovered five putative DBSPs: the (14-5)
structure, the (16-4) structure, the (8-4) structure, the (10-4)
structure, and the (9-4) structure. The (14-5) structure appears
on the phase diagram at the three radius ratios of α = 0.440,
0.445, and 0.450. The (16-4) structure appears on the phase
diagram at the three radius ratios of α = 0.450, 0.455, and
0.460. The (8-4) structure appears on the phase diagram at
α = 0.450 and 0.465 and it is isomorphic to the HgBr2 struc-
ture. The (10-4) structure appears on the phase diagram at
α = 0.480 and 0.481; it is isomorphic to the (5-2) structure.
The (9-4) structure appears on the phase diagram at the three
radius ratios of α = 0.481, 0.482, and 0.483. In addition, in
contrast to the HST phase diagram, there is a phase separa-
tion into the (7-3) structure [22] and the HgBr2 structure at
α = 0.470. Finally, the packing fractions of the AuTe2 struc-
ture [13,22] are found to be consistent with those of the (4-2)
structure [22]. Otherwise, the results are consistent with the
HST phase diagram [22].

For 0.52 � α � 0.64, the exhaustive search is conducted
for seven radius ratios of 0.52, 0.54, 0.56, 0.58, 0.60, 0.62,

and 0.64. The number of spheres in the unit cell is set between
six and 24. By the exhaustive search, we have discovered
one putative DBSP: the (12-6) structure. It is isomorphic to
the AlB2 structure [13,22]. Otherwise, our phase diagram is
consistent with the HST phase diagram [22].

In Secs. V B–V D, the densest packings in each radius
range are detailed.

B. Densest packings for 0.20 � α � 0.40

For 0.20 � α � 0.40, the exhaustive search is conducted
for 11 radius ratios of 0.20, 0.22, 0.24, 0.26, 0.28, 0.30, 0.32,
0.34, 0.36, 0.38, and 0.40. To confirm that the (12-1) structure
appears on the phase diagram, the XY12 structure, the XY11

structure, and the (22-1) structure are reoptimized at α =
0.203. The number of spheres in the unit cell is set between six
and 24. As a result, we have discovered six putative DBSPs:
the XY12 structure, the (22-1) structure, the (12-1) structure,
the (20-1) structure, the (8-2) structure, and the (2-1) structure.
Thereby, we update the phase diagram. For the case of 12 or
fewer spheres in the unit cell, our phase diagram is consistent
with that of the previous study [22] with a small correction.
The putative DBSPs already discovered are the XY structure
[22], the XY2 structure [22], the XY4 structure [22], the XY8

structure [22], the XY10 structure [22], the XY11 structure
[22], the (10-1) structure [22], the (11-1) structure [22], and
the (6-1) structure [22]. The (10-1) structure and the (6-1)
structure are shown in Fig. 10. In the radius ratio, large spheres
tend to be surrounded by many small spheres as the (10-1)
or (6-1) structures. On the phase diagram of Fig. 7, the XY8

structure, the XY11 structure, and the (11-1) are not plotted,
because they appear in the narrow region.

In this radius range, if the number of small spheres is small
enough, all small spheres can penetrate into the tetrahedral
and octahedral sites in the fcc densest structure constituted
by large spheres. In that case, the packing fraction can be
calculated as Eq. (17) even if the space is filled with phase
separations consisting of more than one XYn structure, be-
cause the volume of the voids in the fcc densest structure is
constant. Hence, phase separation into several XYn structures
only complicates the phase diagram. Therefore, in our phase
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FIG. 10. Two examples of putative DBSPs already identified on
the HST phase diagram in the radius ratio of 0.20 � α � 0.40 [22].
(a) The (10-1) structure; it is a distorted XY10 structure. (b) The (6-
1) structure; it can be understood as a clathrate structure. It is an
enlarged and distorted bcc structure consisting of the large spheres
surrounded by small spheres.

diagram, the densest phase separation is represented by the
XYn structure which contains the largest number of small
spheres. In other words, at each (α, x) only the XYn structure
which contains the largest number of small spheres is written
on our phase diagram.

In this subsection, first we present a small difference from
the HST phase diagram. Second, we present the discovered
six putative DBSPs. Four of them have extended unit cells
compared to the previous study [22].

1. Small difference from HST phase diagram

At α = 0.24 and 0.26, the (10-1) structure appears on
our phase diagram; the result is consitent with HST phase
diagram. It is a distorted and expanded XY10 structure. The
HST phase diagram also shows that in the area of 0.233 �
α � 0.245 and 4/5 � x � 10/11, the phase separation into
the XY10 structure and the XY4 structure is the densest, where
large spheres of XY10 are arranged as in a Barlow packing
with cubic symmetry but not in contact. We also found that
at α = 0.239, 0.240, and 0.242, the (10-1) structure becomes
an expanded XY10 structure with cubic symmetry. However,
at α = 0.236, our result shows that the (10-1) structure is
distorted without cubic symmetry. The result is inconsistent
with that of Hopkins et al. [22]. Table III shows the packing
fractions of the (10-1) structure at several radius ratios.

2. New putative densest sphere packings

In this section, we introduce the six putative DBSPs. Four
of them have extended unit cells compared to the previous
study [22].

The XY12 structure shown in Fig. 11(a) appears on
the phase diagram at α = 0.20 and the packing fraction
is 0.811567. All of the small spheres penetrate into the
tetrahedral and octahedral sites in the fcc densest structure
constituted by large spheres. A tetrahedral site is occupied by
one small sphere and an octahedral site is occupied by ten
small spheres.

FIG. 11. Six DBSPs discovered in the radius ratio of 0.20 � α � 0.40. (a) The XY12 structure appears on the phase diagram at α = 0.20
and the packing fraction is 0.811567. The unit cell contains 12 small spheres and one large sphere. (b) The (12-1) structure appears on
the phase diagram at α = 0.203 and the packing fraction is 0.811932. It can be understood as an extended XY12 structure. The unit cell
contains 12 small spheres and one large sphere. It is not plotted on the phase diagram of Fig 7 because it appears in a very narrow
region. (c) The (22-1) structure appears on the phase diagram at α = 0.20 and 0.203. The packing fraction is 0.813313 and 0.809182,
respectively. The unit cell contains 22 small spheres and one large sphere. (d) The (20-1) structure appears on the phase diagram at α = 0.26
and the packing fraction is 0.785154. The unit cell contains 20 small spheres and one large sphere. (e) The (8-2) structure appears on
the phase diagram at α = 0.26, and the packing fraction is 0.788345. The unit cell contains eight small spheres and two large spheres.
(f) The (2-1) structure appears on the phase diagram at α = 0.28 and the packing fraction is 0.765223. The unit cell contains two small spheres
and one large sphere.
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The (12-1) structure shown in Fig. 11(b) appears on the
phase diagram at α = 0.203 and the packing fraction is
0.811932. The structure can be understood as an extended
XY12 structure in one direction. An extended octahedral site is
occupied by a rectangle which consists of eight small spheres
with two small spheres inside the sides of the rectangle. It is
not plotted on the phase diagram of Fig. 7 because it appears
on the phase diagram in a very narrow region.

