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Assessing the information content of complex flows
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Complex dynamical systems can potentially contain a vast amount of information. Accurately assessing how
much of this information must be captured to retain the essential physics is a key step for determining appropriate
discretization for numerical simulation or measurement resolution for experiments. Using recent mathematical
advances, we define spatiotemporally compact objects that we term dynamical linear neighborhoods (DLNs)
that reduce the amount of information needed to capture the local dynamics in a well-defined way. By solving
a set-cover problem, we show that we can compress the information in a full dynamical system into a smaller
set of optimally influential DLNs. We demonstrate our techniques on experimental data from a laboratory quasi-
two-dimensional turbulent flow. Our results have implications both for assessments of the fidelity of simulations
or experiments and for the compression of large dynamical data sets.
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I. INTRODUCTION

Spatially extended dynamical systems often contain huge
amounts of information [1]. Since they are described by par-
tial differential equations, the number of degrees of freedom
is formally infinite. Nevertheless, in practice, most complex
systems are well described by only a finite subset of these
degrees of freedom; that is, a projection of the full dynam-
ical system onto a lower-dimensional finite approximation
can capture all of the relevant physics [2]. This observation
underlies, for example, the numerical simulation of spatially
extended systems on discrete grids or various mode decompo-
sition schemes [3–5].

Accurate approximation, however, requires us to know
how many degrees of freedom we need to retain before the
physics of the discretized system differs appreciably from
that of the original system. In some cases, physical reasoning
can allow us to make estimates of the required number. In a
turbulent fluid flow, for example, Kolmogorov’s 1941 scaling
theory [6] argues that the range of important length scales
extends from the correlation length scale L down to the dissi-
pation length scale η. The ratio of these scales is predicted to
be L/η ∼ Re3/4, where Re is the turbulent Reynolds number.
The number of degrees of freedom further scales as L3, and
therefore as Re9/4 [7]. Thus, classical theory allows us to
make a prediction for how the number of degrees of freedom
scales with a parameter that governs the complexity of the
problem. Refinements of this estimate using, for instance,
the multifractal formalism do not change the prediction of
the number of degrees of freedom significantly [8]. For this
reason, simulations of turbulence typically only resolve scales
down to roughly η [7], and neglect the dynamics on finer
scales.
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Although the Kolmogorov estimate of the number of
degrees of freedom is by and large considered to be suc-
cessful, it nevertheless has several shortcomings. Importantly,
it is only an estimate of the typical (in an average, order-
of-magnitude sense) number of active degrees of freedom.
Instantaneously, however, the actual number can be signifi-
cantly larger [9,10]. Kolmogorov theory also only considers
one aspect of the turbulence problem, namely the statistical
properties of the (Eulerian) velocity field. If we are instead
primarily interested in transport and Lagrangian trajectories,
the number of required degrees of freedom is less clear due
to questions related to sampling and dynamics [11–13]. And
finally, Kolmogorov theory only applies to the flow of a
homogeneous, constant-property fluid at asymptotically high
Reynolds numbers. Thus, it cannot easily be used to estimate
requirements for a vast range of other relevant flows including
multiphase flow [14], transitional or intermediate-Reynolds-
number flow [15], or stratified turbulence [16,17].

Here, we introduce a flexible technique for assessing the
information content present in general dynamical flows. This
method extends our previous work on a kind of coherent
structure we termed linear neighborhoods [18] by augmenting
them with a dynamical length scale determined using the
recently developed stochastic sensitivity theory [12,13]. We
define spatially extended regions we call dynamical linear
neighborhoods (DLNs) that have the property that the flow
field at any point inside in a specified time window can be
computed up to a defined tolerance by simple linear extrap-
olation from a seed point. In an information-theoretic sense,
then, a DLN can be seen as a single degree of freedom of
the system. Computing the number of degrees of freedom of
the system can then be reduced to the solution of a set-cover
problem.

