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In this paper, a finite-volume discrete Boltzmann method based on a cell-centered scheme for inviscid
compressible flows on unstructured grids is presented. In the new method, the equilibrium distribution functions
are obtained from the circle function in two-dimensions (2D) and the spherical function in three-dimensions
(3D). Moreover, the advective fluxes are evaluated by Roe’s flux-difference splitting scheme, the gradients
of the density and total energy distribution functions are computed with a least-squares method, and the
Venkatakrishnan limiter is employed to prevent oscillations. To parallelize the method we use a graph-based
partitioning approach that also guarantees the load balancing. The method is validated by seven benchmark
problems: (a) a 2D flow pasting a bump, (b) a 2D Riemann problem, (c) a 2D flow passing the RAE2822 airfoil,
(d) flows passing the NACA0012 airfoil, (e) 2D supersonic flows around a cylinder, (f) an explosion in a 3D
box, and (g) a 3D flow around the ONERA M6 wing. The benchmark tests show that the results obtained by the
proposed method match well with the published results, and the parallel numerical experiments show that the
proposed parallel implementation has close to linear strong scalability, and parallel efficiencies of 95.31% and
94.56% are achieved for 2D and 3D problems on a supercomputer with up to 4800 processor cores, respectively.
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I. INTRODUCTION

After three decades of development, the standard lattice
Boltzmann method (SLBM), initially developed from lattice
gas automata [1], has become an alternative method for simu-
lating incompressible fluid flows. The major advantage and
main limitation of SLBM are that the method relies on a
uniform Cartesian grid. Because of the uniform Cartesian
grid, SLBM with different collision models [2] can achieve
second-order spatial-temporal accuracy, and its intrinsic par-
allelism makes it suitable for supercomputers with a large
number of processor cores. However, SLBM requires a high-
resolution grid near the body and the walls, which makes it
not suitable for practical engineering problems with complex
curved boundaries or strong local gradients. Therefore, many
versions of LBM on nonuniform grids have been developed,
such as curvilinear [3], structured [4], multiblock [5], lo-
cally refined, adaptive mesh refinement [6], unstructured grids
[7–9], and overlapping grids [10,11]. In this work, we focus
on unstructured grids in two and three dimensions.

For incompressible flows, there are several approaches
for unstructured grids. For example, Misztal et al. analyzed
the standard forward Euler method and the operator splitting
method on unstructured grids and proved that their cell-
vertex finite-volume method (FVM) yields the Navier-Stokes
equations by means of Chapman-Enskog expansion [12].
Li and Luo proposed a cell-centered finite-volume discrete
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Boltzmann method (FVDBM) [13,14] with the multiple-
relaxation-time collision model on arbitrary grids for the
efficient treatment of complex geometries [15]. Later, they
devised a fully implicit FVDBM on arbitrary grids, and
the corresponding linear system is solved by the block
lower-upper symmetric-Gauss-Seidel algorithm [16]. Chen
and Schaefer proposed a simple unified Gdounov-type up-
wind approach that does not need a Riemann solver for
the face flux calculation on an unstructured cell-centered
triangular grid [17]. To increase the temporal accuracy of
solution and reduce the computational time, they also pro-
posed an implicit Bhatnagar-Gross-Krook (BGK) collision by
a semi-Lagrangian approach [18]. Di Ilio and his cowork-
ers merged SLBM with FVDBM for simulating the flow
with sharp features on an overlapping grid system, consist-
ing of a uniform lattice nodes and a coordinate-free lattice
structure [10,11].