The (22-1) structure shown in Fig. 11(c) appears on the
phase diagram at α = 0.20 and 0.203. The packing fraction
is 0.813313 and 0.809182, respectively. The structure can be
understood as a distorted and expanded XY22 structure. We
have confirmed that at α = 0.16, the (22-1) structure becomes
the XY22 structure, while we did not confirm that at α = 0.16
how many small spheres at maximum can be placed in the
voids of densest fcc structure constituted by large spheres.

The (20-1) structure shown in Fig. 11(d) appears on
the phase diagram at α = 0.26 and the packing fraction
is 0.785154. The large spheres constitute a distorted face-
centered orthohombic lattice. The structure can be understood
as a clathrate structure. In this radius range, most of the
structures, e.g., XY12, (22-1), and (10-1), can be regarded as
clathrate structure.

The (8-2) structure shown in Fig. 11(e) appears on the
phase diagram at α = 0.26 and the packing fraction is
0.788345. The structure can be understood as a distorted XY4

structure without cubic symmetry. The HST phase diagram
shows that the phase separation into the XY4 structure and the
XY2 structure is the densest in the area of 0.258 � α � 0.264
and 2/3 � x � 4/5, where large spheres of XY4 are also
arranged as in a Barlow packing with cubic symmetry but not
in contact. We also find the expanded XY4 structure, however,
the packing fraction of the (8-2) structure is 0.000023 higher
than that of the expanded XY4 structure. Table III shows
the packing fractions of the (8-2) structure at several radius
ratios. At α = 0.261 and 0.264, the (8-4) structure is also
distorted.

The (2-1) structure shown in Fig. 11(f) appears on the
phase diagram at α = 0.28, while the HST phase diagram
shows that the phase separation into the XY2 structure and
the XY structure is the densest in the area of 0.275 � α �
0.278 and 1/2 � x � 2/3, where large spheres of XY2 are
arranged as in a Barlow packing with cubic symmetry but not
in contact. The discovered (2-1) structure can be understood
as a distorted XY2 structure without cubic symmetry. The
packing fraction of the structure is 0.765223. Table III shows
the packing fractions of the (2-1) structure at several radius
ratios. At α = 0.278, the (2-1) structure does not have a cubic
symmetry either.

C. Densest packings for 0.420 � α � 0.500

For 0.420 � α � 0.500, the exhaustive search is con-
ducted for 17 radius ratios of 0.420, 0.425, 0.430, 0.435,
0.440, 0.445, 0.450, 0.455, 0.460, 0.465, 0.470, 0.475, 0.480,
0.485, 0.490, 0.495, and 0.500. To confirm that the (9-4)
structure appears on the phase diagram, the (2-2) structure, the
(10-4) structure, the AuTe2 structure, and the (9-4) structure
are reoptimized at α = 0.481, 0.482, and 0.483. The number
of spheres in the unit cell is set between 12 and 32. As a result,

FIG. 12. The five putative DBSPs already identified on the
HST phase diagram in the radius ratio of 0.420 � α � 0.500 [22]:
(a) (6-6) structure, (b) HgBr2 structure, (c) (2-2) structure, (d) (5-2)
structure, and (e) (7-3) structure. The other two putative DBSP are
shown in Fig. 13.

we have discovered five putative DBSPs: the (14-5) structure,
the (16-4) structure, the (8-4) structure, the (10-4) structure,
and the (9-4) structure. Thereby, we update the phase diagram.
For the case of 12 or fewer spheres in the unit cell, our phase
diagram is consistent with that of the previous study [22] with
a small correction. The putative DBSPs already discovered are
the (6-6) structure [22], the HgBr2 structure [13,22], the (2-2)
structure [22], the (5-2) structure [22], and the (7-3) structure
[22] shown in Fig. 12, and the AuTe2 structure [13,22] shown
in Fig. 13.

In this subsection, first we present small modifications of
the HST phase diagram for the case of 12 or fewer spheres in
the unit cell. Second, we present the discovered five putative
DBSPs. Four of them have extended unit cells compared to
the previous study [22].

FIG. 13. (a) The AuTe2 structure [13,22] and (b) the (4-2) struc-
ture [22]. In our calculations, it turns out that the packing fractions
of the AuTe2 structure is equal to that of the (4-2) structure.
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FIG. 14. Five putative DBSPs discovered in the radius ratio of 0.420 � α � 0.500. (a) The (14-5) structure appears on the phase diagram at
the three radius ratios of α = 0.440, 0.445, and 0.450. The packing fractions are 0.764247, 0.765259, and 0.759972, respectively. The unit cell
contains 14 small spheres and five large spheres. (b) The (16-4) structure appears on the phase diagram at the three radius ratios of α = 0.450,
0.455, and 0.460. The packing fractions are 0.760246, 0.759629, and 0.759276, respectively. The unit cell contains 16 small spheres and four
large spheres. (c) The (8-4) structure appears on the phase diagram at α = 0.450 and 0.465. The packing fraction is 0.758885 and 0.755714,
respectively. The unit cell contains eight small spheres and four large spheres. The structure is isomorphic to the HgBr2 structure. (d) The
(10-4) structure appears on the phase diagram at two radius ratios of α = 0.480 and 0.481. The packing fractions are 0.746216 and 0.746246,
respectively. The unit cell contains ten small spheres and four large spheres. The structure is isomorphic to the (5-2) structure. (e) The (9-4)
structure appears on the phase diagram at the three radial ratios of α = 0.481, 0.482, and 0.483. The packing fractions are 0.746093, 0.746452,
and 0.746510, respectively. The unit cell contains nine small spheres and four large spheres. The structure does not appear on the phase diagram
of Fig. 8, because it appears in the narrow region.

