
PHYSICAL REVIEW E 103, 023304 (2021)

Statistical-learning method for predicting hydrodynamic drag, lift,
and pitching torque on spheroidal particles
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A statistical learning approach is presented to predict the dependency of steady hydrodynamic interactions
of thin oblate spheroidal particles on particle orientation and Reynolds number. The conventional empirical
correlations that approximate such dependencies are replaced by a neural-network-based correlation which can
provide accurate predictions for high-dimensional input spaces occurring in flows with nonspherical particles.
By performing resolved simulations of steady uniform flow at 1 � Re � 120 around a 1:10 spheroidal body, a
database consisting of Reynolds number- and orientation-dependent drag, lift, and pitching torque acting on
the particle is collected. A multilayer perceptron is trained and validated with the generated database. The
performance of the neural network is tested in a point-particle simulation of the buoyancy-driven motion of a 1:10
disk. Our statistical approach outperforms existing empirical correlations in terms of accuracy. The agreement
between the numerical results and the experimental observations prove the potential of the method.
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I. INTRODUCTION

The motion of nonspherical solid particles in viscous fluids
has been the subject of research for several decades. Atmo-
spheric particle transport, sediment transport in river beds,
material processing and separation, and blood flow are just
some examples of flows laden with nonspherical particles.
Although the simplifying assumption of a spherical shape is
often made, it has been shown that particle nonsphericity can
have a significant influence on fluid-particle interactions and,
thus, on particle transport [1–4].

Accurate knowledge of hydrodynamics forces and torques
acting on particles is of great importance in the numerical
study of particle-laden flows. Nonspherical particles are often
modeled as fibers, cylinders, or ellipsoids. The smoothness
and symmetry properties of spheroids have made them attrac-
tive subjects of analytical and numerical studies.

Two general approaches to model fluid-particle inter-
actions in Euler-Lagrange simulations are particle-resolved
and point-particle methods. Particle-resolved methods aim
at resolving the flow field around the particle and obtain-
ing the hydrodynamic forces and torques through numerical
integration of fluid stresses over the surface of the parti-
cle. Particle-resolved methods require a grid resolution high
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enough to capture the single-particle hydrodynamics. This
limits the applicability of such techniques to small fluid-
particle systems. Point-particle methods, on the other hand,
use empirical or theoretical models for the hydrodynamic
interactions between the particle and the fluid. Due to their
lower computational costs, point-particle methods have been
extensively applied to investigate particle-laden flows [5–8].

The success of point-particle simulations is directly de-
pendent on the accuracy of the incorporated force and torque
models. Clift et al. [1] provided a comprehensive review of
drag laws for various particle shapes and flow regimes. In the
limit of spherical particles, at moderate rotational Reynolds
numbers, the coupling between the translational and the rota-
tional motion is small. Analytical and empirical expressions
have been derived which describe the hydrodynamic inter-
actions of rigid spherical particles within and beyond the
creeping flow limit [9]. Such expressions include several fluid-
particle interaction mechanisms, such as steady-state drag,
virtual mass, force due to the undisturbed velocity field, and
history effects.

The complexity of the motion of nonspherical particles
stems from the strong coupling between the translational and
the rotational motions at high particle anisotropies. More-
over, unlike for spheres, the nondimensional numbers cannot
be based on a single length scale, making the motion of a
nonspherical particle dependent on a larger number of influ-
ence parameters [1]. In the Stokes regime, analytical force
and torque models for nonspherical particles exist. Oberbeck
[10] was among the first to investigate the drag force on a
low-aspect-ratio spheroidal particle moving along its principal
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axis in a viscous fluid. Jeffery [11] explored the low-Reynolds
number (Re) motion of ellipsoidal particles in shear flows and
derived expressions for the shear-induced torque on ellipsoids.
Under the assumption of creeping (Stokes) flow, Happel and
Brenner [12] analytically derived drag and lift coefficients for
ellipsoidal particles at different orientations. Their correlation
describes the drag coefficient at a given incidence angle by
values of the drag coefficient at extrema of the incidence angle
and a sin2 function of the incidence angle.

The expressions for force and torque coefficients in
creeping flows have been incorporated in Euler-Lagrange sim-
ulations of nonspherical particles in laminar and turbulent
flows. In such studies it is assumed that the fluid inertial
effects are insignificant [4,13–15]. However, it has been ob-
served that such correlations can lead to significant errors at
high particle Reynolds numbers [16,17].

Many authors have collected several numerical and exper-
imental data for Reynolds- and orientation-dependent drag,
lift, and torque coefficients of nonspherical particles at finite
Reynolds numbers [18–30].

In 2008, Loth [21] collected the existing correlations for
regular and irregular shapes in the Stokes and Newton regimes
and addressed the applicability of combined correlations for
intermediate regimes. He found that the sphericity cannot
be used as the only input parameter for the prediction of
drag force outside the Stokes regime and that these correla-
tions lose their accuracy as deviations from a sphere become
large. Later Hölzer and Sommerfeld proposed new correla-
tions based on a broad set of numerical and experimental data
that involve different projected areas to account for particle
orientation [22,23]. Zastawny et al. [24] used the immersed
boundary method (IBM) to investigate different nonspherical
particles at different incident angles and Reynolds numbers in
the steady flow regime. Based on the work of Rosendahl [20],
Zastawny et al. provided shape-specific correlations for drag,
lift, and torque on two ellipsoidal particles and a fiber-shaped
particle. Due to the limitations of the IBM method, Zastawny
et al. [24] used relatively small computational domains for
simulations at low Reynolds numbers (Re � 1), which led to
a considerable reduction in the accuracy of their correlations
in this regime [27,29].

Jiang et al. [25] numerically studied a 6:1 prolate spheroid
at a 45◦ incidence angle and compared their results with the
correlation of Zastawny et al. for a fiber with the same as-
pect ratio and that of Hölzer and Sommerfeld [23], obtaining
very good agreement at low Reynolds numbers. At higher
Reynolds numbers deviations up to 29% were observed. More
recently, Sanjeevi et al. [29] performed extensive lattice Boltz-
mann simulations of the flow around a 2:5 oblate ellipsoid, a
5:2 prolate ellipsoid, and a 4:1 fiber up to Re = 2000 to extract
force and torque coefficients and derived separate correlations
for these three shapes. Due to the wide range of Reynolds
numbers considered by these authors, they were not able to fit
their computed data to the original correlations of Zastawny
et al. They instead used a modified version of the sin2 type
correlation. Sanjeevi et al. showed that for prolate spheroids
of aspect ratio up to 32, the sin2 behavior of the drag coef-
ficient derived by Happel and Brenner, can be extended to
the high-Reynolds number regime. They also observed that
due to the stronger wake contribution to the drag force, the

drag coefficient of low-aspect-ratio oblate spheroids does not
follow the sin2 law.

Andersson and Jiang [31] investigated the flow around
an inclined 1:6 oblate ellipsoid at low but finite Reynolds
numbers and addressed the challenges in simulating flow over
bluff bodies at small Reynolds numbers. Their findings also
questioned the reliability of finite Reynolds number correla-
tions at Reynolds numbers on the order of 1.

The shape-specific force and torque correlations can serve
as useful models for point-particle simulations of nonspheri-
cal particles. However, it has been shown that the applicability
of a correlation to other particle shapes is limited. Further-
more, force or torque correlations for nonspherical particles
that cover a broad range of particle Reynolds numbers or
different particle shapes are scarce. A single correlation is
not capable of predicting hydrodynamic loads over a wide
range of Reynolds numbers, aspect ratios, and incidence
angles. Different correlations are commonly considered for
multiple distinct ranges of one or more input parameter(s).
The main reason for this is the difficulty in finding a proper
fitting approach that considers the large input space in the
right way and does not introduce unsatisfactory high biases.
Moreover, phenomena, such as indirect particle-particle inter-
actions when particles are close to each other [32], wall effects
on particles in the vicinity of a solid wall [1,33], or inertial
shear-induced effects in nonuniform particle-laden flows [34]
cannot be straightforwardly described using conventional em-
pirical methods.