After defining DLNs, we demonstrate their computability
and use by analyzing data acquired from a laboratory quasi-
two-dimensional turbulent flow. We show that, as expected,

2470-0045/2021/103(2)/023301(6) 023301-1 ©2021 American Physical Society

https://orcid.org/0000-0002-5172-0361
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.023301&domain=pdf&date_stamp=2021-02-05
https://doi.org/10.1103/PhysRevE.103.023301


LEI FANG AND NICHOLAS T. OUELLETTE PHYSICAL REVIEW E 103, 023301 (2021)

the number of DLNs required to span the system grows
with Reynolds number. Additionally, we show that the flow
field can be reconstructed with high accuracy using only the
relatively small number of seed trajectories of the covering
DLNs, suggesting potential ways to use this framework for
data compression.

II. THEORY

In previous work [18], we defined finite-time coherent
structures by considering the behavior of the trajectories of
fluid elements. These trajectories are the solutions of the ordi-
nary differential equation

ẋ = u(x, t ), (1)

where u is the Eulerian velocity field (that is, a solution of
the Navier-Stokes equations). This equation admits the formal
solution

Ft0+T
t0 (x) = x(t0) +

∫ t0+T

t0

u
(
Fτ

t0 (x), τ
)
dτ (2)

over the time span from t0 to t0 + T , where Ft0+T
t0 (x) is the

flow map that transforms the initial position of the fluid ele-
ment x(t0) to its final position x(t0 + T ) under the action of
the velocity field u and the integral should be interpreted as a
path integral over the trajectory of the fluid element. If we now
consider some other fluid element with initial position y(t0),
we could write an analogous solution to Eq. (1). However,
if y is close to x, it would be reasonable to approximate its
trajectory by linear extrapolation from the trajectory of x. We
define this linear approximation as

Ft0+T
t0 (y)lin = y(t0) +

∫ t0+T

t0

{
u
(
Fτ

t0 (x), τ
)

+∇u
(
Fτ

t0 (x), τ
)[

Fτ
t0 (y) − Fτ

t0 (x)
]}

dτ, (3)

where we have Taylor-expanded the velocity about the posi-
tion of fluid element x at time τ and dropped higher-order
terms. The error in this linear approximation is given by
‖Ft0+T

t0 (y)lin − Ft0+T
t0 (y)‖. Dimensionally, this error is a length

scale that we denote as L�, and it characterizes the distance
between the estimated position of the fluid element at time
t0 + T and its true position. In our previous work [18], we de-
fined the set of all y for which L� was smaller than some fixed
threshold E as the linear neighborhood of the fluid element x,
because the behavior of these points could be captured up to
a defined error tolerance by knowing the behavior of x alone.
However, E is a free parameter, and the linear neighborhood
defined for any given fluid element depends on its value. One
stringent choice for E would be choose the resolution LR with
which we know the velocity field. However, this choice is still
arbitrary, and does not contain any information about the flow
dynamics.

To bring a dynamical notion of the quality of the linear
approximation into the picture, we turn to the recently devel-
oped stochastic sensitivity theory [12,13]. The central idea of
this theory is to explicitly account for the unavoidable effects
of error or uncertainty that arise in any practical setting on the
solutions of Eq. (1), and in particular the way such uncertainty

will be amplified over time by the (nonlinear) dynamics. By
modeling this process with a stochastic differential equation,
stochastic sensitivity theory allows the calculation of a spa-
tially resolved length scale LS that gives a bound on the error
we would expect in computing Ft0+T

t0 given only the dynamics
and the accuracy of our computation scheme. Details of this
calculation are given in Refs. [12,13]. If LS is larger than LR,
the spatial resolution of the velocity field, the uncertainty in
our computations will be dominated by the effective stochas-
ticity arising from the system dynamics and we say that we
are stochasticity limited [12]. Conversely, if LR > LS , poor
resolution is the dominant source of uncertainty, and we say
that we are resolution limited.