However, for compressible flows there are quite a few
difficulties. In SLBM for incompressible flows, a Taylor-
series expansion of the Maxwellian function in terms of the
Mach number is used to obtain a lattice Boltzmann version
of the polynomial form, which inevitably limits the range
of the Mach number. To simulate compressible flows, sev-
eral modifications have been proposed. Alexander et al. [19]
and Qian [20] proposed a multispeed (MS) approach that
is a straightforward extension of SLBM with a low Mach
number and contains nonlinear error terms in the macro-
scopic equations after the Chapman-Enskog expansion. Chen
et al. [21] found that the particle distribution functions should
contain high-order terms to eliminate the nonlinear terms
and obtain the correct momentum flux and the heat flux to
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derive the macroscopic equations. Following Chen’s work,
Watari and Tsutahara [22] proposed a new truncated form of
the Maxwellian distribution function with excellent numeri-
cal stability and more accurate simulations. Yan et al. [23]
proposed a 2D LBM with three energy levels on a square
lattice for the compressible Euler equations. Shi et al. [24]
constructed a D2Q9 lattice for the compressible Euler equa-
tion by allowing the particles to possess both kinetic and
thermal energies, and they used Harten’s minmod total vari-
ation diminishing (TVD) finite difference scheme to solve
the discrete velocity Boltzmann equation (DVBE) [25]. To
simulate high-speed compressible flows, Sun et al. [26,27]
presented a locally adaptive LBM in which a simplified equi-
librium distribution function is used to replace the Maxwellian
distribution function and a very large particle-velocity set is
incorporated to enable greater variation in the mean velocity.
This model can efficiently handle flows over a wide range
of Mach numbers and capture shock waves. However, the
lattices can no longer stream from one node to another, and
a reconstruction is needed to obtain the values on the nodes.
He et al. first proposed the double distribution function (DDF)
model by adding an internal energy distribution function [28],
and this model involves complicated gradient terms about the
macroscopic flow variables. Guo et al. proposed a decou-
pled DDF model by introducing a total energy distribution
function to replace He’s internal energy distribution function
[29]. Li et al. proposed a coupled DDF model with a flexi-
ble specific-heat ratio and Prandtl number. In their method,
a particle distribution function based on the D2Q12 lattice
is used to recover the compressible continuity and momen-
tum equations, and an energy distribution function is used
to recover the compressible energy equation [30]. Qu et al.
[31] developed a 2D model for inviscid compressible flows
using the D2Q13L2 lattice velocity model. They replaced the
Maxwellian distribution function with a circular function. A
Lagrangian interpolation polynomial was proposed to con-
struct the equilibrium distribution function, and the DVBE
was solved by a second-order TVD FVM. Based on Qu’s
work, Li et al. [32] presented a potential energy DDF model
that remains part of the MS approach. To simulate three-
dimensional compressible flows, Li and He et al. extended the
circular function in 2D to a spherical function in 3D [33]. Qiu
et al. compared two 3D lattice velocity models of compress-
ible flows with different particle distribution functions and
total energy distribution functions [34]. Besides these, a DDF
thermal LBM was proposed by Feng and his coworkers by
expanding the distribution functions with the Grad’s moment
expansion approach in terms of Hermite polynomials [35,36].
Saadat et al. presented a DDF LBM on standard lattices
discretizing phase space through direct matching of moments
[37,38]. Recently, a novel class of shifted lattices is developed,
which improves the operating range of lattice Boltzmann sim-
ulations [39,40]. In this paper, the DDF kinetic equations for
compressible flows are used to obtain the particle and total en-
ergy distribution functions, and the D2Q13 and D3Q25 lattice
velocity models are employed to discretize the circular func-
tion in 2D and spherical function in 3D, respectively. Then,
a second-order FVM on unstrutured grids and a Runge-Kutta
scheme are used to discretize the spatial and temporal terms,
respectively.

Although a lot of research has been carried out on
parallel SLBM algorithms in homogeneous [41–43] and het-
erogeneous [44,45] environments, there has not been any
development of parallel methods for compressible flows on
unstructured grids. In this paper, to reduce the compute time
and solve large-scale problems, we introduce a scalable paral-
lel FVDBM for compressible flows on unstructured grids, and
the parallel performance of the algorithm is carefully studied
on a supercomputer with up to 4800 processors. Using seven
benchmark problems, we show that nearly ideal speedup can
be achieved for both 2D and 3D problems.

The rest of the paper is organized as follows. In Sec. II,
the DDF kinetic equations for inviscid compressible flows are
described. Section III introduces a new cell-centered FVM on
unstructured grid. A parallelization strategy for the algorithm
is given in Sec. IV. Some computational results for seven
benchmark problems are presented in Sec. V. The parallel
performance of the algorithm is discussed in Sec. VI. Finally,
brief conclusions are summarized in Sec. VII.

II. COUPLED DOUBLE-DISTRIBUTION FUNCTION
FOR INVISCID COMPRESSIBLE FLOWS

The coupled DDF LBM has two discrete Boltzmann BGK
equations for the particle and the total energy distribution
functions [29,30,34]

∂ fα (x, t )

∂t
+ (eα · ∇) fα (x, t ) = − 1

τ f

[
fα (x, t ) − f eq

α (x, t )
]
,

(1)

∂hα (x, t )

∂t
+ (eα · ∇)hα (x, t )

= − 1

τh

[
hα (x, t ) − heq

α (x, t )
]

+ 1

τh f
(eα · u)

[
fα (x, t ) − f eq

α (x, t )
]
, (2)

where fα and hα are the particle and total energy distribution
functions at the point x and time t in the αth direction of
the lattice velocity eα , respectively. f eq

α and heq
α are the cor-

responding equilibrium distribution functions. τ f and τh are
the particle and total energy relaxation times, respectively. u
is the macroscopic flow velocity, and τh f is defined as

τh f = τhτ f

τ f − τh
.