In this paper, we propose a different approach for pre-
dicting the hydrodynamic interactions between nonspherical
particles and surrounding fluid. Instead of the conventional
curve fitting approach, we use an artificial neural network
(NN) to correlate the force and torque data generated by
resolved numerical simulations to a set of input parameters.
Artificial neural networks have been applied to various ar-
eas from data classification and image processing to motion
prediction and pattern recognition. Recently, statistical learn-
ing has also been used in fluid dynamics and multiphase
flows [35]. For example, Sarghini et al. [36] applied a neural
network to predict the Smagorinsky constant in large-eddy
simulations, Ling et al. [37] derived a neural network-based
Reynolds stress closure for Reynolds averaged Navier-Stokes
equations. He and Tafti [38] used a neural network to predict
the effect of particle volume fraction and distance to neigh-
boring cells on drag force on spheres. Lui and Wolf [39]
combined NN-based regression with flow modal decompo-
sition to construct reduced order models for fluid flow over
bluff bodies, and Buzzicotti et al. [40] studied the application
of convolutional neural networks to the reconstruction of fluid
turbulence data.

Neural networks, being stochastic tools, are generally dif-
ficult to reproduce. Still, the significant advantage of a neural
network is its theoretical ability to approximate every Borel
measurable input-output relation [41]. However, in the context
of prediction of hydrodynamic interactions, NN-based trend
prediction has three distinct advantages over conventional
curve-fitting approaches.

First, to obtain a conventional curve-fitting-based correla-
tion from simulation data, a functional approach is necessary.
The choice of a fitting analytical function (linear, quadratic,
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sin2, etc.) can oversimplify an actual complex dependency
which might not be captured due to a low number density
of data points, inaccuracy of the computational model, or a
limited range of data. The forced behavior of the considered
function can lead to high deviations, especially for values ly-
ing between or outside the fitting points where interpolation or
extrapolation is required. If trained properly, a neural network
can predict any dependency without a prior assumption, and
this way, the difficult task of finding an appropriate fitting
function is circumvented.

Second, fitting an analytical function to a partially erro-
neous dataset can deteriorate the quality of the prediction over
a broader input domain. Correlations inherit the errors in the
data as intrinsic biases. Such biases generated by conven-
tional curve-fitting approaches can lead to large temporally
accumulated errors in results of time-dependent point-particle
simulations incorporating such models. In contrast, the vari-
ance error typically generated by deep neural network (DNN)
predictions is averaged out in time and, therefore, leads to
smaller accumulated errors.

Third, several authors have used different computational
methods to derive correlations for hydrodynamic forces and
torques. Due to the same reasons mentioned above, for a
given problem, the results are usually not identical. This leads
to a variety of functional approaches for the same relation.
The results of the simulations from different authors can not
be used because they are incompatible with the respective
correlation approaches. Thus, a large number of valuable data
cannot be used. A neural network, instead, can process the
data of all authors and minimize the effect of the individual
errors of every data set.

A few studies have addressed the steady axisymmetric flow
over thin oblate ellipsoids [1,18,42–44]. But, orientation- and
Reynolds-number-dependent force or torque correlations for
low-aspect-ratio spheroids or disks are explored here. We take
the incidence angle and the particle Reynolds number as input
parameters and employ a statistical approach to predict the
coefficients of drag, lift, and pitching torque of a 1:10 oblate
spheroid.

The considered range of Reynolds numbers in this paper
is 1 � Re � 120. It is known that in the buoyancy-driven
motion of a particle within this regime, the particle has a ver-
tical trajectory and exhibits no appreciable secondary motion
[45]. This allows to extract hydrodynamic loads from steady-
state body-fixed simulations. We perform a set of resolved
simulations to obtain force and torque data. A well-designed
feedforward NN is then trained with a subset of the collected
data. We show that the NN-based predictions are, at least, as
accurate as predictions of empirical and theoretical correla-
tions. We test the performance of our model by incorporating
it in a point-particle simulation of the buoyancy-driven motion
of an oblate spheroid in a liquid with a nonlinear hydrostatic
pressure gradient.

The mathematical model and the employed numerical
method for the resolved simulations are addressed in Sec. II.
The data acquisition procedure is discussed in Sec. III. In
Sec. IV the results are presented and discussed, the considered
feedforward network and the training and validation proce-
dures are addressed, and the performance of the new model

FIG. 1. Sketch of the computational domain �f and the particle
mounted inside the domain.

is tested in a point-particle simulation of a particle settling in
a magnetic liquid. Finally, the concluding remarks and future
directions are presented in Sec. V.

II. RESOLVED SIMULATIONS

A. Mathematical description of the flow

We solve the flow around a spheroidal particle with length
b along the axis of symmetry and maximum diameter normal
to this axis equal to a. The aspect ratio is defined as w = b/a
and fixed to w = 0.1 in the present case to yield an oblate
spheroid. The particle is located in the center of the coordinate
system with x as the streamwise, y as the pitchwise, and z
as the spanwise coordinate. Indeed, the particle is mounted
symmetrically to the x-y plane, and � denotes the pitching
angle, i.e., the angle of incidence to the flow. The steady
Navier-Stokes equations are solved in a cubic computational
domain as shown in Fig. 1. The fluid motion is described by
the system,

∇ · (u ⊗ u) = 1

ρf
∇ · τ in �f , (1)

∇ · u = 0 in �f , (2)

where the hydrodynamic stress tensor is

τ = −pI + μf [∇u + (∇u)T]. (3)

Here, u, p, and ρf are the fluid velocity, the pressure, and
the fluid mass density, respectively. The dimensions of the
computational domain in streamwise and the two spanwise
directions are Lx and Lz = Ly. The distance of the particle
center from the inlet and the spanwise distances from the walls
are Lx/2 and Lz/2 = Ly/2, respectively.

At the inlet boundary �in, a uniform Dirichlet bound-
ary condition is applied that sets the velocity vector to u =
(u0, 0, 0)T with u0 = 1 m/s. At the outlet boundary �out, the
stress on the outlet boundary is set to zero. In the case of a
backflow, the outlet pressure is adjusted to prevent fluid from
entering the domain through the outlet boundary [46]. A slip
condition with zero normal velocity and zero tangential shear
stress is imposed at the side boundaries �wall, where

u · n = 0, {−pI + μ[∇u + (∇u)T]}n = 0. (4)
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At the surface of the spheroid �p, a no-slip boundary condition
is imposed, i.e., u = (0, 0, 0)T.

The equatorial diameter of the spheroid d = 2a is taken
as the length scale for evaluation of the particle Reynolds
number Re = u0ρf d

μf
. Different Reynolds numbers are achieved

by varying the fluids dynamic viscosity μf . The particle inci-
dence angle � is changed by rotating the spheroid around the
z axis. Forces and torques acting on the particle are obtained
by integration of the total stress and its moment around the
surface of the particle,

F =
∫

�p

τ · n dA, (5)

T =
∫

�p

r × τ · n dA, (6)

with r the distance vector from the center of mass of the
particle to a point on the surface �p.

B. Numerical discretization

The stabilized Galerkin finite element method in COMSOL

MULTIPHYSICS is used to solve (1) and (2) in the weak form.
Linear basis functions (P1P1) are used for the velocity and
pressure approximations. To ensure numerical stability, the
finite element formulation is stabilized by streamline diffusion
and crosswind diffusion methods [46]. The weak formulation
of (1) is linearized by a “damped” Newton method. The sys-
tem of linear equations resulting from discretization is solved
using the generalized minimal residual method [46].