1. Modifications of HST phase diagram

In our calculations, it turns out that the packing fractions
of the AuTe2 structure shown in Fig. 13(a) are equal to that
of the (4-2) structure [22] shown in Fig. 13(b), at all of the
radius ratios. The finding is inconsistent with the HST phase
diagram. We provide a rational explanation below of why they
should have the same packing fraction.

Both the AuTe2 structure and the (4-2) structure are com-
posed of triangular prisms with one small sphere. In the (4-2)
structure, the orientation of the triangular prisms changes
alternately. The triangular prism is distorted to increase the
packing fraction. If the small radius is less than 0.5 where the
large radius is 1, there are two kinds of triangular prisms. In
the (4-2) structure, different triangular prisms are pointing in a
different direction. An interface between those two triangular
prisms is a square made of large spheres; the length of one
side of the square is 2. One of the two small spheres in those
two triangular prisms contacts the four large spheres; the small
sphere is placed at the hollow in the center of the square.
In that case, the triangular prism including the small sphere
has two degrees of freedom in its direction, because the small
sphere is in the middle of the square. In other words, there are
two degrees of freedom of the arrangement on how to place
the other two large spheres which constitute the triangular
prism. These two degrees of freedom correspond to the AuTe2

structure and the (4-2) structure. The other triangular prism
has no freedom of the orientation if the small radius is less
than 0.5 because the small sphere is not placed in the middle
of the square. In conclusion, both the AuTe2 structure and the
(4-2) structure consist of the same triangular prisms, so they
have the same packing fraction.

Finally, on our phase diagram, the phase separation into the
HgBr2 structure and the (7-3) structures appear at the radius
ratio of α = 0.470. The result is inconsistent with the HST
phase diagram.

2. New putative densest sphere packings

In this section, we introduce the discovered five putative
DBSPs. Four of them have extended unit cells compared to a
previous study [22].

The (14-5) structure shown in Fig. 14(a) appears on the
phase diagram at α = 0.440, 0.445, and 0.450. The packing
fractions are 0.764247, 0.765259, and 0.759972, respectively.
The structure contains the 14-oligomer structures constituted
by small spheres. The local structures are embedded in the gap
among large spheres. A 14-oligomer structure consists of a
cubic constituted by eight small spheres and six small spheres
attached to each side of the cubic.

The (16-4) structure shown in Fig. 14(b) appears on the
phase diagram at α = 0.450, 0.455, and 0.460. The packing
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FIG. 15. Two of the three putative densest binary sphere pack-
ings already identified on the HST phase diagram in the radius ratio
of 0.52 � α � 0.64 [22]. (a) AlB2 structure. (b) A3B structure.

fractions are 0.760246, 0.759629, and 0.759276, respectively.
The structure consists of AlB2-type local structure and cubic
frameworks constituted by large spheres. A cubic framework
is occupied by an octahedron consisting of small spheres.

The (8-4) structure shown in Fig. 14(c) appears on the
phase diagram at α = 0.450 and 0.465. The packing fractions
are 0.758885 and 0.755714, respectively. Table IV shows the
packing fractions of the structure at several radius ratios. The
(8-4) structure is isomorphic to the HgBr2 structure, but as
shown in Table IV, the packing fractions of the (8-4) structure
are higher than those of the HgBr2 structure at some radius
ratios: α = 0.431, 0.434, 0.437, 0.440, 0.443, 0.445, 0.448,
0.463, and 0.465. At α = 0.450, the packing fraction of the
(8-4) structure is only 0.000002 higher than that of HgBr2;
however, in the radius range of 0.431 � α � 0.450, the (8-4)
structure is denser than HgBr2 structure. Therefore, it is likely
true that the (8-4) structure is denser than the HgBr2 structure
at α = 0.450.

The (10-4) structure shown in Fig. 14(d) appears on the
phase diagram at α = 0.480 and 0.481. The packing fractions
are 0.746216 and 0.746246, respectively. The structure is
isomorphic to the (5-2) structure but the packing fractions of
(10-4) structure are higher than those of (5-2) structure.

Finally, the (9-4) structure shown in Fig. 14(e) appears
on the phase diagram at the three radius ratios of α =
0.481, 0.482, and 0.483. The packing fractions are 0.746093,
0.746452, and 0.746510, respectively. The structure does not
appear on the phase diagram of Fig. 8 because it appears in
a very narrow region. The structure contains the (10-4)-type
local structure.

D. Densest packings for 0.52 � α � 0.64

For 0.52 � α � 0.64, the exhaustive search is conducted
for seven radius ratios of 0.52, 0.54, 0.56, 0.58, 0.60, 0.62, and
0.64. The number of spheres in the unit cell is set between six
and 24. As a result, we have discovered one putative DBSP,
named the (12-6) structure. The structure has an extended unit
cell compared to the previous study [22]. Thereby, we update
the phase diagram. For the case of 12 or fewer spheres in
the unit cell, our phase diagram is completely consistent with
that of the previous study [22]. The putative DBSPs already
discovered are the AuTe2 structure [13,22] shown in Fig. 13,
the AlB2 structure [13,22], and A3B structure [14,22], shown
in Fig. 15.

The (12-6) structure shown in Fig. 16 appears on the phase
diagram at α = 0.54 and 0.56. The packing fractions are

FIG. 16. The (12-6) structure appears on the phase diagram
at α = 0.54 and 0.56. The packing fractions are 0.780466 and
0.779098, respectively. The unit cell contains 12 small spheres and
six large spheres. The structure is a distorted AlB2 structure as well
as the AuTe2 structure.

0.780466 and 0.779098, respectively. The structure can be
understood as a distorted AlB2 structure as well as the AuTe2

structure. At these radius ratios, the AuTe2 structure and the
AlB2 structure have the same packing fraction; the equiva-
lence indicates that a large unit cell is necessary to realize an
optimal distortion for higher packing fractions. At the three
radius ratios of α = 0.58, 0.60, and 0.62, the (12-6) structure
and the AlB2 structure have the same packing fraction; how-
ever, if the unit cell is expanded, a distorted AlB2 structure
might appear on the phase diagram. Further investigation will
be in future work.

E. Geometric features of densest packings

The putative DBSPs consist of local structures with high
packing fraction. For example, the XYn structure is clearly
made up of a combination of local structures with high pack-
ing fractions: the tetrahedron and octahedron constituted by
large spheres. The same is true for the distorted XYn structure,
such as (2-1), (8-2), (10-1), (11-1), and (22-1) structures.
The same is also true for the (6-6) structure in which small
spheres penetrate into the octahedral sites in the distorted hcp
densest structure constituted by large spheres—similarly, the
AlB2 structure, the AuTe2 structure, and the (12-6) structure
consisting of the dense local structure in which a small sphere
is embedded in the center of a triangular prism consisting of
large spheres.