For our purposes here, these definitions provide a precise
way of deciding when the linear approximation in Eq. (3)
is acceptable: As long as L� is less than the length scale
associated with the dominant source of uncertainty, we cannot
distinguish error due to linearization from error due to other
effects. Thus, we define the dynamical linear neighborhood
(DLN) of a fluid element x to be the set of all y for which
L� < max(LS, LR). If possible, one hopes to set LR � LS so
that any uncertainty in the calculations is as small as possible.
We term x the center trajectory of the DLN, and stress again
that, by construction, any trajectory y within the DLN of x is
fully computable up to uncertainties inherent in the flow for
the full time window over which the DLN is defined given
information about x alone.

Under this definition, every trajectory x is the center tra-
jectory for a DLN. If we consider a finite random sampling
of trajectories, however, such as one might measure in a
particle-tracking experiment, their DLNs will in general over-
lap significantly in some parts of the flow, while other parts
of the domain may not be covered by any DLNs. This kind
of random sampling of DLNs is thus not particularly informa-
tive. Instead, we seek here to determine a minimal set of DLNs
that completely cover the flow domain. We can consider this
set to be the most influential DLNs in the flow; and, since
knowing only the center trajectories of this set of DLNs ought
to allow us to recover the flow everywhere, the number of
DLNs in this set can be taken to be a dynamically set estimate
of the number of degrees of freedom in the flow.

We note that our method differs in spirit from traditional
mode decomposition schemes such as proper orthogonal de-
composition [3] or dynamic mode decomposition [5]. Such
mode decompositions project the flow onto a set of ordered
modes that are localized in, e.g., energy but not in space. In
contrast, the DLNs in our method are spatially compact, and
any gradients in DLN size across the flow domain can reveal
local spatial scales in the flow as well.

III. EXPERIMENTAL METHODS

To demonstrate our DLN approach, we analyze data
obtained from experiments conducted in an electromag-
netically driven thin-layer flow cell that produces nearly
two-dimensional (2D) flow [19]. We describe this apparatus
only briefly here, as we have given more details previously
(see, e.g., Refs. [20,21]). The working fluid is a layer of
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NaCl solution (14% NaCl by mass in de-ionized water) with
lateral dimensions of 86 × 86 cm2 and a depth of 0.5 cm. The
fluid sits on a glass floor above a square grid of neodymium-
iron-boron permanent magnets organized with their polarities
alternating in stripes. The spacing of the magnets is Lm =
2.54 cm, which sets the typical energy injection scale for the
flow. We drive the flow by passing a dc current horizontally
through the NaCl solution, and the interaction of this current
with the magnetic field produces a Lorentz body force on the
fluid. The flow remains 2D as long as the current is not too
large [19]. The nondimensional strength of the forcing can
be captured by the in-plane Reynolds number Re = u′Lm/ν,
where u′ is the root-mean-square velocity and ν is the kine-
matic viscosity [22]. We note that this Reynolds number does
not directly capture either the width of the inverse energy cas-
cade regime or the direct enstrophy cascade regime, but rather
is indicative of the strength of the driving of the flow. Here, we
consider Reynolds numbers ranging from 77 to 288. We vary
the Reynolds number only by changing the electric current
and not by changing any length scales. We seed the flow
with fluorescent polystyrene microspheres 51 μm in diame-
ter. Above the NaCl solution, we float an additional 0.5-cm
layer of fresh water both to remove any surface-tension-driven
interactions among the tracer particles and to confine them to
a single plane defined by the interface of the fresh water and
NaCl solution. We image the tracer motion from above with
a four-megapixel camera at 60 frames per second. Particle
trajectories are extracted from the movies using a multiframe
predictive tracking algorithm [23], and velocities are com-
puted along the trajectories. We track roughly 30 000 particles
per frame, and so can use the tracer velocities to construct
well-resolved instantaneous Eulerian velocity fields. Finally,
to remove noise and ensure the two-dimensionality of our
data, we project the velocity fields onto a basis of streamfunc-
tion eigenmodes [19].