The surface of the spheroid is discretized using triangular
surface elements with a maximum size of δmax. The volume
mesh consists of a combination of tetrahedra and prisms. To
accurately capture the boundary layer near the surface of the
spheroid and the downstream wake, a swept mesh is consid-
ered within the spherical region x2 + y2 + z2 � r2

s , where rs

denotes the radius of the swept region. This swept region
is discretized by ns layers of elements. Their maximum-to-
minimum element size in the radial direction is γs. Using a
swept region which is fixed to the spheroid keeps the mesh
skewness at different incidence angles constant. An example
of the mesh is shown in Fig. 2.

III. DATA ACQUISITION

A database is collected from 266 simulations performed
at 14 different Reynolds numbers and 19 different angles of
incidence. The two independent input variables are the Re
and the angle of incidence �. The output parameters are the
coefficients of drag, lift, and pitching torque defined as

cD = |FD|
1
2ρfu2

0A
, (7)

cL = |FL|
1
2ρf u2

0A
, (8)

cT = |Tp|
1
4ρf u2

0Ad
, (9)

respectively, where A = πd2/4 is the cross sectional area
of the spheroid and FD = F · i, FL = F · j, and Tp = T · k
with i, j, and k denoting the unit vector in the x, y, and z

FIG. 2. Example of the mesh in the region close to the spheroid.
To accurately resolve the flow in the vicinity of the particle, a spher-
ical swept region with radius rs is considered around the particle.

directions, respectively. Observe that since the upstream flow
is uniform and the computational domain is symmetric in the
z direction, the total torque acting on the particle has only one
contribution, which is the pitching torque.

The parametric study of Chrust et al. [47] on wake transi-
tion scenarios of oblate spheroids at � = 90◦ showed that the
transition behavior for a thin oblate spheroid is very similar to
that of a disk (w = 0). The authors observed a similar seven-
stage transition scenario in the wake of thin oblate spheroids
as for disks. In the thin-disk-like scenario, for a given as-
pect ratio as the Reynolds number increases from zero, the
first (primary) bifurcation at the first critical Reynolds num-
ber Rec,1 leads to a steady nonaxisymmetric wake. At this
state, i.e., Rec,1 � Re � Rec,2, the planar symmetry remains
sustained and a steady lift force acts in the wake symmetry
plane. As the Reynolds number further increases to the second
critical Reynolds number Rec,2, the wake transits to a periodic
state under a Hopf-type bifurcation, and the planar symmetry
vanishes.

A decrease in the aspect ratio of an oblate spheroid leads to
an increase in both the first and the second critical Reynolds
numbers. For a disk (w = 0) Chrust et al. [47] found the
Reynolds number range of 117 � Re � 125.2 for the stability
interval of the steady nonaxisymmetric state with planar sym-
metry. For a 1:6 spheroid, this range was found to be 130 �
Re � 137.2. By interpolating the values for a disk and a 1:6
spheroid, Chrust et al. estimated the first critical Reynolds
number to be Rec,1 ≈ 130 for the steady planar-symmetric
wake of a 1:10 spheroid. Shenoy and Kleinstreuer [48] ob-
served a value of Rec,1 = 135 for the first critical Reynolds
number of a 1:10 circular disk. Based on these observations,
the particle wake is expected to remain steady at all incidence
angles within the considered range of Reynolds numbers in
this paper (Re � 120). This legitimates conducting steady-
state simulations.

Figure 3 illustrates the two-dimensional space of input
parameters. Due to the symmetry of the considered geometry,
it suffices to consider the incidence angle in the range of
0◦ � � � 90◦. The number density of data points at lower
Reynolds numbers is increased to ensure that the observed
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FIG. 3. An illustration of the Re-� space on which the resolved
simulations are performed. Each dot represents one simulation.

strong input-output dependency in this region mentioned by
Clift et al. [1] is accurately captured.

It is well known that the drag, lift, and pitching torque
coefficients in the Stokes regime depend linearly on Re−1 [1].
To reduce the nonlinearity of the input-output relation, we
choose the output variables to be coefficients of drag, lift, and
pitching torque multiplied by the Reynolds number. This way,
the dependency to be predicted reduces to a constant function
in the Stokes regime.

IV. RESULTS AND DISCUSSIONS

A. Validation of resolved simulations

First, several simulations have been performed to inves-
tigate the sensitivity of the numerical results to different
simulation parameters. In particular, the effects of the domain
size and the grid resolution on the force and torque coefficients
have been studied.

Resolving the flow field at � = 90◦ requires the high-
est spatial resolution [29]. To ensure that the computational
grid can capture all the required details of the flow field,
we performed the grid sensitivity analysis at this incidence
angle. Furthermore, it is known that the effect of domain
size becomes more important when the Reynolds number is
decreased [18,29,31]. To ensure that confinement effects do
not influence the numerical results at low Reynolds numbers,
we consider a computational domain with L = 80d for cases
with Re < 20. For cases with higher Reynolds numbers, a
domain size of L = 40d is used. This choice is based on the
findings of Andersson and Jiang [31].

We validate the numerical results by comparing the re-
sults of the present paper with literature data for thin
oblate spheroids and disks at � = 90◦. As mentioned earlier,
the number of studies on thin oblate spheroids is limited.
Masliyah and Epstein [42] and Pitter et al. [18] performed
axisymmetric simulations to investigate the steady axial flow
around spheroids with 0.05 � w � 5 for Reynolds numbers
up to Re = 100. Within this range of Reynolds numbers,
the assumption of an axisymmetric wake is valid even for
infinitely thin disks [47]. Based on the results of Pitter et al.

TABLE I. Parameter values of the computational domains and
grids.

Case L δmax rs ns γs ne,t

Re < 20 80d 0.02d 4d 100 80 2.31 × 106

Re � 20 40d 0.02d 4d 100 160 3.68 × 106

[18], Clift et al. [1] suggested the following correlations for
the steady drag coefficient of disks and low-aspect ratio oblate
spheroids (w � 0.05) in the range of 0.01 < Re � 133,

CD =
{

64
π Re [1 + 10x], if 0.01 < Re � 1.5,

64
π Re [1 + 0.138 Re0.792], if 1.5 < Re � 133,

(10)
where x = −0.883 + 0.906 log10 Re − 0.025(log10 Re)2. For
lower Re, the expression of Oseen can be used,

CD = 64

π Re

[
1 + Re

2π

]
if Re � 0.01. (11)

In 2006, O’Donnell and Helenbrook [43] performed ax-
isymmetric finite element simulations to extract the drag
coefficient of crosswind oblate spheroids within the aspect
ratio range 0.1 � w � 1 at 0 � Re � 200 and derived aspect-
ratio-dependent correlations for the drag coefficient. The drag
coefficients obtained from the correlation of O’Donnell and
Helenbrook [43] for disks are within 2.7% of drag coefficients
predicted by Pitter et al. [18].

To compare the results of different authors, we define the
normalized deviation from the drag coefficient of a sphere
with the same cross-sectional area as δCD = 1 − CD,w

CD,1
, where

CD,w is the drag coefficient of an oblate spheroid of aspect
ratio w, and CD,1 is the drag coefficient of a sphere. The latter
is given by [1]

CD,1 =
{

24
Re [1 + 0.1315 Rea], if 0 < Re � 20,

24
Re [1 + 0.1935 Re0.6305], if 20 < Re � 260,

(12)
with a = 0.82 − 0.05 log10 Re. Consecutive grid refinements
are performed up to the point where the maximum drag coeffi-
cient deviation from the results of O’Donnell and Helenbrook
[43] is below 2%. Table I summarizes the chosen computa-
tional settings of the simulations.