Some of the putative DBSPs are complex structures, es-
pecially for 0.42 � α � 0.50. Both the HgBr2 structure and
the (7-3) structure consist of equilateral triangular prisms and
parallelepiped hexahedrons. The (10-4) structure consists of
parallelepipedal hexahedrons and cubics constituted by large
spheres with five small spheres. The (16-4) structure consists
of an AlB2-type local structure and cubic frameworks con-
stituted by large spheres with an octahedron made of small
spheres. In the (14-5) structure, 14-oligomer structures con-
stituted by small spheres are embedded in the gap among
the large spheres. As discussed below, these local structures
also appear in monophase DBSPs that have lower packing
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FIG. 17. (a) The (14-8) structure at α = 0.44. It contains local
structures of a 14-oligomer structure of small spheres embedded in
the gap between the large spheres. Compared to the (14-5) structure,
there are wasted gaps in it. (b) The (11-6) structure at α = 0.48. It
contains (10-4)-type local structure. Compared to the (10-4) struc-
ture, there are wasted gaps in it.

fractions than the densest phase separations. The appearance
shows that those local structures are dense.

When space is filled with two kinds of spheres under pe-
riodic boundary conditions, the highest packing fraction is
achieved by phase separation into two or fewer packing struc-
tures. However, in the below discussion, we prohibit a phase
separation. Under the restriction, many monophase DBSPs are
obtained.

Monophase DBSPs also consist of some of the dense local
structures. The (14-8) structure is shown in Fig. 17(a). The
structure is the densest at (α, x) = (0.44, 14/22). The unit cell
contains 14 small spheres and eight large spheres. The struc-
ture contains 14-oligomer structures, which is the same local
structure in the (14-5) structure. The (14-8) structure contains
wasteful gaps compared to the (14-5) structure but the pres-
ence of the (14-5)-type local structure suggests that the local
structure is dense. The (11-6) structure is shown in Fig. 17(b).
The structure is the densest at (α, x) = (0.48, 11/17). The
unit cell contains 11 small sphere and six large spheres. The
structure contains the (10-4)-type local structure. The (11-
6) structure contains a wasteful gap compared to the (10-4)
structure but the presence of the (10-4)-type local structure
indicates that the local structure is dense.

Some of the monophase densest sphere packings are long-
period structures; those structures are phase separated into a
few local structures in the unit cell. We discuss the two exam-
ples as such cases. First, the (9-5) structure is shown in Fig. 18.
The structure is the densest at (α, x) = (0.46, 9/14). The unit
cell contains nine small spheres and five large spheres. It
consists of the HgBr2-type triangular prism phase and the

FIG. 18. The (9-5) structure at α = 0.46. This structure consists
of HgBr2-type triangular prism phase and (6-6)-type stacking phase.

FIG. 19. The (16-6) structure at α = 0.56. This structure consists
of an AlB2-type triangular prism phase and the remainder of a small
spheres.

(6-6)-type stacking phase. The appearance of the HgBr2-type
local structure indicates that the local structure is dense at
α = 0.46. Second, the (16-6) structure is shown in Fig. 19.
The structure is the densest at (α, x) = (0.56, 16/22). The
unit cell contains 16 small spheres and six large spheres.
It consists of the AlB2-type triangular prism phase and the
remainder of small spheres. The appearance of the AlB2-type
local structure indicates that the local structure is dense at
α = 0.56. The structural feature of the (16-6) structure
indicates that the highest packing fraction at (α, x) =
(0.56, 16/22) is achieved by phase separation into the AlB2

structure and the fcc densest structure constituted by small
spheres. In fact, our phase diagram shows that the highest
packing fraction at (α, x) = (0.56, 16/22) is achieved by the
phase separation into the (12-6) structure and fcc densest
packing of small spheres.

Those results show that all the monophase DBSPs are
made of a few local structures with high packing fractions.
The concept of dense local structures are very similar to the
compact packing; the concept is defined for disk packings
[37]. The compact packing corresponds to a structure in which
all the circles are in contact with the perimeter and the gaps
consist only of curvilinear triangles. It has been proved an-
alytically that there are 164 ternary compact packings [37].
A local structure with a high packing fraction in the three-
dimensional DBSPs may be regarded as an extended concept
of compact packing for three dimensions.

VI. DISCUSSION

In this section, we detail the complexity of local minima,
the effectiveness of our method, and the relationship between
crystals and DBSPs.

A. Complexity of local minima

Sometimes the number of local minima becomes large. In
this section, we discuss some representative examples, where
the complexity of local minima can be understood.

First, we analytically compute the packing fraction of the
HgBr2 structure [13,22] shown in Fig. 12(b). Hereafter, the
large radius is set to 1 and the small radius is set to r. The
structure contains equilateral triangular prisms constituted by
large spheres; the length of one side of the equilateral triangle
is 2 and the height of the sides of the triangular prism is h.
Small spheres are placed in the center of each side of the
triangular prism and one of them is inserted inside until it
touches the other two small spheres. We name the side K . In
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that case, h can be calculated as

h = 2
√

r2 + 2r. (18)

The HgBr2 structure also contains parallelepipedal hexahe-
drons. The bottom surface of the hexahedron is side K . One
of the large spheres contacts the four large spheres which
constitute the side K ; here we assume that the large sphere
does not overlap with the inserted small sphere. In that case,
the height of parallelepiped hexahedron l can be calculated as

l =
√

3 − h2

4
. (19)

The distance d between the large sphere and small sphere can
be calculated as

d =
√

3

2
−

√
4r2 − 1

4
+ l. (20)

The HgBr2 structure consists of two equilateral triangular
prism and one parallelepiped hexahedron, so the packing
fraction can be calculated as

φ = 2π (2 + 4r3)

3h
(√

3 +
√

3 − h2

4

) . (21)

If we set the small sphere radius r as 0.46, d and φ are
calculated as

d � 1.4606503, (22)

φ � 0.75900904. (23)

On the other hand, the packing fraction calculated by SAM-
LAI is 0.759011. This small difference comes from the slight
gap between small spheres; d is slightly larger than 1.46. The
gap allows the two small spheres placed in the center of the
sides of the equilateral triangular prism to penetrate slightly
into the interior of the triangular prism; the distortion allows a
slight increase in the packing fraction.