The equilibrium distribution functions of the particle and total
energy should satisfy the following velocity moment condi-
tion in order to recover the compressible Euler equations:

∑
α

f eq
α = ρ,

∑
α

f eq
α eαi = ρui,

∑
α

f eq
α eαieα j = ρuiu j + pδi j,

∑
α

f eq
α eαieα jeαk = ρuiu juk + p(ukδi j + u jδik + uiδ jk ),
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∑
α

heq
α = ρE ,

∑
α

heq
α eαi = (ρE + p)ui,

∑
α

heq
α eαieα j = (ρE + 2p)uiui + p(E + RT )δi j,

where ρ is the density, p = ρRT is the pressure, R is the
specific gas constant, T is the temperature, E = bRT

2 + u2

2 is
the total energy, and b = 2

γ−1 is a constant calculated from
the specific heat ratio γ . i, j, and k denote the components of
the x, y, and z directions. δi j , δik , and δ jk are the Kronecker
delta functions. The Prandtl number is defined by Pr = τ f

τh
.

Because the equilibrium distribution functions are derived
from the low-Mach-number expansion of the Maxwellian
function, LBM has difficulty in simulating high-speed com-
pressible flows. Qu et al. presented a scheme to construct
a lattice Boltzmann model without the assumption of a low
Mach number [46]. The Maxwellian function is replaced by a
simple circular function in their scheme, and the equilibrium
distribution functions are constructed by Lagrangian interpo-
lation polynomials to assign the circular function to a D2Q13
lattice velocity model [see Fig. 1(a)]. Based on Qu’s work,
Li et al. extended the scheme and proposed a D3Q25 lattice
velocity model [see Fig. 1(b)] for the 3D cases by replacing
the Maxwellian function with a spherical function [33]. The
discrete velocity model can be expressed as

e =
(

0 1 0 −1 0 1 −1 −1 1 2 0 −2 0
0 0 1 0 −1 1 1 −1 −1 0 2 0 −2

)
× c

in 2D and

e =
⎛
⎝0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0 2 −2 0 0 0 0

0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1 0 0 2 −2 0 0
0 0 0 0 0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 −1 1 0 0 0 0 2 −2

⎞
⎠ × c

in 3D, where c = √
dRTc, Tc is the characteristic temperature,

and d is the spatial dimension. The total energy equilibrium
distribution function heq

α can be calculated by the particle
distribution function f eq

α with the following equation:

heq
α = [E + (eα − u) · u] f eq

α + �α

p

c2
RT,

where

�α =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, α = 0,

− 1
3 , α = 1–4,
1
4 , α = 5–8,

1
12 , α = 9–12,

in 2D [30] and

�α =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, α = 0,

− 5
14 , α = 1–6,

1
7 , α = 7–18,

1
14 , α = 19–24,

in 3D [34]. The macroscopic variables (density ρ, velocity
u, total energy E , internal energy e, and pressure p) can be
calculated by ∑

α

fα = ρ,

∑
α

fαeα = ρu,

∑
α

hα = ρE ,

e = E − u2

2
,

p = (γ − 1)ρe. (3)

III. A FINITE-VOLUME DISCRETIZATION OF THE
DISCRETE VELOCITY BOLTZMANN BGK EQUATIONS

ON UNSTRUCTURED GRIDS

In this section we first present the formulation of the finite-
volume discrete Boltzmann scheme. The DVBE based on (1)
and (2) can be rewritten as

∂

∂t
gα (x, t ) + (eα · ∇)gα (x, t ) = 	gα (x, t ), (4)

where g = f , h, 	 f α = − 1
τ f

( fα − f eq
α ), and 	hα = − 1

τh

(hα − heq
α ) + 1

τh f
(eα · u)( fα − f eq

α ).
We divide the fluid domain into many nonoverlapping

polygons in 2D or polyhedrons in 3D, which are called control
volumes (CVs) [47,48]. Figure 2 shows a schematic of the
FVM with a cell-centered scheme. The geometric centroid i
stores the distribution functions and macroscopic variables.
The outward normal unit vector of the interface shared by cell
i and j is ni j (from cell i to cell j), whose face area is denoted
as li j . Take the integration over cell i for both sides of (4),
and then the Gauss theorem is used to transform the volume
integrals of the advective term into boundary integrals, which
yields

∂

∂t

∫
Vi

gα (x, t )dV +
∮

∂Vi

(eα · n)gα (x, t )dl =
∫

Vi

	gαdV, (5)

where Vi denotes the cell volume of cell i, ∂Vi is the boundary
of cell i, and n is the outward unit vector, locally normal to ∂Vi.
The distribution function at the centroid of the cell i is defined
by gαi(t ), which is assumed to denote the cell-averaged value,

gαi(t ) = 1

Vi

∫
gα (x, t )dV. (6)
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FIG. 1. Lattice velocity model in 2D and 3D. (a) D2Q13 and
(b) D3Q25.