Figure 4 compares the dependency of δCD on the Reynolds
number for spheroids with w � 0.1 based on correlations
from literature [1,43], and the results of our simulations in
the range of 1 � Re � 120. Note that the Reynolds number
at which the drag coefficient of a sphere equals that of a thin
oblate spheroid is Re ≈ 37. As the Reynolds number increases
the relative difference between the drag coefficient of a disk
and that of a 1:10 spheroid increases. The lumped force and
torque coefficients collected from the resolved simulations
can be found in Appendix.

B. Aspect-ratio-specific features

Next, we illustrate the effect of the aspect ratio on the
incidence-angle and Reynolds-number dependency of drag,
lift, and torque coefficients of oblate spheroids. The results
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FIG. 4. Deviations of drag coefficients of a 1:10 spheroid and
a thin disk at � = 90◦ from the drag coefficient of a sphere. The
results of the present paper for a 1:10 spheroid [solid bullet (w = 1)]
are compared with the correlation of O’Donnell and Helenbrook [43]
for a 1:10 spheroid [(open red bullet); w = 0.1 and (open small left
red triangle); w = 0] and correlation of Clift et al. [1] for thin disks
[(solid small left triangle) (w � 0.05)].

of our resolved simulations for a 1:10 spheroid are compared
with existing correlations for 1:5 and 2:5 spheroids. For the
latter two aspect ratios, we use correlations of Zastawny et al.
[24] and Sanjeevi et al. [29], respectively. In our compar-
ison, we keep the particle volume constant and, therefore,
define a Reynolds number based on the diameter of a volume-
equivalent sphere as Ree = U0de

νf
, where de = w1/3d denotes

the diameter of a sphere with the same volume, and νf is
the fluid kinematic viscosity. The volume-equivalent sphere
Reynolds number Ree is related to the Reynolds number based
on the equatorial diameter through Ree = w1/3Re. The ob-
tained equivalent drag coefficient based on the cross-sectional
area of the volume-equivalent sphere is cD,e = cDw−2/3. The
same relation holds for the coefficients of lift and pitching
torques.

1. Incidence-angle dependency

In Fig. 5 the incidence-angle dependency of the drag co-
efficient is compared for the three different aspect ratios. We

observe that at a fixed Reynolds number within the considered
range, regardless of the particle orientation, a 1:10 spheroid
always has a larger drag coefficient compared to 1:5 and 2:5
spheroids. The contributions of viscous stress and pressure to
the drag force on the 1:10 spheroid are compared in Fig. 6.
At low incidence angles, the viscous drag is the dominant
contributor to the total drag force. As the incidence angle
increases, the contribution of pressure increases, and at suf-
ficiently high incidence angles pressure force has the main
contribution to the total drag force. The incidence angle at
which the viscous and pressure drags are equal decreases from
approximately � ≈ 40 to � ≈ 20 by increasing the Reynolds
number from Ree = 0.5 to Ree = 55.7. The larger surface
area of a 1:10 spheroid compared to the one of 1:5 and 2:5
spheroids leads to a higher viscous drag at low incidence
angles. At higher incidence angles the larger recirculation
region behind the 1:10 spheroid leads to a more significant
pressure drop and, therefore, a relatively larger pressure drag
resulting in a larger total drag force.

Another issue which distinguishes the behavior of drag
coefficient for the 1:10 spheroid from that of the high-aspect-
ratio spheroids is the maximum value of the drag coefficient
at Ree = 55.7. For a 1:10 spheroid, the maximum drag co-
efficient occurs at � ≈ 80◦. This yields two local maxima
for the drag coefficient during a 180◦ particle rotation, one
at � ≈ 80◦, and one at � ≈ 110◦. This behavior which is also
observed for 1:4 and 2:5 spheroids at Ree = 100 [28,29] is not
observed for the higher-aspect-ratio spheroids.

The effect of aspect ratio on lift and pitching torque co-
efficients is illustrated in Figs. 7 and 8, respectively. Both
coefficients increase with decreasing the aspect ratio. It can be
observed that although at low Reynolds numbers (Re1 = 1)
the lift coefficient of a 1:10 spheroid behaves similarly to
those of 1:5 and 2:5 spheroids, at larger Reynolds numbers the
incidence-angle dependency of the lift coefficient of a 1:10
spheroid significantly deviates from those of larger aspect
ratio spheroids. At Ree ≈ 46 the lift coefficient profile for a
1:10 spheroid is asymmetric with respect to � = 45◦. This
is due to the fact that the onset of symmetry breaking of the
wake occurs at high incidence angles for the 1:10 spheroid
when the Reynolds number is lower. In contrast, for 1:5 and
2:5 spheroids, the symmetry seems to be sustained for up to
Ree = 55.7. A similar behavior is observed for the pitching
torque coefficient in Fig. 8.

FIG. 5. Drag coefficient as a function of incidence angle at (a) Ree = 0.5 (Re1 = 1), (b) Ree = 27.8 (Re1 = 60), and (c) Ree =
55.7 (Re1 = 120) [(red solid bullet); w1 = 1/10: (green solid square); w2 = 1/5: and (solid small right triangle); w3 = 2/5].
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FIG. 6. Contributions of pressure and viscous stress to the drag coefficient at (a) Ree = 0.5 (Re1 = 1), (b) Ree = 27.8 (Re1 = 60), and
(c) Ree = 55.7 (Re1 = 120) [crosses; viscous: and solid bullets; pressure].

2. Reynolds-number dependency

The Reynolds-number dependency of drag, lift, and torque
coefficients at moderate and high incidence angles are com-
pared in Fig. 9. Although the drag coefficient behavior
remains similar, the lift and torque coefficients of a 1:10
spheroid behave differently with Re at high incidence an-
gles. At � � 80◦ the lift and torque coefficients of all three
spheroids decrease monotonically with increasing Reynolds
numbers. At higher incidence angles, however, lift and torque
coefficients of a 1:10 spheroid have a local minimum at Ree ≈
40. The two higher-aspect-ratio spheroids do not exhibit this
behavior.

To illustrate the reason behind this different behavior at
lower aspect ratios, in Fig. 10, we compare the contributions
of viscous stress and pressure to the lift force and the pitching
torque on a 1:10 spheroid at � = 85◦. The contribution from
the pressure is dominant for both lift and pitching torques.
Regardless of the incidence angle and particle Reynolds num-
ber, the viscous contribution to the pitching torque remains
below 15%. The pressure force is, therefore, the dominant
contributor to the pitching torque. Concerning the lift force,
at low and moderate incidence angles (� < 80), the pressure
and viscous stress contributions have counteracting effects.
Regardless of the incidence angle, the relative contribution of
the pressure force is dominant. At Ree = 0.5, for example,
|FL, pressure| ≈ 1.7|FL,viscous| for all �’s. Furthermore, its
contribution increases with Reynolds number up to Ree ≈ 40.
At Ree ≈ 40 the viscous contribution to the lift force changes

sign at � = 85◦. When the Reynolds number is increased
further to Ree = 55.7 at � = 85◦ the relative contribution of
the pressure to the lift force is about 80%. These observations
imply that the different behaviors of lift and torque coeffi-
cients for the 1:10 spheroid mostly stems from the pressure
distribution at the surface of the particle.