Second, the HgBr2 structure and the (7-3) structure [22]
shown in Fig. 12(e) are very similar. These two structures
consist of equilateral triangular prisms and parallelepiped hex-
ahedrons. The packing fraction is increased by small spheres
penetrating slightly into the interior of triangular prisms. The
parallelepiped hexahedron consisting of large spheres is nec-
essary for periodic penetrating. In the region where the radius

is getting larger, the (7-3) structure appears on the phase
diagram instead of the HgBr2 structure. This is because the
(7-3) structure has twice as many triangular prisms as HgBr2

structure; the connection of many triangular prisms is nec-
essary for small spheres to penetrate into gaps in triangular
prisms without making a wasted void between large spheres.

Third, the (10-1) structure [22] appears on the phase dia-
gram at the two radius ratios of α = 0.240 and 0.260. Table III
shows the packing fractions of the (10-1) structure at several
radius ratios. The (10-1) structure is an expanded or a distorted
XY10 structure so small spheres can penetrate into the gap
constituted by large spheres. The distortion pattern is varied
according to the radius ratio. At most radius ratios, the (10-1)
structure is distorted, but at α = 0.239, 0.240, and 0.242, it
becomes an enlarged XY10 structure whose symmetry is kept
Fm3m. We are surprised to find that the highly symmetric
structure appears again at those radius ratios. This suggests
that a delicate balance among the numerous distortion patterns
determines which one has the highest packing fraction.

As we have discussed, the packing fraction is increased by
distortions. Determining the maximum packing fraction be-
comes more difficult when the number of distortion patterns is
larger. In addition, the unit cell is also related to the difficulty
in determining the highest packing fraction.

Most of the densest packings are distorted; however, if
the distortions are adjusted, some structures become highly
symmetric and their unit cell could be reduced. For example,
the unit cell of the AuTe2 structure can be reduced to that
of the AlB2 structure [13,22] if the distortion of the AuTe2

structure is adjusted. The unit cell of the AlB2 structure and
the AuTe2 structure are shown in Figs. 20(a) and 20(b), re-
spectively. In the AuTe2 structure, the two large spheres in
the unit cell are not in the same plane, so the highest packing
fraction of the AlB2 structure cannot be larger than that of
the AuTe2 structure. Furthermore, even if the unit cell of the
AlB2 structure is expanded, the highest packing fraction of the
AuTe2 structure is not always achievable. This is a represen-
tative example that a unit cell places a limit on the maximum
packing fraction that can be reached. Hence, several isomor-
phic structures consisting of different unit cells need to be
optimized to determine the maximum packing fraction. This
is one of the main reasons why it is difficult to determine the
maximum packing fraction.

TABLE II. Correspondence between crystals and densest sphere packings.

Densest sphere packing type Crystal structure type Space group Material example

XY NaCl Fm3m NaCl, BaO, CeN
XY2, (2-1) KO2 I4/mmm KO2, CaO2, BaO2

XY10, (10-1) − Fm3m LaH10 [34]
(6-1) – Im3m YH6 [32]
(6-6) NiAs P63/mmc NiAs, FeSe, VP
(16-4) UB4 P4/mbm UB4, YB4, LaB4

(4-2) ThSi2 I41/amd ThSi2, BeGe2, SrGe2−δ [35]
(12-6), AuTe2, AlB2 AlB2 P6/mmm AlB2, ThSi2, SrGa2

(2-2) CaSi#AlTh Cmcm CaSi, AlTh, YSi
A3B Cu3Ti Pmmn Cu3Ti, Ni3Nb, Au3Sm
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FIG. 20. A representative example that the unit cell can be re-
duced by adjusting the distortion. (a) The unit cell of the AlB2

structure. (b) The unit cell of the AuTe2 structure. The two large
spheres in the unit cell are not in the same plane. The unit cell of the
AuTe2 is consistent with that of AlB2 structure when the distortion is
adjusted.

B. Effectiveness of iterative balance method

As discussed in the previous section, it is difficult to de-
termine the maximum packing fraction. However, not only
almost all the packing fractions calculated by our method
are the same as those shown in the previous study [22] by
more than three decimal points but also some of the packing
fractions have successfully been updated. The results indi-
cate that the iterative balance method can find the maximum
packing fraction. In addition, the computational time for the
structural optimization is very short, as discussed in Sec. III E.
The effectiveness enables us to find the densest packing from
the vast coordination space. Finally, as discussed in Sec. II C,
the implementation is straightforward since it requires only
simple calculations of forces and stress at each steepest de-
scent step. The validity indicates that the iterative balance
method might also be useful for the optimization of higher-
dimensional sphere packings.

C. Effectiveness of piling-up method

As discussed in Sec. III F, our method can create diverse
packing structures, so our method can discover a wide variety
of monophase densest packings from the vast coordination
space, as discussed in Sec. V E. The validity indicates that
the piling-up method is an effective way to generate initial
structures for predicting densest packings.

D. Public release of structural data and SAMLAI

Three-dimensional data of the DBSP and the SAMLAI
package, in which our methods are implemented, are available
online [38]. The distribution of the program package and the
source codes follow the practice of the GNU General Public
License version 3 (GPLv3).

E. Crystal structures and densest sphere packings

In some cases, atoms in crystals are approximated as
spheres: In ion-bonded materials such as NaCl [4], atoms
are often spherically symmetrical because atoms have closed-
shell structures due to the charge transfer. In intermetallic
compounds such as AgCu [5], atoms are also sometimes
spherically symmetrical due to the bonds formed by electrons
populating in s orbitals. In materials under high pressure,
distances between atoms become so close that the directional

orientation of the bond is weakened due to the strong repulsive
force by Pauli’s exclusion principle [6]. Therefore, we can
assume that many crystals can be understood as densest sphere
packings [4]. Then, we investigated the correspondence of
DBSPs with the crystal structures with reference to the space
groups. SPGLIB [39] is used for determining the space group
of a densest sphere packing. The distortions of DBSPs are
corrected by SPGLIB. As a result, we have succeeded in find-
ing many crystals corresponding to DBSPs, e.g., LaH10 [34]
and SrGe2−δ [35] synthesized under high pressure, YH6 [32]
predicted theoretically under high pressure, and NaCl; their
crystal structures correspond to the (4-2) structure [22], the
XY10 structure [22], the (6-1) structure [22], and the XY struc-
ture [22], respectively. In addition, the crystal structure of UB4

corresponds to the (16-4) structure. All of the correspondence
we find is shown in Table II. This correspondence indicates
that the densest sphere packings can be used effectively as
structural prototypes for searching complex crystal structures,
especially for high-pressure phases.