Equation (5) can be rewritten in a semidiscrete form as

d

dt
gαi(t ) = Aαi + Cαi,

where

Cαi = −
∫

Vi

	gαdV, (7)

and

Aαi = − 1

Vi

∮
∂Vi

G(gαi )dl, (8)

where Cαi and Aαi denote the collision and advection of par-
ticles, respectively. G(gα ) = (eα · n)gα is the flux density of
gα across the cell interface. Since the distribution function
gα is taken as the cell-averaged value in (6) and (7) can be

FIG. 2. Cell-centered scheme on unstructured grids in 2D (a) and
3D (b).

calculated by

Cαi =
∫

Vi

	gα (gα )dV = 	gα (gαi ). (9)

Equation (8) can be discretized along the cell faces belonging
to the cell boundary ∂Vi,

Aαi = − 1

Vi

Ns∑
j=1

G(gαi j )li j, (10)

in which gαi j is the value at the cell interface. Based on the
right-hand side of (10), the values of the cell interface need to
be reconstructed within Vi, and the flux density G is computed
along the cell interface. Roe’s flux-difference splitting scheme
is employed to evaluate the advective fluxes at the face of
the CV from the left and right states by solving the Riemann
problem [49]. This scheme can be expressed as

G(gαi j ) = 1
2

[
G

(
gL

α

) + G
(
gR

α

) − |α(i j)|(gR
α − gL

α

)]
, (11)

where the factor |α(i j)| is the scaled characteristic speed,
which is taken to be equal to the scaled microscopic veloc-
ity normal to the cell interface, eα · ni j ; and gL

α and gR
α are

the left and right distribution functions, respectively. The left
and right states of the interface are reconstructed by a piece-
wise linear reconstruction, which assumes that the distribution
function is piecewise linearly distributed over the CV. This can
be written as

gL
α = gαi + 


g
αi(∇gαi · rL ),

gR
α = gα j + 


g
α j (∇gα j · rR),

(12)
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where rL and rR point from the cell centroid to the face
midpoint, ∇gαi and ∇gα j are the gradients of gα at the cell
centroid i and j, and 


g
αi and 


g
α j are limiter functions. The

gradient of gαi is computed by the inverse distance weighted
least-squares method [50]. On an unstructured grid, the lim-
iters are applied to reduce the gradients, which can prevent
the generation of oscillations. The Venkatakrishnan limiter
[51,52] is widely used due to its superior convergence proper-
ties. It reduces the reconstructed gradient ∇gαi by the factor
[47]


αi = min j

⎧⎪⎪⎨
⎪⎪⎩

1
�2

[
(�2

1,max+ε2 )�2+2�2
2�1,max

�2
1,max+2�2

2+�1,max�2+ε2

]
if �2 > 0,

1
�2

[
(�2

1,min+ε2 )�2+2�2
2�1,min

�2
1,min+2�2

2+�1,min�2+ε2

]
if �2 < 0,

1 if �2 = 0,

(13)

where

�2 = ∇gαi · rL,

�1,max = gmax − gαi,

�1,min = gmin − gαi.

Here gmax and gmin are the maximum and minimum values of
all neighboring cells, including the cell itself.

In the rest of this section, we discuss a time marching
method. The second-order Runge-Kutta method is employed
to discretize the temporal term. Let gn

αi and gn+1
αi be the distri-

bution functions at time levels t n and t n+1, respectively. The
semidiscretization of (4) can be written as

gn+1
αi = gn

αi + �t

(
1

2
Kg

αi1 + 1

2
Kg

αi2

)
, (14)

Kg
αi1 = Ag

αi + Cg
αi, Kg

αi2 = (
Ag

αi + Cg
αi

)|g∗
αi=gn

αi+�tKg
αi1

, (15)

where �t = t n+1 − t n is the time-step size. The Courant-
Friedrichs-Lewy (VCFL) criterion is given by [7]

�t = VCFL
Vmin

(|e|max + |u|max)
(
lx
min + ly

min

) ,

where Vmin is the minimal cell volume in the domain, |u|max is
the magnitude of the maximum macroscopic velocity at each
time step in the computational domain, and lx

min and ly
min are

the projected lengths of the minimal volume cell in the x and
y directions, respectively. The value of the VCFL criterion is set
to be 0.4 in this paper.