IV. RESULTS AND DISCUSSION

From these data, we seek to find the most influential DLNs
described above. To do so, we observe that this problem is
equivalent to the well documented set-cover problem in the
computer-science literature [24]. Here, we use an iterative
greedy algorithm to solve the set-cover problem. At each step
of the iteration, we add to our set the DLN that contains
the largest number of uncovered trajectories until either all
trajectories are covered or the coverage does not improve.
In Figs. 1(a) and 1(c), we show the set of most influential
DLNs and corresponding center trajectories for two flows
with different Reynolds numbers. Note that we plot these
DLNs at the initial time t0 even though in general they are
three-dimensional spacetime objects [18]. In particular, note
that as the center trajectories move in the flow, the associated
DLNs will move with them, though they will not necessarily
appreciably change their size. The corresponding Eulerian
flow fields at t0 are shown in Figs. 1(b) and 1(d). For smaller
Reynolds numbers, we observe that the DLNs are relatively
large and fairly isotropic. As the Reynolds number increases,
the DLNs shrink, as shown in Fig. 2 where we plot the
probability density functions of the area of each DLN. They

(a) (b)

(c) (d)

(a) (b)

(c) (d)

FIG. 1. (a) Most influential DLNs as determined by our greedy
algorithm for a flow with Re = 77. Here, T = 2 s, corresponding
to one eddy turnover time for the largest Reynolds number in our
data set (Re = 288). (b) Corresponding downsampled velocity field
(only 85% of the velocity vectors are shown, for clarity) at the initial
time t0. The locations of the center trajectories of the most influential
DLNs shown in (a) are marked. (c), (d) The same quantities as in
(a) and (b) but for a flow with Re = 234.

also begin to exhibit anisotropy indicative of the strong local
heterogeneity of the turbulent flow. Additionally, as we would
expect, as the Reynolds number increases, more DLNs are
needed to cover the whole domain. As shown in Fig. 3, we find
that the number of DLNs required scales as Re3/2. Because
the size of the domain does not change, this scaling suggests
that the typical linear size of a DLN (estimated as the square
root of its area) should vary as Re−3/4, which is precisely
what we find. Although it would be satisfying to compare this
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FIG. 2. Probability density functions of the area of individual
DLNs for our six different Reynolds numbers. As Re grows, the
typical area of a DLN shrinks.
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FIG. 3. The number of DLNs required to cover the full domain
as a function of the flow Reynolds number. The dashed line is a Re3/2

power law.

scaling to a theoretical prediction, it is not clear how to do
so. To change the Reynolds number in our system, we change
only the strength of the forcing; how this affects the widths
of the energy and enstrophy cascades in two-dimensional
turbulence, however, is nontrivial to determine. Thus, for the
present we leave this scaling as an empirical finding.

Showing that the number of DLNs required to cover the
flow domain increases with Reynolds number supports our
hypothesis that they are good choices for the relevant degrees
of freedom in the flow, suggesting that they contain most of
the relevant information. A more stringent test of this conjec-
ture is to attempt to reconstruct the flow field knowing only
the DLNs and the center trajectories. To do so, we followed
our definition of DLNs and linearly extrapolated the velocity
known at each center trajectory of the set of influential DLNs
over its full associated DLN. In Fig. 4, we compare the results
of this reconstruction with the full measured field, both sta-
tistically [Figs. 4(a) and 4(b)] and instantaneously [Figs. 4(c)
and 4(d)], at a Reynolds number of 216. Even though the re-
constructed field uses only 5.7% of the measured trajectories,
the accuracy of the reconstructed fields is excellent. This result
again underscores our claim that the DLNs accurately capture
the essential information contained in the flow: the quality
of the reconstruction suggests that the additional information
measured in the experiment is redundant.