Figure 11 compares the pressure field and the streamlines
constructed based on the x and y components of velocity field
at z/d = 0 for four different combinations of incidence angle
and Reynolds number. By comparing Figs. 11(c) and 11(d)
corresponding to (Ree,�) = (37.1, 85◦) and (Ree,�) =
(55.7, 85◦), respectively, one can observe that for these two
Reynolds numbers the upstream pressure profiles at the sur-
face of the particle are very similar and almost symmetric in
y, whereas for the downstream high-pressure regions this is
not the case. At Ree = 37.1 the recirculation region is smaller
and is located closer to the particle center. Due to the larger
asymmetry of the flow field at Ree = 55.7, the recirculation
area is shifted in y direction farther away from the particle
center. Furthermore, the velocity in the wake just behind the
particle is dominantly oriented in positive y direction, leading
to a positive viscous force in this direction. These observations
explain the existence of local minima for pitching torque and
lift coefficients at � = 85◦.

The different behaviors of drag, lift, and pitching
torque coefficients of the 1:10 spheroid observed con-
firm the necessity to derive shape-specific correlations for
low-aspect-ratio spheroids. The dependencies for the 1:10
spheroid cannot be easily modeled by the symmetric sin2

FIG. 7. Lift coefficient as a function of incidence angle at (a) Ree = 0.5, (b) Ree = 27.8, and (c) Ree = 55.7 [red solid bullet; w1 = 1/10:
green solid square; w2 = 1/5: (solid small right triangle); w3 = 2/5].
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FIG. 8. Pitching torque coefficient as a function of incidence angle at (a) Ree = 0.5, (b) Ree = 27.8, and (c) Ree = 55.7 [red solid bullet;
w1 = 1/10: green solid square; w2 = 1/5: (solid small right triangle); w3 = 2/5].

correlations often used in literature at higher aspect ratios.
To achieve an accurate analytical correlation, the fitting pro-
cedure can be very cumbersome as it requires introducing
several additional coefficients to a correlation (as, for exam-
ple, Ref. [28]). A neural network-based prediction, on the
other hand, does not require such a priori information as it
intrinsically recognizes and learns the different behaviors.

C. Correlation procedure

Upon completion of all simulations an input-output corre-
lation has to be found in the form

y = �(x, θ), (13)

where x and y are the arrays of input and output, respec-
tively, and θ is the array of unknown parameters (weights and

biases). Conventional regression (curve fitting) methods make
an assumption on the structure of the function � and find
the unknown parameters through a minimization procedure.
Finding a proper function (or a combination of functions)
which captures all relevant features of the actual input-output
relation can be cumbersome. Instead, we use deep learning to
find an appropriate functional relationship and its correspond-
ing weights and biases.

The basic idea of deep learning is to replicate an unknown
complex function from known input and the corresponding
output. A complex function is approximated by a combina-
tion of simpler functions which results in a so-called DNN.
Through a deep learning process, the optimal parameters are
found by minimizing (or maximizing) a target function. An
example of such a target function is the difference between
the output predicted by the neural network and the target

FIG. 9. Coefficients of (a) drag, (b) lift, and (c) pitching torque as a functions of Reynolds number at φ = 45◦ (top) and φ = 85◦ (bottom)
incidence angles [red solid bullet; w1 = 1/10: green solid square; w2 = 1/5: (solid small right triangle); w3 = 2/5].

023304-8



STATISTICAL-LEARNING METHOD FOR PREDICTING … PHYSICAL REVIEW E 103, 023304 (2021)

FIG. 10. Viscous and pressure contributions to the lift force (top) and pitching torque (bottom) on a 1:10 spheroid at (a) � = 5◦, (b) � =
30◦, and (c) � = 85◦ crosses; viscous: and solid bullets; pressure].

value. This is the basic principle of one of the most applied
neural network optimization approaches, the gradient descent
method.

A DNN consists of multiple layers with several neurons.
Every neuron is associated with one piece of information, its
activation value. In each layer of a DNN, an input vector

FIG. 11. Pressure field and streamline pattern in the center plane z = 0 for the flow around a 1:10 spheroid at (a) (Ree, �) = (37.1, 45◦),
(b) (Ree,�) = (55.7, 45◦), (c) (Ree, �) = (37.1, 85◦), and (d) (Ree, �) = (55.7, 85◦).
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FIG. 12. Graphical representation of the architecture of a typical
feedforward neural network with ni inputs, no outputs, and k hidden
layers each consisting of nk neurons.

undergoes an elementwise nonlinear transformation which
consists of a linear transformation through weights and biases
followed by a nonlinear activation through the so-called “ac-
tivation function.” The activation values of the neurons in the
first layer (input layer) are defined by the input data set. In the
output layer, activation values are based on network connec-
tions. Neurons belonging to interior layers, or the so-called
hidden layers, are connected to the neighboring layers via the
weights and biases corresponding to each neuron. One famous
representative of deep learning is the feedforward DNN, also
known as a multilayer perceptron. In a feedforward DNN,
the information propagates from the input layer through the
hidden layers to the output layer. The basic architecture of a
feedforward DNN is depicted in Fig. 12. For a network with
l hidden layers the activation values of the kth hidden layer
read

h(1)
j = f (1)

(
nk∑

i=1

ω
(1)
i j xi + b(1)

j

)
, (14)

for k = 1 and

h(k)
j = f (k)

(
nk∑

i=1

ω
(k)
i j h(k−1)

i + b(k)
j

)
(15)

for 2 � k � l − 1, where f (k)(x) is the activation function and
ω

(k)
i j and b(k)

j are the weights and biases of the kth layer. nk is
the number of neurons in the kth layer.

The weights and biases are found through a training proce-
dure. During the training process, the weights and biases are
changed to achieve an arbitrarily minimal difference between
training data and the network predictions and, thus, also a
preferably accurate estimation of unknown weight and bias
values. A loss function j is defined to quantify the quality of
the predictions. One possibility for a loss function is the mean
squared error between the predictions and the actual output
values. The most common ways to minimize this loss are
based on the iterative gradient-based optimization algorithm
gradient descent. A vector θ, which represents weights or

biases, is updated as follows:

θt+1 = θt − η∇θ j(x, yd , θt ), (16)

where ∇θ j denotes the gradient of the loss function with
respect to θ. The gradient itself depends on the input values
x, the desired outputs yd , and the other parameters θt .

The parameter η controls the learning rate by changing the
step sizes of the updates. Its value should be chosen such that
the iterative procedure finds small local minima of the loss
function. Too small learning rates yield too slow optimization
and the risk of getting stuck in large local minima. Too large
learning rates may cause oscillations around a minimum. To
avoid this, optimizers are derived that dynamically determine
the learning rate [49]. The so-called Adam optimizer has
been shown to provide beneficial convergence properties. This
algorithm converges faster, and to a lower minimum than
competitors, such as AdaGrad or AdaFom [50]. The Adam
optimizer varies the step size based on the history of the gra-
dients and the squared gradients by means of an exponential
moving average. A detailed description of the algorithm can
be found in the original publication of Kingma and Ba [51].

Besides the optimizer some additional aspects of a DNN
have to be considered. First, the weights and biases have
to be initialized in a certain way. In the present neural net-
work the weights are initialized as small random values and
the biases as zero. A common problem in the training pro-
cess is so-called overfitting, which occurs when the neural
network predicts the training values precisely but loses its
accuracy with a new dataset. To avoid this, regularizers are
implemented. The initialization, the effect of overfitting and
different ways of regularization are described in detail by
Goodfellow et al. [41].

Additionally, the activation function, the number of hid-
den layers, and the number of neurons in every hidden layer
are application-specific parameters (hyperparameters), which
influence the performance of the network. Especially finding
the appropriate activation function without testing it is almost
impossible since its influence is not fully understood yet [41].

In order to validate the trained DNN, out of the total data
acquired from 266 simulations, 30 randomly selected sim-
ulation data points are excluded from the training data and
are reserved for the validation. This way, the neural network
is validated with data it has not seen before. The random
sampling of the data for validation is repeated to make sure
that the network prediction performance is not dependent on
the random choice of the training data sample.