For the boundary conditions, the ghost cell method
[47,48] and the nonequilibrium extrapolation scheme [53] are
adopted. Figure 3 shows a boundary cell ABC with its centroid
Ci and the edge AB lies on the boundary. The ghost cell ABC′
with centroid C′

i is the reflective image about the boundary
edge AB. To deal with the subsonic and supersonic inlet and
outlet boundaries, the values of the macroscopic variables ρ,
u and E at the centroid C′

i are given on the boundries. For
the Neumann boundary condition, the macroscopic variables
at the centroid C′

i are assumed to be equal to the values at the
centroid Ci. On the slip wall, the density ρ and the total energy
E at the centroid C′

i are taken as the values at the centroid Ci,
and the velocity at the centroid C′

i is calculated by reflecting
the velocity vector at the centroid Ci, which can be written as

u(C′
i ) = u(Ci ) − 2(u(Ci ) · n)n.

FIG. 3. Illustration of the ghost cell method.

Both the particle distribution functions and the total energy
distribution functions at the centroid Ci and C′

i can be divided
into two parts: equilibrium part and nonequilibrium part

fα (C′
i ) = f eq

α (C′
i ) + f neq

α (C′
i ),

hα (C′
i ) = heq

α (C′
i ) + hneq

α (C′
i ).

f eq
α (Ci ) and heq

α (C′
i ) are obtained based on the macroscopic

variables at the centroid C′
i and f neq

α (C′
i ) and hneq

α (C′
i ) are

approximated by f neq
α (Ci ) and hneq

α (Ci), respectively. Then
fα (C′

i ) and hα (C′
i ) can be calculated by

fα (C′
i ) = f eq

α (C′
i ) + f neq

α (Ci ), (16)

hα (C′
i ) = heq

α (C′
i ) + hneq

α (Ci ). (17)

FIG. 4. An example of the unstructured grid (a) for the flow
simulation around the NACA0012 airfoil and its partition (b) for
parallel computing. Different colors denote different subdomains.
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Algorithm 1. Parallel FVDBM for compressible flows.

Input: The unstructured grid, initial macroscopic conditions, boundary conditions, the number of MPI processes;
Output: Simulation results;
Start the simulation:
1: A processor reads the grid file;
2: Decompose the grid parallelly using ParMETIS, and distribute the subdomains to the corresponding processors;
3: Each processor generates the ghost cells, computes the grid information, and allocate buffers to send and receive data;
4: Initialize the macroscopic variables ρ, u, E , the distribution functions gαi;
5: repeat
6: Transfer the distribution functions of the outermost cells in a subdomain to the neighboring processors;
7: Deal with the boundary conditions on (16) and (17);
8: for all faces in the unstructured grid do
9: Based on the least-squares method, compute the gradients ∇gαi and ∇gα j for the left cell i and the right cell j;
10: Calculate the limiters 
αi and 
α j based on (13);
11: Reconstruct the left and right states gL

α and gR
α of the face with (12);

12: Obtain the flux density G(gαi j ) according to (11), and then update the advective flux Ag
αi and Ag

α j ;
13: end for
14: for all cells in the unstructured grid do
15: Execute the collision term Cαi on the basis of (9);
16: Update the macroscopic variables ρ, u and E in accordance with (3);
17: end for
18: For all cells, calculate Kg

αi1 and g∗
αi based on (15);

19: Repeat 6–17 to compute Kg
αi2 in (15);

20: Update the distribution functions with (14);
21: Until the stopping conditions are satisfied;
22: Output the simulation results.

IV. A PARALLELIZATION STRATEGY FOR THE
PROPOSED ALGORITHM

To parallelize the proposed algorithm, the unstructured grid
must be decomposed into N subdomains (N is the number
of processor cores of the parallel computer). In our work,
ParMETIS [54] is used to partition the unstructured grid
which is regarded as a graph whose vertices are cells of the
grid. Figure 4 shows an example of the grid for the simulation
of flows around the NACA0012 airfoil and its partition into
eight subdomains using ParMETIS. Note that the shapes of
the subdomains are different, but all the subdomains have
nearly the same number of grid cells, and thus the compu-
tational load is well balanced. One of the reasons for the
different shapes is that the grid is nonuniform with finer grid
cells near the airfoil. In this paper, the algorithm is imple-
mented using DMPlex in the open source package PETSc
[55]. In the FVDBM, most operations are local except the
calculation of the advective fluxes, which requires the distri-
bution functions of the neighboring cells, each processor core
has to send and receive the values of the distribution functions
in the outermost cells. Moreover, before the calculation of
advective fluxes, the processor must exchange the particle dis-
tribution functions and the total energy distribution functions
with the neighboring processors, and a global synchronization
is needed until the data exchange is finished. The framework
of the parallel FVDBM for compressible flows is described in
Algorithm1. For the steady compressible flows, the stopping
conditions are

‖un+1 − un‖2

‖un‖2
� 10−6,

‖En+1 − En‖2

‖En‖2
� 10−5,

where un+1 and En+1 refer to the macroscopic velocity and
the total energy at the time t n+1, respectively. To compute the
norms in the stopping conditions, global communication and
synchronization are necessary.