Finally, we provide evidence that the information reduction
provided by our DLN approach is nontrivial by comparing the
quality of the DLN-based reconstruction to a simpler recon-
struction scheme. Any high-quality experiment or numerical
simulation will in general over-resolve the flow field to ensure
that no essential physics is missed; thus, one might argue that
it is not surprising that we can reconstruct the flow field well
from a small subset of the measured information. To test this
hypothesis, we used a simple data-reduction scheme. First,
we chose a random set of measured trajectories distributed
roughly uniformly over the flow domain. Triangulating these
points using a Delaunay triangulation allowed us to asso-
ciate a polygon with each point, at which point we could
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FIG. 4. Quality of a reconstruction of the flow field using a finite
set of DLNs containing only 5.7% of the measured trajectories for
flow with Re = 216. (a) Probability density functions of the veloc-
ity magnitude for both the original measurement (solid line) and
the reconstruction (dashed line). (b) Energy spectra of the origi-
nal measurement (solid line) and the reconstruction (dashed line).
The vertical line shows the energy injection scale. (c) A section of
the original velocity field (downsampled by 50% for clarity). (d) The
same section of the reconstructed velocity field with vectors plotted
at the same points as in (c).

use the same velocity field reconstruction scheme we used
for the DLNs. To vary the number of DLNs used to reconstruct
the field, we simply multiplied L� in the DLN definition by a
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FIG. 5. Comparison of the quality of our DLN-based reconstruc-
tion scheme (solid line) with one based on a random sampling of
the original velocity field (dashed line; see text for details). The
two methods are compared by measuring the mean of the mag-
nitude of the difference between the measured velocity and the
reconstructed velocity at every point in the flow field, scaled by the
root-mean-square velocity. This error is plotted against the number of
trajectories used for the reconstruction, scaled by the total number of
measured trajectories. Regardless of the number of trajectories used,
the DLN-based scheme always outperforms the random scheme.

factor, essentially requiring a looser or tighter bound on the
error in the linear approximation. As shown in Fig. 5, this

method does provide a reasonably good reconstruction of the
velocity field, given that the experimentally measured velocity
fields are indeed over-resolved. However, for any number
of seed trajectories chosen, a DLN-based reconstruction al-
ways outperforms the simpler scheme, potentially by large
factors.

V. CONCLUSIONS

To summarize, we have defined spatially compact struc-
tures (DLNs) that, by construction, allow one to reconstruct
the flow field inside as well as is dynamically possible us-
ing only the information from a single center trajectory. We
showed that not only can these regions be computed in a real
flow, but that by solving a set-cover problem we can isolate
the most influential DLNs that then give us insight into the
number of dynamically relevant degrees of freedom in the
flow. Using these influential DLNs, we show that we can very
accurately reconstruct the flow field using less information
than would be required by a simpler, random compression
scheme. These results suggest potential avenues both for
thinking about new adaptive mesh refinement schemes for
numerical simulations and for data compression schemes to
allow easier data sharing.
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[4] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S.
Henningson, Spectral analysis of nonlinear flows, J. Fluid
Mech. 641, 115 (2009).

[5] P. J. Schmid, Dynamic mode decomposition of numerical and
experimental data, J. Fluid Mech. 656, 5 (2010).

[6] A. N. Kolmogorov, The local structure of turbulence in incom-
pressible viscous fluid for very large Reynolds numbers, Dokl.
Akad. Nauk SSSR 30, 301 (1941).

[7] S. B. Pope, Turbulent Flows (Cambridge University Press,
Cambridge, UK, 2001).

[8] G. Paladin and A. Vulpiani, Degrees of freedom of turbulence,
Phys. Rev. A 35, 1971 (1987).

[9] Y. Kaneda and T. Ishihara, High-resolution direct
numerical simulation of turbulence, J. Turbul. 7, N20
(2006).