On the other hand, we could not find correspondence be-
tween crystals and the 15 DBSPs: XY4, XY8, XY11, XY12,
(8-2), (11-1), (12-1), (20-1), (22-1), (14-5), (8-4), HgBr2,
(7-3), (10-4), and (9-4). However, we consider that these struc-
tures can be realized by crystals, e.g., the (20-1) structure and
the (22-1) structure may be realized by hydrides. As discussed
in Sec. V E, the DBSPs consist of a few local structures with
high packing fractions. This is a different principle compared
to crystals, but it is apparently true that the volume of a
crystal structure is decreased as much as possible under high
pressure, so many of the densest packings may correspond to
crystals, especially for high-pressure phases.

VII. CONCLUSIONS

In the present research, we revisited the DBSPs under peri-
odic boundary conditions. To efficiently explore the densest
sphere packings, first we invented the piling-up method to
generate initial structures in an unbiased way; second, we
developed the iterative balance method to optimize the vol-
ume of a unit cell while keeping the overlap of hard spheres
minimized. The piling-up method was developed based on
the idea of stacking spheres randomly one by one on top of
a randomly generated first layer. It enabled us to search the
densest packings unbiasedly from the vast coordination space.
The iterative balance method was developed based on the
idea of repeating collision and repulsion among spheres under
pressure while the maximum displacement in position vectors
and lattice vectors was gradually decreased. The method not
only generates a dense, periodic packing of nonoverlapping
spheres but also predicts the maximum packing fraction with
high accuracy. Those two methods are implemented in our
open source program package SAMLAI.

With SAMLAI, we exhaustively searched the DBSPs by
extending the unit cell compared to a previous study [22] and,
as a result, we have discovered 12 putative DBSPs, named
XY12, (12-1), (22-1), (20-1), (8-2), (2-1), (14-5), (16-4), (8-4),
(10-4), (9-4), and (12-6), shown in Figs. 11, 14, and 16. Ac-
cordingly, we have updated the phase diagram over the x − α

plane, shown in Figs. 7–9. For the case of 12 or fewer spheres
in the unit cell, our phase diagram is consistent with that
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of the previous study [22] with a small correction. Through
the exhaustive search, diverse monophase DBSPs have been
discovered and accordingly we have found that high packing
fractions are achieved by introducing a distortion and/or com-
bining a few local dense structural units. Three-dimensional
data of DBSPs and the SAMLAI package are available
online [38].

If the XYn structures are excluded, there are 21 putative
DBSPs. Their packing fractions are shown in Tables . In some
cases, it is difficult to determine the maximum packing frac-
tion due to the large number of local minima corresponding to
the large number of distortion patterns. However, comparing
our results with those of the previous study [22], it is found
that in most cases the packing fractions are consistent by more
than three decimal points. Furthermore, some of the packing
fractions are 0.001 larger. The results indicate that our method
can identify the maximum packing fraction.

We examined the distribution and the update history of
highest packing fraction during the exhaustive search. As a
result, we have confirmed that diverse packing structures are
created and our method can find the densest packings from
diverse structures.

Furthermore, we have investigated the correspondence of
the DBSPs with crystals based on the space group. The result
shows that many structural units in real crystals, e.g., LaH10

[34] and SrGe2−δ [35] synthesized under high pressure, can
be understood as DBSPs. The correspondence implies that the
densest sphere packings can be used effectively as structural
prototypes for searching complex crystal structures, especially
for high-pressure phases.

APPENDIX A: PHASE SEPARATION

As Hopkins et al. have shown, for any given composition
of m kinds of spheres, there is at least one phase separation
with the densest packing fraction that consists of less than or
equal to m structures when every structure is periodic [22].
To present the paper in a self-contained manner, we provide
a proof based on basic feasible solutions which might pro-
vide another perspective in understanding multinary densest
sphere packings, while our proof is similar to that of Hopkins
et al. [22] in a sense that both proofs are based on linear
programming.

First, we fix the radius ratios of m kind of spheres. A set S
is a collection of periodic structures including m kinds of fcc
structures. The number of structures is s. The set S contains
one of the densest structures at each composition ratio. The
number of each sphere per unit cell of the structure k is given
by (nk1, · · · , nkm). When a composition ratio r = (r1, · · · , rm)
is realized by phase separation into s kinds of structures, we
have the following equations to be satisfied:

1 =
s∑

k=1

yk, (A1)

0 =
s∑

k=1

[r jNk − nk j]yk, (A2)

0 � yk, (A3)

where 1 � j � m − 1, Nk ≡ ∑m
l=1 nkl , and yk is defined as

yk ≡ bk∑s
i=1 bi

, (A4)

with bk being the number of unit cell of the structure k.
Equations (A1) and (A2) can be compactly written by intro-
ducing the matrix A = (a1, · · · , as) as⎛

⎝1
0
...

⎞
⎠ = Ay, (A5)

where ak is defined to be

aT
k ≡ (1, Nkr1 − nk1, · · · , Nkrm−1 − nk,m−1). (A6)

Under the constraints of Eqs. (A3) and (A5), The total packing
fraction φ,

φ =
∑

k yk vk φk∑
k yk vk

, (A7)

is maximized, where vk is the volume of unit cell of the
structure k and φk is the packing fraction of the structure k.

The basic feasible solutions {zp} of Eq. (A5) under
Eq. (A3) can be obtained as follows: Let {b(1), · · · , b(m)}
be subset from {1, · · · , n} and yi is set to zero if i /∈
{b(1), · · · , b(m)}. Under the condition, y is determined
uniquely if m-by-m submatrix Ab = (ab(1), · · · , ab(m) ) is in-
vertible. If all the components of the solution are not less than
zero, the unique solution is one of the basic feasible solutions.
Noting that the number of nonzero components of any basic
feasible solution is less than or equal to m, it is found that
the basic feasible solution corresponds to the phase separation
consisting of less than or equal to m different structures.