V. NUMERICAL SIMULATIONS

In this section, we discuss some benchmark problems to
validate the proposed method. 7 benchmark problems are
considered: (a) a flow passing a bump in a channel, (b) a 2D
Riemann problem, (c) a flow passing the RAE2822 airfoil,
(d) flows passing the NACA0012 airfoil, (e) supersonic flows
around a cylinder, (f) an explosion in a 3D box, and (g) a flow
around the ONERA M6 wing. In all the numerical experi-
ments, the dimensionless form of the equations is used. There
are three independent reference variables for the normaliza-
tion including the reference density ρ0, the reference length
L0 and the reference internal energy e0. The other reference
variables are defined as

u0 = √
e0, t0 = L0

u0
,

where u0 is the reference velocity and t0 is the reference time
[31]. The reference internal energy e0 should be set to be
slightly higher than the maximum specific stagnation internal
energy to ensure that the circular function in 2D or spherical
function in 3D is located inside the lattice to avoid extrapola-
tion [31]. The specific-heat ratio and the Prandtl number are
set to be 1.4 and 0.71, respectively.
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FIG. 5. The setup of the flow simulation in the channel with a
circular bump, h = 0.1 is the height of the bump.

A. A flow passing a bump in a channel

In this experiment, a steady-state flow through the 2D
GAMM channel is simulated [56] (see Fig. 5). The chan-
nel has a circular bump with 10% height. The inflow
Mach number is M∞ = 0.675, and a computational grid
with 27 784 quadrangle cells is used. The top and bottom
walls are slip adiabatic boundaries, the left boundary is
the subsonic inlet, and the right boundary is the subsonic
outlet.

The Mach number contours are shown in Fig. 6, and the
Mach number profiles on the bottom wall are plotted in Fig. 7,

FIG. 6. Mach number contours (M∞ = 0.675).

which are in agreement with the results calculated by solving
Euler equations with WENO scheme [57].

B. A two-dimensional Riemann problem

The 2D unsteady Riemann problem is a popular bench-
mark. It consists of a square domain of width 1 and height
1. A homogeneous Neumann boundary condition is imposed
on four walls. In this experiment, the first configuration of the
work of Kurganov and Tadmov is considered [58]. The initial
conditions are given as

(ρ, u, v, p) =

⎧⎪⎨
⎪⎩

(1, 0, 0, 1) if 0.5 < x < 1 and 0.5 < y < 1,

(0.5197,−0.7259, 0, 0.4) if 0 < x � 0.5 and 0.5 < y < 1,

(0.1072,−0.7259,−1.4045, 0.0439) if 0 < x � 0.5 and 0 < y � 0.5,

(0.2579, 0,−1.4045, 0, 0.15) otherwise.

To simulate this flow, a grid with 11 603 nodes and 22 804
cells is used. The result is compared with the result obtained
by the shock capturing scheme [58] on a 400 × 400 uniform
grid. It can be seen in Fig. 8 that the shock of the density
contours (top figure of Fig. 8) is well computed by the present
method comparing with the bottom figure [58].

C. A flow passing the RAE2822 airfoil

In this experiment, a steady-state flow around the
RAE2822 airfoil is studied. The free stream Mach number
is M∞ = 0.75, and the angle of attack is α = 3◦. A grid
with 99 380 nodes and 98 406 quadrangle cells is employed.
As shown in Fig. 9, the outer boundary is approximately 30
times the chord length from the airfoil. A slip adiabatic wall
boundary condition is imposed for the airfoil. The subsonic
inlet and outlet conditions are given on the far-field boundary
and outflow boundary, respectively. The reference length is
set as the chord length. The pressure coefficient Cp can be
calculated by

Cp = p − p∞
1
2ρ∞u∞

, (18)

where ρ∞, u∞, and p∞ are the density, velocity, and pressure
of the flow at the far field. The pressure contours and pressure
coefficient profiles are shown in Fig. 10 and Fig. 11, respec-
tively. The squares in Fig. 11 are the results of Jameson’s
central scheme through the solution of Euler equations derived
by Meister [59]. Figure 11 shows that the results obtained by

our method agree well with the ones in Ref. [59], and the
shock wave is captured correctly.