[10] T. Ishihara, K. Morishita, M. Yokokawa, A. Uno, and Y.
Kaneda, Energy spectrum in high-resolution direct numeri-
cal simulations of turbulence, Phys. Rev. Fluids 1, 082403(R)
(2016).

[11] S. Wiggins, The dynamical systems approach to Lagrangian
transport in oceanic flows, Annu. Rev. Fluid Mech. 37, 295
(2005).

[12] L. Fang, S. Balasuriya, and N. T. Ouellette, Disentangling
resolution, precision, and inherent stochasticity in nonlinear
systems, Phys. Rev. Research 2, 023343 (2020).

[13] S. Balasuriya, Stochastic sensitivity: A computable Lagrangian
uncertainty measure for unsteady flows, SIAM Rev. 62, 781
(2020).

[14] S. Balachandar and J. K. Eaton, Turbulent dispersed multiphase
flow, Annu. Rev. Fluid Mech. 42, 111 (2010).

[15] U. Piomelli, T. A. Zang, C. G. Speziale, and M. Y. Hussaini, On
the large-eddy simulation of transitional wall-bounded flows,
Phys. Fluids A 2, 257 (1990).

[16] G. N. Ivey and J. Imberger, On the nature of turbulence in
a stratified fluid. Part I: The energetics of mixing, J. Phys.
Oceanogr. 21, 650 (1991).

[17] S. K. Venayagamoorthy and J. R. Koseff, On the flux Richard-
son number in stably stratified turbulence, J. Fluid Mech. 798,
R1 (2016).

[18] L. Fang, S. Balasuriya, and N. T. Ouellette, Local linearity, co-
herent structures, and scale-to-scale coupling in turbulent flow,
Phys. Rev. Fluids 4, 014501 (2019).

[19] D. H. Kelley and N. T. Ouellette, Onset of three-dimensionality
in electromagnetically driven thin-layer flows, Phys. Fluids 23,
045103 (2011).

[20] L. Fang and N. T. Ouellette, Multiple stages of decay in two-
dimensional turbulence, Phys. Fluids 29, 111105 (2017).

023301-5

https://doi.org/10.1038/35008013
https://doi.org/10.1090/qam/1074969
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1017/S0022112009992059
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1103/PhysRevA.35.1971
https://doi.org/10.1080/14685240500256099
https://doi.org/10.1103/PhysRevFluids.1.082403
https://doi.org/10.1146/annurev.fluid.37.061903.175815
https://doi.org/10.1103/PhysRevResearch.2.023343
https://doi.org/10.1137/18M1222922
https://doi.org/10.1146/annurev.fluid.010908.165243
https://doi.org/10.1063/1.857774
https://doi.org/10.1175/1520-0485(1991)021<0650:OTNOTI>2.0.CO;2
https://doi.org/10.1017/jfm.2016.340
https://doi.org/10.1103/PhysRevFluids.4.014501
https://doi.org/10.1063/1.3570685
https://doi.org/10.1063/1.4996776


LEI FANG AND NICHOLAS T. OUELLETTE PHYSICAL REVIEW E 103, 023301 (2021)

[21] Y. Liao and N. T. Ouellette, Spatial structure of spectral trans-
port in two-dimensional flow, J. Fluid Mech. 725, 281 (2013).

[22] D. H. Kelley and N. T. Ouellette, Using particle tracking to
measure flow instabilities in an undergraduate laboratory exper-
iment, Am. J. Phys. 79, 267 (2011).

[23] N. T. Ouellette, H. Xu, and E. Bodenschatz, A quantitative study
of three-dimensional Lagrangian particle tracking algorithms,
Exp. Fluids 40, 301 (2006).

[24] V. Chvatal, A greedy heuristic for the set-covering problem,
Math. Oper. Res. 4, 233 (1979).

023301-6

https://doi.org/10.1017/jfm.2013.187
https://doi.org/10.1119/1.3536647
https://doi.org/10.1007/s00348-005-0068-7
https://doi.org/10.1287/moor.4.3.233