The considered neural network in the present paper con-
sists of three hidden layers with 300 neurons. That means
there are approximately 4 × 105 floating point operations per
prediction. This number can be reduced by decreasing the
number of neurons. With more experience, this is probably
possible without a significant loss of accuracy by careful
variation of the hyperparameters. The neurons of the hidden
layers are activated by the so-called rectified linear (ReLU) ac-
tivation functions. The outputs of the ReLU function are zero
for negative inputs and equal the input for positive inputs [41].
Input and output layers have a linear activation function. The
mean absolute error between predicted outputs and simulation
data is minimized by an Adam optimizer. A L2 parameter
norm penalty is used for the regularization. The network is
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FIG. 13. Validation of the neural network prediction for (a) drag, (b) lift, and (c) pitching torque coefficients [(solid line); perfect network:
(open bullet); present network].

trained 500 epochs with the 236 training data points in mini-
batches of size 32. This means that an update is applied after
32 data points until every data point is used 500 times. The
training of the DNN is performed by KERAS, an extension of
the open-source machine learning library TENSORFLOW [52].

D. DNN validation

The performance of the network in predicting drag, lift,
and pitching torque coefficients using the validation data set
is illustrated in Fig. 13. The overall mean absolute error
(mae) for the lift, drag, and the pitching torque coefficients
is Lmae = 0.0034. The mean error for the coefficients of lift
and pitching torque is below 3%. The mean error for the drag
coefficient is as low as 1.5%. The smaller absolute values
for the lift and torque coefficients compared to those of the
drag coefficient yields larger relative errors for the lift and
torque coefficients. Further optimization of the network may
reduce these errors even more, but our results are comparable
with Sanjeevi et al. who reported mean deviations of 1.66%,
3.50%, and 3.43% for their empirical correlations derived for
drag, lift, and torque coefficient of a 2:5 spheroid, respectively.

E. Testing the drag coefficient

The weights and biases obtained through the training pro-
cess can be found in the Supplemental Material [53]. These
weights and biases are used to construct a DNN correlation
according to (15). In this section, we test the interpolation
and extrapolation performances of the DNN correlation for
drag coefficient at � = 90◦ by comparing the DNN predic-
tions with the correlation of Clift et al. [1] for thin disks. In
Fig. 14 we compare our results with correlation (10) within
the Reynolds-number range of Re ∈ [0, 133]. Although the
lowest Reynolds number used for the training is Re = 1, it can
be seen that the DNN model can very well capture the Stokes
regime (Re � 1) behavior of the drag coefficient described
by (11). We attribute this to the fact that the contribution of
inertial effects to the drag coefficient at Re ≈ 1 is small.

F. Application to a settling problem

In this section, we employ the DNN-based drag corre-
lation in a point-particle simulation of the buoyancy-driven
motion of a 1:10 disk in a quiescent paramagnetic liquid in

a nonuniform magnetic field. The buoyancy-driven motion
of disks and ellipsoidal particles in viscous liquids has ex-
tensively been explored [54–56]. It is well known that the
buoyancy-driven motion of disk-shaped particles can be fully
described by three parameters, namely, the mass density ra-
tio ρp/ρf , the aspect ratio w, and the Galileo number (Ga)

Ga =
√
|1 − ρp/ρf |gd3

p /νf , where ρf and ρp denote the mass
densities of the fluid and particle, respectively, νf is the fluid
kinematic viscosity, and g is the magnitude of gravitational
acceleration [1,54,56]. Depending on the combination of these
three nondimensional parameters, four main regimes for the
settling motion of a disk are identified. At low Ga numbers
where viscous effects are large enough, a disk falls broadside
along a straight vertical path. As inertial effects increase, a
disk can display a fluttering motion, and as the inertia further
increases, tumbling and even full rotations may occur.

By incorporating a magnetically responsive liquid and a
vertical magnetic field gradient, a nonlinear pressure is gen-
erated inside the liquid [57]. Once released in the liquid at
� = 90◦, a disk with an adequately chosen mass density,

FIG. 14. Reynolds-number dependency of the steady drag coef-
ficient of the 1:10 spheroid at � = 90◦ predicted by the DNN model
is compared to correlation (10) (solid red line). The green dashed
line represents the correlation of Clift et al. [1], and � indicates the
training data points.
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stably levitates at the height where the gravity force cancels
the net buoyancy force acting on the particle. The existence
of a stable equilibrium point in such a configuration makes
the prediction of the time-dependent trajectory of a particle a
good benchmark case for testing the DNN correlation within
the Reynolds number range of Re ∈ [0, 10].

The magnetically induced nonlinear pressure field inside
the liquid leads to a position-dependent net buoyancy force on
an immersed particle. The magnitude of this buoyancy force
is dependent on the local gradient of the magnetic field ∇H ,
and the magnetization of the liquid M [58]. In the experiment,
the gradient of the generated magnetic field is vertical ∂H

∂x =
∂H
∂z = 0 so that the combined gravitational and buoyancy force

(BG) is

FBG = (ρf,a − ρp)Vig. (17)

Here, ρf,a is the so-called “apparent mass density” of the
magnetic liquid fluid defined as

ρf,a(y) = ρf − μ0

gy

∫ y

0
M

dH

dy
dy, (18)

where μ0 is the permeability of vacuum and g is the magnitude
of gravitational acceleration [57]. For a paramagnetic liquid
at relatively low magnetic field strengths, the magnitude of
the magnetization is a linear function of the magnitude of
the magnetic field strength M = χH , where χ denotes the
magnetic susceptibility of the liquid [59]. For small particles,
the integral in (18) can be approximated by

ρf,a(y) ≈ ρf −
(

μ0

g

)
M

dH

dy
. (19)

Once a particle with mass density ρp is released in the fluid at
initial height y0, it travels to a height at which ρf,a(y) = ρp.

The incorporated magnet system generates a magnetic field
that has a magnitude decaying exponentially with the vertical
distance from the magnet surface y,

H (y) = H0e−πy/p, (20)

with H0 = 422 kA/m and pole size p = 0.118 m. The mag-
netic field strength and the apparent mass density of the liquid
according to (19) are plotted as functions of y in Fig. 15. The
vertical position of the particle is recorded by a three dimen-
sional particle tracking velocimetry technique. Measurements
are performed in a 15 × 15 × 15 cm3 cubic container filled
with a stable aqueous solution of MnCl2. The container is lo-
cated on a magnet that generates the desired magnetic field in
the form of (20). Two cameras record the particle trajectories
through two perpendicular sidewalls of the tank. The particle
considered for the experiments is a disk made of unplasticized
polytetrafluorethylene ρp = 1434 kg/m3. A schematic of the
experimental setup is shown in Fig. 16.

We employ a one-way coupled point-particle model where
the effect of the particle motion on the fluid is assumed to be
negligible. The motion of a the particle is described by solving
the translational equation of motion of the particle. An angular
momentum equation is not solved for the following reason:
In the considered magnetofluidic system an apparent Galileo

number can be defined as Gaa =
√

|1 − ρp/ρf,a|gd3
p /νf . In

the present configuration with ρp = 1.434 × 103 kg/m3, the

FIG. 15. Magnetic field strength and effective mass density on a
vertical line passing through the center of the tank. A particle with
ρp/ρf = 1.02 stably levitates at y = 48.7 mm [(solid black line);
exponential fit; (solid bullet); measured)].

maximum apparent Galileo number of a particle remains
below 70. The motion of a 1:10 disk with ρp/ρf ≈ 1 and
Gaa � 70 falling at � = 90◦ is steady and follows a straight
vertical path, and the particle does not undergo any rotational
motion. Hence, the governing equations of the particle motion
reduces to a scalar system of the form

dy

dt
= v,

dv

dt
= 1

mp

∑
F, (21)

where
∑

F is the sum of all forces stemming from different
fluid-particle hydrodynamic interactions and the gravity force.
The relevant forces in the motion of almost neutrally buoyant
particles in viscous liquids are the steady drag force FD, the
combined buoyancy and gravity force FBG, the history force
FH, and the added mass force FA so that∑

F = FD + FBG + FH + FA. (22)

The steady drag force is given by

FD = 1
2CDρpv

2Ap, (23)

where CD is the steady drag coefficient and Ap = πd2/4 is the
cross sectional area of the particle with equatorial diameter d .