D. Flows passing the NACA0012 airfoil

Three simulations are performed in this experiment to com-
pute the steady-state flows passing the NACA0012 airfoil with
different configurations including (1) M∞ = 0.63, α = 2◦; (2)
M∞ = 0.85, α = 1◦; and (3) M∞ = 0.8, α = 1.25◦. A grid

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
 x

0.2

0.4

0.6

0.8

1

1.2

1.4

 M
a

WENO
Present work

FIG. 7. Mach number along the top wall. WENO in the figure
refers to the result from Ref. [57].
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FIG. 8. Density contours of the 2D Riemann problem, t = 0.2.
(a) our result, (b) result in Ref. [58].

with 104 385 nodes and 103 400 quadrangle cells is used.
The boundary conditions are the same as the flow passing
the RAE2822 airfoil. The pressure contours of the first case
are shown in Fig. 12, and the comparison of the pressure

FIG. 9. The computational domain and boundary condition of a
flow around the RAE2822 airfoil.

FIG. 10. Pressure contours of flow around the RAE2822 airfoil
(M∞ = 0.75, α = 3◦).

coefficient profiles with the reference results are illustrated in
Fig. 13. For the second case, the pressure contours are given
in Fig. 14, and the comparison of the pressure coefficient
profiles with the results computed by means of solving the
Euler equations are shown in Fig. 15. Figure 16 and Fig. 17
show the pressure contours and the pressure coefficients of the
third case, respectively. It can be observed that all three cases
agree well with the results in Ref. [60].

E. Supersonic flows around a cylinder

Steady supersonic flows around a cylinder are computed in
this experiment. Two Mach number are considered as M∞ =
3, 5. A grid with 19 481 nodes and 19 200 cells is used, in
which the boundary is generated by [61]

x = −[Rx − (Rx − 1)ξ ]cos(θ (2η − 1)),

y = [Ry − (Ry − 1)ξ ]sin(θ (2η − 1)),

where Rx = 3, Ry = 6, θ = 5π
12 , ξ ∈ [0, 1], and η ∈ [0, 1].

The slip and adiabatic boundary conditions are applied on

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 x

-1.5
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-0.5

0

0.5

1

1.5

2

 -
C

p

Meister
Present wor k

FIG. 11. Cp of the flow around the RAE2822 airfoil (M∞ = 0.75,
α = 3◦). In the figure, Meister refers to the result published in
Ref. [59].
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FIG. 12. Pressure contours of the flow around the NACA0012
airfoil (M∞ = 0.63, α = 2◦).

the cylinder wall (η = 1), at the supersonic inlet we assume
η = 0, and the supersonic outlet boundary condition is ap-
plied at ξ = 0 and ξ = 1. The flows are initialized based on
the free-stream state. The pressure contours for two different
Mach numbers are plotted in Fig. 18, and the pressure profiles
along the central line are shown in Fig. 19 and compared with
the results obtained from a sixth-order compact-Roe scheme
with an adaptive filter by Visbal and Gaitonde [62]. The shock
wave is captured without spurious oscillations, and our pres-
sure profiles agree well with the reference data.

F. An explosion in a 3D box

In this experiment, an unsteady explosion in a 3D enclosed
box is considered. As shown in Fig. 20, the computational
domain is [0, 1] × [0, 1] × [0, 1]. The initial variables are set
as

(ρ, u, v,w, p) =
{

(5, 0, 0, 0, 5) if ‖x − 0.4‖2 � 0.3,

(1, 0, 0, 0, 1) others.

We assume all six boundaries are reflective. A spherical shock
wave expands in the enclosed box and interacts in a com-
plex manner as time goes. A grid with 155 873 nodes and
896 277 tetrahedrons is employed in our test. Some density

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1
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p
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FIG. 13. Cp of the flow around the NACA0012 airfoil (M∞ =
0.63, α = 2◦).

FIG. 14. Pressure contours of the flow around the NACA0012
airfoil (M∞ = 0.85, α = 1◦).

isosurfaces with ρ = 1.8 at t = 0.25, 0.375, 0.5 are shown in
Fig. 21 and compared with the results reported in Ref. [63]
using a block-structured adaptive mesh refinement method.
The density contours at z = 0.4 and t = 0.5 are illustrated in
Fig. 22. Good agreement is observed in the comparison of the
density contours with the results in Ref. [63].

G. A flow around the ONERA M6 wing

To further understand the proposed method for 3D prob-
lems with a complex geometry, we consider a steady transonic
flow around the ONERA M6 wing, in which same boundary
conditions as the flow passing the RAE2822 airfoil are im-
posed. The free stream Mach number is set at 0.8395, and the
angle of attack is taken as 3.06◦. The geometry is provided in
Ref. [64] and a grid with 144 117 nodes and 750 029 tetrahe-
drons is used for the simulation. Figure 23 shows the pressure
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FIG. 15. Cp of the flow around the NACA0012 airfoil (M∞ =
0.85, α = 1◦).
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FIG. 16. Pressure contours of the flow around the NACA0012
airfoil (M∞ = 0.8, α = 1.25◦).

coefficients, which indicate that the numerical results agree
well with the experimental measurements in Ref. [65].