All feasible solutions y = (y1, · · · , ys) can be expressed as
a convex combination of basic feasible solutions,

y =
∑

p

wpzp, (A8)

because y is bounded [40,41]. Therefore, Eq. (A7) can be
rewritten as

φ = y · S
y · V

=
∑

p wpzp · S∑
k wpzp · V

, (A9)

where V = (v1, · · · , vn) and S = (v1φ1, · · · , vnφn). Introduc-
ing ṽp as

ṽp ≡ zp · V =
∑

l

ypl vl , (A10)

and φ̃p as

φ̃p ≡ zp · S
zp · V

=
∑

l ypl vl φl∑
l ypl vl

, (A11)

where zp = (yp1, · · · , ypn), we can rewrite Eq. (A9) as

φ =
∑

p wpṽpφ̃p∑
p wpṽp

. (A12)
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TABLE III. The packing fractions of the DBSPs in the radius ratio of 0.200 � α � 0.352. The XYn-type structures are excluded. Compared
to the HST phase diagram [22], the larger packing fractions are shown in bold and the smaller ones are shown in italics.

α (22-1) (12-1) (11-1) (10-1) (20-1) (6-1) (8-2) (2-1)

0.200 0.813313
0.203 0.809182 0.811932
0.206 0.805783 0.807009
0.209 0.801278 0.802364
0.212 0.797876 0.799775
0.214 0.796231 0.799418
0.217 0.794616 0.796801 0.822630
0.220 0.792056 0.794140 0.817957
0.223 0.790229 0.791817 0.814383
0.225 0.811122 0.824311
0.228 0.821822
0.230 0.820323
0.233 0.817962
0.236 0.815926
0.239 0.812289
0.242 0.807668 0.782166
0.245 0.803451 0.781966
0.247 0.800974 0.782001
0.250 0.797510 0.782303
0.253 0.794335 0.782890
0.256 0.791435 0.783738
0.258 0.789649 0.784441
0.261 0.787181 0.785285 0.786449
0.264 0.784959 0.783329 0.780418 0.780930
0.267 0.782973 0.778084 0.781892 0.775655
0.270 0.781213 0.773025 0.783601 0.770617
0.273 0.768679 0.785533 0.768293
0.275 0.766132 0.786941 0.767796
0.278 0.762136 0.789225 0.767489 0.767544
0.281 0.791710 0.764182
0.284 0.794388 0.761459
0.287 0.797252 0.759235
0.289 0.799263 0.757982
0.292 0.800869 0.756394
0.295 0.799598 0.755110
0.298 0.798549 0.754086
0.301 0.797714
0.304 0.797085
0.307 0.796654
0.309 0.796068
0.312 0.794900
0.315 0.793889
0.318 0.793034
0.321 0.791582
0.324 0.788239
0.326 0.786121
0.329 0.783107
0.332 0.780285
0.335 0.777650
0.338 0.775199
0.341 0.772928
0.343 0.771512
0.346 0.769533
0.349 0.767724
0.352 0.766084
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TABLE IV. The packing fractions of the DBSP in the radius ratio of 0.414 � α � 0.500. Compared to the HST phase diagram [22], the
larger packing fractions are shown in bold and the smaller ones are shown in italics while the packing fractions of the (7-3) structure are shown
normally.

α (16-4) (14-5) (10-4) (9-4) (8-4) HgBr2 (7-3) AuTe2 (6-6) (2-2)

0.414 0.793023
0.417 0.789534
0.420 0.785872
0.423 0.782347
0.426 0.778968
0.428 0.776794
0.431 0.755399 0.760930 0.760315 0.773646
0.434 0.758308 0.760710 0.759992 0.770629
0.437 0.761257 0.760455 0.759726 0.767739
0.440 0.764247 0.760144 0.759518 0.764971
0.443 0.757311 0.767278 0.759747 0.759365 0.762320
0.445 0.759701 0.765259 0.759348 0.759294 0.760616
0.448 0.760568 0.762049 0.759041 0.759035 0.758151
0.451 0.760101 0.758952 0.758830 0.758830 0.755793
0.454 0.759731 0.755967 0.758762 0.758762 0.753537
0.457 0.759456 0.753092 0.758825 0.758825 0.751380
0.460 0.759276 0.750298 0.759011 0.759011 0.749319
0.463 0.754469 0.757833 0.757814 0.750988
0.465 0.750732 0.755714 0.755701 0.751180
0.468 0.745076 0.752668 0.752668 0.751510
0.471 0.746408 0.743894 0.749796 0.749796 0.750015 0.741836
0.474 0.746249 0.744177 0.747076 0.747076 0.747831 0.740802 0.742356
0.477 0.746185 0.744854 0.744506 0.744506 0.745776 0.742471 0.742966
0.480 0.746216 0.745757 0.743866 0.744233 0.743661
0.481 0.746246 0.746093 0.743257 0.744840 0.743911
0.482 0.746287 0.746452 0.742661 0.745457 0.744170
0.483 0.746337 0.746510 0.742080 0.746084 0.744437
0.485 0.746468 0.746117 0.740956 0.747366 0.744997
0.488 0.746727 0.745626 0.749358 0.745898
0.491 0.751431 0.746869
0.494 0.753583 0.747907
0.497 0.755810 0.749010
0.500 0.758114 0.750174

If we choose φ̃1 as the highest among {φ̃k}, the packing frac-
tion φ can be rewritten as

φ = φ̃1 −
∑

p wpṽp(φ̃1 − φ̃p)∑
p wpṽp

. (A13)

Noting that φ̃p is the packing fraction of basic phase separa-
tion zp and all the basic feasible solutions possess the same
composition ratio of r, it turns out that the highest packing
fraction φ̃1 can be achieved by selecting the basic feasible
solution corresponding to φ̃1. Every basic feasible solution
consists of less than or equal to m structures, and therefore,
we have proved that for any given composition of m kinds of
spheres, the highest packing fraction can be achieved by the
densest phase separation that consists of less than or equal to
m structures. Note that the total densest packing fraction can
also be achieved by phase separation consisting of more than
m kind of structures if some basic feasible solutions have the
same highest packing fraction, as discussed in Ref. [22].

APPENDIX B: PACKING FRACTIONS

If the XYn structures are excluded, there are 21 putative
DBSPs. Their packing fractions are shown in Tables III–V.
The tables include all the radius ratio shown in Table I in
Ref. [22]. Comparing our results with those of the previous
study [22], it is found that in most cases the packing fractions
are consistent by more than three decimal points.

However, some of the packing fractions are 0.001 larger or
smaller. In Tables III–V, they are shown in bold or italics, re-
spectively. The difference between ours and those in Ref. [22]
might be due to rounding. The radius ratios shown in Table I
in Ref. [22] are rounded to the third decimal place while the
radius ratios shown in our paper is not rounded. The difference
means that we may use different radius ratios compared to the
previous study [22].