For history force and added mass force, we neglect the
finite Reynolds number effects and follow the expressions de-
rived by Lai and Mockros [60] for a spheroid moving parallel
to its symmetry axis. The history force reads

FH = −6�H(πρfμ)1/2a2
∫ t

−∞

dv
dτ

(t − τ )1/2
dτ, (24)

where the history force coefficient �H for a particle with
aspect ratio w is

�H =
[

4(1 − w2)

3{[(1 − 2w2) arccos (w/
√

1 − w2)] + w}

]2

. (25)
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FIG. 16. (a) A sketch of the experimental setup. A tank filled with manganese(II) chloride solution is placed on top of a magnet. The
particle is released from the top by a rotating release mechanism. Two cameras record the motion of the released particle. (b) Schematic side
view.

The added mass force is given by

FAM = −1

2
�AρfV

dv

dt
, (26)

where �A is the added mass coefficient given by

�A = 2[w cos−1 w − √
1 − w2]

w2
√

1 − w2 − w cos−1 w
. (27)

For a spheroid with w = 0.1, Eqs. (26) and (27) yield, re-
spectively, �A = 12.4 and �H = 0.7. It is notable that the
errors introduced by neglecting the effects of finite Reynolds
numbers on the history and and added mass forces are ex-
pected to be small since the particle is initially at rest, and its
acceleration rate is relatively low in the experiments.

To obtain the temporal evolution of the vertical particle
position, system (21) is discretized using an explicit Euler
scheme. For numerical integration of the Basset history term,
we use the method of Van Hinsberg et al. [61] where the his-
tory kernel is split into a “window” kernel and a “tail” kernel.
The window kernel is approximated by a trapezoidal rule,
and the tail kernel is approximated by a sum of exponential
functions. We test the NN-based drag model by comparing
the particle trajectory based on the DNN-based drag model
CD(Re,� = 90◦) with the experimentally obtained trajectory.

TABLE II. Physical parameters of the magnetic levitation setup.

ρp (kg/m3) 1.434 × 103

d (mm) 5
b (mm) 0.5
ρf (kg/m3) 1.403 × 103

μf (kg m/s) 5.54 × 10−3

χf 7 × 10−4

L (m) 0.15
p (m) 0.1181
H0 (kA/m) 422

Table II summarizes the parameters of the considered config-
uration.

A particle with mass density ρp = 1.02ρf stably levitates
at y = 48.7 mm. Figure 17 compares the numerically and
experimentally obtained trajectories of the particle released
at y0 = 104.2 mm. The experimental trajectory is obtained
by averaging the results of three independent experiments.
The error bars correspond to the standard deviation of these
three measurements. The maximum particle Reynolds number
during the levitation motion is Re = 7.6. Very good agree-
ment is observed between the experimental trajectory and
the one obtained with the point-particle simulation based on
the DNN-based drag correlation. This observation shows the
promising performance of the DDN model in predicting the
drag coefficient of a 1:10 disk.

FIG. 17. Vertical position of a 1:10 disk in a magnetized param-
agnetic liquid as a function time. The red dashed line corresponds to
the numerical solution of (21) with the DNN-based drag coefficient.
To enable the comparison, the numerical results are slightly shifted
in time. The experimentally obtained trajectory is indicated by the
dotted line.
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TABLE III. Coefficient of drag CD,e. Leftmost column: incidence angle, top row: Reynolds number Ree, and center: values of CD,e.

Drag 0.46 2.32 4.64 9.28 13.92 18.57 23.21 27.85 32.49 37.13 41.77 46.42 51.06 55.7

0.000 74.660 18.130 10.460 6.250 4.710 3.880 3.350 2.980 2.700 2.480 2.300 2.160 2.040 1.930
5.000 74.920 18.210 10.510 6.300 4.750 3.910 3.380 3.010 2.730 2.510 2.340 2.190 2.070 1.960
10.000 75.730 18.470 10.690 6.430 4.870 4.030 3.490 3.110 2.830 2.610 2.430 2.290 2.170 2.060
15.000 77.020 18.870 10.980 6.640 5.060 4.210 3.660 3.280 3.000 2.780 2.600 2.450 2.330 2.220
20.000 78.760 19.420 11.360 6.940 5.330 4.460 3.910 3.520 3.240 3.010 2.830 2.690 2.560 2.460
25.000 80.850 20.080 11.830 7.300 5.660 4.770 4.210 3.820 3.530 3.310 3.130 2.980 2.860 2.750
30.000 83.340 20.860 12.370 7.720 6.030 5.130 4.560 4.170 3.880 3.650 3.470 3.320 3.200 3.090
35.000 86.080 21.710 12.970 8.180 6.450 5.530 4.950 4.550 4.250 4.020 3.840 3.690 3.560 3.460
40.000 88.920 22.600 13.600 8.670 6.890 5.950 5.360 4.950 4.640 4.410 4.220 4.060 3.920 3.810
45.000 91.850 23.500 14.230 9.170 7.340 6.370 5.760 5.340 5.020 4.780 4.580 4.410 4.260 4.130
50.000 94.840 24.420 14.870 9.660 7.780 6.780 6.150 5.710 5.380 5.120 4.900 4.720 4.570 4.430
55.000 97.620 25.280 15.480 10.130 8.200 7.170 6.510 6.050 5.700 5.430 5.200 5.010 4.850 4.720
60.000 100.240 26.080 16.040 10.560 8.580 7.520 6.840 6.350 5.990 5.700 5.470 5.270 5.110 4.970
65.000 102.660 26.810 16.550 10.940 8.910 7.820 7.110 6.610 6.230 5.930 5.690 5.490 5.330 5.200
70.000 104.780 27.450 16.990 11.270 9.200 8.070 7.350 6.830 6.430 6.120 5.870 5.670 5.510 5.380
75.000 106.400 27.940 17.340 11.530 9.410 8.260 7.520 6.990 6.580 6.250 6.000 5.790 5.630 5.500
80.000 107.630 28.310 17.590 11.720 9.580 8.410 7.650 7.100 6.680 6.340 6.070 5.860 5.700 5.580
85.000 108.330 28.520 17.740 11.840 9.680 8.500 7.730 7.170 6.730 6.390 6.100 5.860 5.690 5.580
90.000 108.530 28.590 17.790 11.870 9.700 8.520 7.750 7.190 6.750 6.390 6.100 5.840 5.620 5.420

V. CONCLUSIONS

Predicting steady hydrodynamic interactions of nonspher-
ical particles becomes more challenging as the particle
nonsphericity increases. The complexity of the input-output
relations, on one hand, and the increased number of input
parameters, on the other hand, make the development of em-
pirical force and torque models very difficult. In this paper,
we showed how statistical learning can serve as a versatile and
robust tool for predicting hydrodynamic interactions of non-
spherical particles with a viscous liquid. A machine learning
approach is proposed to create models for the Reynolds-
number- and incidence-angle-dependent steady drag, lift, and

pitching torque coefficient of a 1:10 oblate spheroid. A feed-
forward deep neural network is trained and validated using
a data set generated by resolved simulations at 261 differ-
ent combinations of particle Reynolds number and incidence
angle.