VI. SCALABILITY TEST ON A SUPERCOMPUTER

In this section, we investigate the parallel scalability of the
proposed method on a computer using up to 4800 processor
cores. We consider two representative problems; one in 2D
and one in 3D.

For the 2D flow around the NACA0012 airfoil, a grid
with 137 523 200 quadrangular cells is used, while a grid
with 55,362,624 tetrahedron cells is used for the 3D flow
around the ONERA M6 wing. Table I shows the compute
times for the first 100 time steps. Figure 24 and Fig. 25
illustrate the speedup and efficiency of both cases. In the
figures, “Speedup,” “Efficiency,” and “Cores” refer to the
speedup, parallel efficiency, and number of processor cores,
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FIG. 17. Cp of the flow around the NACA0012 airfoil (M∞ =
0.8, α = 1.25◦).

(a) (b)

FIG. 18. Pressure contours of supersonic flow past a cylinder.
(a) M∞ = 3 and (b) M∞ = 5.
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FIG. 19. Pressure coefficient profile along the central line.
(a) M∞ = 3 and (b) M∞ = 5. C6F8-ROE refers to the results in
Visbal and Gaitonde [62].
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FIG. 20. Configuration of the explosion in a 3D box.

(a) (b)

(c) (d)

(e) (f)

FIG. 21. Density isosurfaces of the explosion in a 3D box at
(a) t = 0.25, (c) t = 0.375, and (e) t = 0.5. Panels (b), (d), and (f)
are the corresponding results in Ref. [63].

(a)

(b)

FIG. 22. Density contours of the explosion in a 3D box at z = 0.4
and t = 0.5. (a) Our result and (b) result in Ref. [63].

respectively. “Ideal” and “Present” refer to the ideal speedup
and the speedup of the proposed method, respectively. Effi-
ciencies of 95.31% and 94.56% are achieved for the 2D case
and 3D case with up to 4800 processor cores, respectively.

VII. CONCLUDING REMARKS

In this work, a parallel FVDBM on 2D and 3D unstruc-
tured grids was introduced and studied for high speed inviscid
compressible flows. The proposed method was carefully in-
vestigated for seven benchmark problems in both 2D and 3D,
and the results show that the method can accurately capture
the shocks in all cases including steady state and unsteady
problems of subsonic, transonic, and supersonic flows. A
close to linear scalability is observed on a parallel compter
with thousands of processor cores, which implies that the
method has the potential for high-fidelity simulations of com-
pressible flows in complex computational domains.
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FIG. 23. Comparison of the pressure coefficient distribution at
different sections on the OMERA M6 wing, η refers to the spanwise
location, and the x directions are nondimensionalized by local chord.
(a) η = 0.2, (b) η = 0.44, and (c) η = 0.65.

FVDBM for inviscid compressible flows consists of three
parts: a discrete lattice velocity model, equilibrium distri-
bution functions, and coupled DDF evolution equations. In
this work, D2Q13 and D3Q25 lattice velocity model are
adopted for 2D and 3D problems, respectively. The corre-
sponding equilibrium distribution functions are constructed

TABLE I. The strong scalability results for the compressible
flows. “Cores,” “Time (2D),” and “Time (3D)” refer to the number
of processor cores, the compute time in second of the first 100 time
steps for the 2D case and that for the 3D case, respectively.

Cores Time (2D) Time (3D)

1200 118.49 119.26
2400 65.98 59.40
4800 32.62 31.15

based on circular and spherical functions. Based on our pre-
sented coupled DDF evolution equations, other discrete lattice
velocity models and equilibrium distribution functions (such
as Hermite polynomials [35], direct matching of moments
[38] and shifted stencils [39,40]) for inviscid and viscid
compressible flows are also be able to incorporate with our
solver.

In (1) and (2), the nonlocality (the advective term) is linear
and the nonlinearity (the collision term) is local. However,
the transport term ∇ · (ρuu) in compressible Euler equa-
tions is nonlocal and nonlinear at the same time, which
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FIG. 24. The speedup (a) and parallel efficiency (b) of the pro-
posed method for the 2D NACA0012 case. The grid has 137 523 200
quadrangular cells in this test.
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FIG. 25. The speedup (a) and parallel efficiency (b) of the proposed method for the 3D ONERA M6 case. The grid has 55 362 624
tetrahedron cells in this test.

becomes demanding in terms of numerical stability. However,
compared to the classical FVM solvers for the compress-
ible Euler equations, FVDBM involves more independent
variables, which requires more memory and communication.
Whether one method is better than the other is still an open
question.
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