The packing fractions shown in the tables are determined
by reoptimization. When the number of local minima is small,
almost all the reoptimized structures converge to the densest
packing. On the other hand, when the number of local minima
is large, we obtain many packing fractions corresponding to

023307-20



DIVERSE DENSEST BINARY SPHERE PACKINGS AND … PHYSICAL REVIEW E 103, 023307 (2021)

TABLE V. The packing fractions of the DBSPs in the radius ratio of 0.537 � α � 0.64. Compared to the HST phase diagram [22], the
larger packing fractions are shown in bold and the smaller ones are shown in italics.

α AuTe2 AlB2 (12-6) A3B

0.537 0.780598 0.780598 0.780743
0.540 0.780217 0.780217 0.780466
0.543 0.779883 0.779883 0.780262
0.546 0.779595 0.779595 0.780130
0.549 0.779352 0.779352 0.780067
0.552 0.779154 0.779719
0.554 0.779046 0.779522
0.557 0.778922 0.779280
0.560 0.778841 0.779098
0.563 0.778804 0.778977
0.566 0.778808 0.778916
0.569 0.778856 0.778913
0.572 0.778944 0.778968
0.574 0.779027 0.779036
0.577 0.779184 0.779184
0.580 0.776382 0.776382
· · ·
0.612 0.748108 0.743387
0.614 0.746679 0.743268
0.617 0.744608 0.743174
0.620 0.742622 0.743180
0.623 0.740720 0.743285
· · ·
0.640 0.745690

diverse distortion patterns in the reoptimization process. This
is because many structures are trapped at local minima. In
that case, the large number of reoptimizations is necessary to
determine the highest packing fraction. In some cases, tens of
thousand of reoptimizations are necessary.

At the radius ratio α = 0.480, the packing fraction of the
(7-3) structure shown in Table I in Ref. [22] is in contradiction
with the HST phase diagram [22]. The HST phase diagram
shows that the packing fraction of the (7-3) structure is the
same as that of the phase separation into the (4-2) structure
and the (5-2) structure. However, Table I in Ref. [22] shows
that the packing fraction of the (7-3) structure is higher than
that of the (4-2) structure and the (5-2) structure. If the space
is filled with two structures, the packing fraction is not higher
than the denser packing fraction of the two. Our calculation
shows that the packing fractions of the (7-3) structure are less
than those of the (4-2) structure and the (5-2) structure. Of
course, we may be failing to discover the highest packing
fractions but we guess that they are less than those shown
in Table I in Ref. [22] at some radius ratios. Therefore, the
packing fractions of the (7-3) structure are shown normally in
Table IV.

APPENDIX C: DERIVATIVES OF THE ENTHALPY

In our method, lattice vectors and the position vectors
are simultaneously optimized by using the steepest descent
method. To apply the steepest descent method, we need to
calculate the derivatives of the enthalpy. In this section, we
explain how to derive the derivatives analytically.

First, we define matrix A as

A ≡

⎛
⎜⎝

a11 a21 a31

a12 a22 a32

a13 a23 a33

⎞
⎟⎠, (C1)

where a1, a2, and a3 are the lattice vectors. The x, y, and z
components of vector ai is written as ai1, ai2, and ai3, respec-
tively. Matrix C is defined as

C ≡

⎛
⎜⎝

a1 · a1 a2 · a1 a3 · a1

a1 · a2 a2 · a2 a3 · a2

a1 · a3 a2 · a3 a3 · a3

⎞
⎟⎠. (C2)

Hereafter, the position of sphere i is represented by ri and the
fractional coordinates are represented by qi = (qi1, qi2, qi3).
The relative fractional coordinate q(Q)

i j is defined as

q(Q)
i j ≡ q j + Q − qi, (C3)

where Q is defined as integer vector. The relative vector r(Q)
i j

is defined as

r(Q)
i j ≡ r j + T − ri = Aq(Q)

i j , (C4)

where T are translational vectors that satisfy the equation as
T = AQ. Taking the absolute value of Eq. (C4) leads to

r (Q)
i j ≡ |r j + T − ri| =

√
t q(Q)

i j Cq(Q)
i j . (C5)
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Finally, we define z(Q)
i j as

z(Q)
i j ≡ r (Q)

i j − (ci + c j ), (C6)

where ci is defined as the radius of the sphere i.
The potential working between spheres is defined as

Eq. (10) and the total energy per unit cell E is given by Eq. (9).
The enthalpy per unit cell H is given by

H = 1

2

∑
Q

N∑
i=1

N∑
j=1

U
(
z(Q)

i j

) + PV. (C7)

The volume V can be calculated as

V = |detA| = |a1 · (a2 × a3)|. (C8)

If we take the lattice vectors to a right-handed system, V can
be calculated as V = detA. We set the initial lattice vector to
the right-handed system.

The derivative of the enthalpy with respect to qik can be
calculated as

∂E

∂qik
=

∑
Q

N∑
j=1

∂r (Q)
i j

∂qik
· f

(
z(Q)

i j

)
, (C9)

where f (z(Q)
i j ) is defined as

f
(
z(Q)

i j

) ≡ ∂U
(
z(Q)

i j

)
∂z(Q)

i j

=
{−1 z(T )

i j � 0

0 0 < z(T )
i j

. (C10)

The derivative of r (Q)
i j with respect to qik can be calculated as

∂r (Q)
i j

∂qik
= − 1

r (Q)
i j

3∑
t=1

ckt q(Q)
i j,t . (C11)

The derivative of the enthalpy with respect to amn can be
calculated as

∂H

∂amn
= ∂E

∂amn
+ P

∂V

∂amn
. (C12)

The first term of Eq. (C12) can be calculated as

∂E

∂amn
= 1

2

∑
Q

N∑
i=1

N∑
j=1

∂r (Q)
i j

∂amn
· f

(
z(Q)

i j

)
, (C13)

where the derivative of r (Q)
i j with respect to amn can be calcu-

lated as

∂r (Q)
i j

∂amn
= 1

r (Q)
i j

3∑
s=1

asn q(Q)
i j,s q(Q)

i j,m. (C14)

The second term of Eq. (C12) can be calculated as

P
∂V

∂amn
= 1

2
P

∑
i, j

∑
k,l

εmi j εnkl aik a jl , (C15)

where εi jk is the Levi-Civita symbol.
If the neighboring list of each sphere is reused a few hun-

dred times, the lattice vectors accidentally may change from a
right-handed system to a left-handed system due to the spheres
slipping through each other. The slipping is a fatal accident for
structural optimization. The change causes a negative value
of 
 = detA, so we can confirm that a structure is normally
optimized by checking the sign of V .
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