The effect of aspect ratio on the dependency of drag, lift,
and pitching torque on the particle Reynolds number and
incidence angle is illustrated, and advantages of a DNN-based
correlation method compared to conventional curve-fitting
methods are pointed out. It is shown that although the effect
of aspect ratio on the behavior of the drag force is small,
the lift and torque coefficients at low aspect ratios behave

TABLE IV. Coefficient of lift CL,e. Leftmost column: incidence angle, top row: Reynolds number Ree, and center: values of CL,e.

Lift 0.46 2.32 4.64 9.28 13.92 18.57 23.21 27.85 32.49 37.13 41.77 46.42 51.06 55.7

0.000 1·10−2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5.000 3.160 1.100 0.810 0.660 0.610 0.580 0.570 0.560 0.560 0.550 0.550 0.550 0.540 0.540
10.000 6.200 2.150 1.600 1.290 1.200 1.150 1.130 1.110 1.100 1.090 1.090 1.090 1.080 1.080
15.000 9.090 3.150 2.330 1.890 1.760 1.690 1.660 1.640 1.630 1.620 1.620 1.610 1.610 1.610
20.000 11.690 4.050 3.000 2.440 2.270 2.190 2.150 2.130 2.120 2.110 2.110 2.110 2.110 2.120
25.000 13.890 4.800 3.560 2.910 2.720 2.630 2.590 2.570 2.560 2.550 2.550 2.560 2.560 2.560
30.000 15.660 5.410 4.020 3.290 3.070 2.980 2.940 2.920 2.910 2.900 2.900 2.900 2.910 2.910
35.000 16.930 5.840 4.340 3.560 3.340 3.240 3.200 3.170 3.160 3.140 3.140 3.130 3.120 3.100
40.000 17.710 6.100 4.530 3.730 3.500 3.390 3.340 3.310 3.280 3.250 3.220 3.190 3.160 3.130
45.000 17.950 6.170 4.590 3.780 3.540 3.430 3.360 3.310 3.270 3.220 3.170 3.110 3.050 2.990
50.000 17.670 6.060 4.500 3.710 3.470 3.350 3.270 3.200 3.130 3.060 2.990 2.920 2.850 2.790
55.000 16.810 5.750 4.280 3.520 3.290 3.160 3.070 2.980 2.900 2.820 2.740 2.670 2.610 2.550
60.000 15.440 5.280 3.920 3.230 3.000 2.870 2.770 2.680 2.590 2.510 2.440 2.380 2.330 2.280
65.000 13.630 4.650 3.460 2.840 2.630 2.510 2.410 2.320 2.240 2.170 2.110 2.060 2.020 1.980
70.000 11.460 3.900 2.900 2.370 2.190 2.080 1.990 1.910 1.840 1.780 1.740 1.710 1.690 1.660
75.000 8.900 3.030 2.250 1.840 1.690 1.600 1.530 1.460 1.410 1.380 1.350 1.340 1.330 1.320
80.000 6.070 2.060 1.530 1.250 1.150 1.090 1.030 0.990 0.960 0.940 0.930 0.940 0.950 0.960
85.000 3.070 1.040 0.780 0.630 0.580 0.550 0.520 0.500 0.480 0.480 0.480 0.500 0.550 0.580
90.000 1·10−2 0.000 0.000 1·10−2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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TABLE V. Coefficient of torque CT,e. Leftmost column: incidence angle, top row: Reynolds number Ree, and center: values of CT,e.

Torque 0.46 2.32 4.64 9.28 13.92 18.57 23.21 27.85 32.49 37.13 41.77 46.42 51.06 55.7

0.000 3·10−2 1·10−2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5.000 1.140 0.980 0.890 0.810 0.780 0.760 0.740 0.740 0.730 0.720 0.720 0.720 0.720 0.710
10.000 2.330 1.940 1.760 1.600 1.530 1.490 1.460 1.440 1.430 1.420 1.410 1.410 1.400 1.400
15.000 3.370 2.830 2.570 2.330 2.220 2.160 2.120 2.090 2.070 2.060 2.050 2.040 2.030 2.030
20.000 4.360 3.640 3.300 2.990 2.850 2.760 2.710 2.670 2.640 2.620 2.600 2.590 2.580 2.570
25.000 5.170 4.330 3.920 3.550 3.370 3.270 3.190 3.140 3.100 3.070 3.050 3.030 3.010 2.990
30.000 5.820 4.890 4.420 3.980 3.770 3.640 3.550 3.490 3.430 3.390 3.350 3.320 3.290 3.270
35.000 6.310 5.290 4.780 4.290 4.050 3.900 3.790 3.700 3.630 3.560 3.510 3.460 3.410 3.360
40.000 6.630 5.550 5.000 4.460 4.200 4.020 3.880 3.770 3.680 3.590 3.500 3.420 3.350 3.270
45.000 6.690 5.620 5.060 4.500 4.210 4.000 3.840 3.710 3.580 3.460 3.350 3.250 3.140 3.040
50.000 6.570 5.520 4.970 4.400 4.090 3.870 3.680 3.520 3.370 3.230 3.100 2.980 2.870 2.770
55.000 6.320 5.280 4.730 4.160 3.850 3.610 3.410 3.240 3.070 2.930 2.800 2.680 2.580 2.490
60.000 5.820 4.860 4.340 3.810 3.500 3.260 3.060 2.880 2.720 2.590 2.470 2.370 2.280 2.210
65.000 5.150 4.290 3.830 3.350 3.060 2.830 2.640 2.480 2.340 2.220 2.130 2.050 1.980 1.910
70.000 4.320 3.600 3.210 2.790 2.540 2.340 2.180 2.040 1.930 1.840 1.770 1.710 1.660 1.610
75.000 3.310 2.790 2.490 2.160 1.960 1.800 1.670 1.560 1.490 1.430 1.390 1.360 1.330 1.290
80.000 2.270 1.910 1.700 1.470 1.330 1.220 1.130 1.060 1.010 0.990 0.980 0.980 0.980 0.970
85.000 1.080 0.950 0.850 0.750 0.670 0.620 0.570 0.540 0.520 0.510 0.520 0.550 0.600 0.630
90.000 8·10−2 2·10−2 1·10−2 2·10−2 2·10−2 1·10−2 1·10−2 1·10−2 1·10−2 1·10−2 1·10−2 1·10−2 1·10−2 1·10−2

very differently than at higher aspect ratios. The proposed
DNN model automatically learns the input-output dependen-
cies and can serve as an accurate metamodel in point-particle
simulations. The main advantage of DDN-based models is
that the correlation procedure does not require a priori in-
formation about the dependency of an output variable on an
input variable, a necessary condition for curve fitting meth-
ods. Furthermore, DNN models are applicable in cases of
large parameter space without introducing unsatisfactory high
biases.

We tested the performance of the constructed DNN model
in a point-particle simulation of a settling problem. The agree-
ment between the numerical and experimental data proved the
capability of the DNN model in interpolating and extrapolat-
ing a learned relationship.

In this paper, we considered a single aspect ratio at 0 �
Re � 120. Data for other aspect ratio or Reynolds number
ranges can be used as input in a straightforward manner to
extend the model to other aspect ratios and Reynolds numbers.
The DDN-based correlation procedure presented in this study
can be used to predict other fluid-particle hydrodynamic inter-
actions, such as velocity-gradient induced lift, and transient
effects, such as history and added mass forces. Once a new
database is generated, a model can be extended by just adding

additional input neurons and training the network with the
new data set.
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APPENDIX

The collected lumped data for steady drag, lift, and pitch-
ing torque coefficients are given in Tables III, IV, and V,
respectively. The coefficients are based on the cross sectional
area of the volume-equivalent sphere.
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