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While the majority of fusion energy research is focused on magnetic confinement, there have been several
alternative confinement methods aimed at the development of smaller and less expensive reactors. A number
of these alternative reactors are based on a spherically convergent beam of recirculating ions and include
designs such as inertial electrostatic confinement (IEC), multigrid IEC, and the periodically oscillating plasma
sphere concept. Here, a fully time-dependent GPU-based Vlasov solver was developed in order to study these
spherically convergent devices. This code solves the Vlasov equation for a spherically symmetric system using
a finite-volume method with a modified flux to account for electrode transparency. The solver accounts for
secondary electron emission, interactions between the charged particles, and collisional effects such as ionization
and charge exchange. This code was used to investigate a system similar to the ion-injected device described
by Hirsch (see [R. L. Hirsch, J. Appl. Phys. 38, 4522 (1967)]), who had reported a neutron production rate
for deuterium-deuterium reactions in the range of 106 to 107 neutrons per second, which was attributed to the
formation of a virtual electrode structure near the center of the chamber. Attempts to reproduce this experiment
[B. J. Egle, Ph.D. thesis, 2010] yielded similar fusion rates, though the majority of the reactions were found
not to occur near the center of the chamber. The results of this Vlasov solver, considering only beam-beam
and beam-background fusion reactions, show that beam-background reactions would be dominant in such
an ion-injected device. This result is consistent with work by Baxter and Stuart, who proposed a simplified
steady-state Boltzmann model. However, the result of both models are inconsistent with the experimental results,
which indicate a higher neutron production rate, and an inverse pressure scaling trend. It is shown that the higher
experimental rates may be explained by beam-target fusion between the ion beam and deuterium embedded on
the inner surface of the cathode.

DOI: 10.1103/PhysRevE.103.023212

I. INTRODUCTION

An inertial electrostatic confinement (IEC) fusion device
consists of a vacuum chamber containing one or more spher-
ical electrode grids designed to accelerate ions toward the
center of the device, creating a spherically convergent beam
in which ions may be recirculated through the partially trans-
parent grids. While many IEC experiments involve the use
of cathode grids constructed of wire mesh, an interesting
feature of the original Farnsworth-Hirsch configuration [1–3]
was that the cathode grid was largely opaque, and ions were
injected into the cathode region through small ports using six
diametrically opposed ion guns. Any openings into the grid
were held at a negative bias to permit the inward flow of ions
while confining secondary electrons into the central region as
much as possible. It was thought that this configuration could
encourage the formation of one or more virtual electrodes in
the central region, which could help facilitate ion trapping
and increase the ion-ion fusion reaction rate. Hirsch’s analysis
of this system [2] assumed the injection of a monoenergetic
ion beam in a spherically symmetric system, and predicted
the development of a multiple virtual-electrode structure. Ex-
perimentally, Hirsch had reported a neutron production rate
for such a device in the range of 106 to 107 neutrons per

second, and that this rate decreased with increasing pressure
from 0.013 to 1.040 Pa (0.1 to 7.8 mTorr—for the purpose of
making comparisons to previous work, non-SI units will be
used hereafter).

Though IEC devices were originally investigated as po-
tential fusion power sources, analysis such as that offered
by Rider [4,5] and Nevins [6,7] point out the difficulties in
obtaining net energy output from an IEC device. Particularly,
since IEC relies on a non-Maxwellian distribution of particle
energies, it is argued that the energy required to maintain this
distribution over the timescale needed to obtain substantial fu-
sion reactions would exceed the possible fusion power output.
In addition to relaxation of the ion energy distribution, the
angular momentum imparted to the ions during Coulomb scat-
tering collisions will disturb the idealized spherical symmetry
of the system.

Despite these critiques, there has been continued in-
terest in IEC devices, particularly for their potential as
low-cost neutron sources. There are a number of applica-
tions for neutron production via fusion reactions including:
neutron activation analysis [8–10], medical isotope activa-
tion [11,12], neutron radiography [13,14], contraband and
explosives detection [15–17], and space craft propulsion [18].
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The development of a fast neutrons on-demand system could
allow a user to generate neutrons and other high energy par-
ticles (3He, 4He, tritium and protons) using an inexpensive
laboratory-based system and without the hazards of always
active radioactive sources [19]. The appeal of using an IEC
device for neutron generation is the possibility of using beam-
beam reactions as a source regime (with greater than linear
fusion rate scaling with current), instead of target based sur-
face reactions. With further development of IEC systems and
their variants, research into improving neutron production
rates and applications can flourish, while the larger systems
such as the international ITER project are developed for power
applications.

Hirsch’s fusion rate was unmatched by other IEC devices
until recently, and was attributed to the organization of the
discharge into a dense virtual electrode structure near the
center of the chamber, as evident from collimated-neutron de-
tection (suggesting beam-beam reactions as a primary source
regime). However, more recent attempts [20] to recreate this
experimental configuration have matched (and somewhat ex-
ceeded) the original results, but have called into question
the source of fusion neutrons for such a device—there is
evidence that beam background and beam target were the
dominant reaction regimes in this case. Further, theoretical
treatment by Baxter and Stuart [21], who proposed a steady-
state Boltzmann model in linear geometry, predicted a similar
neutron production rate (NPR) to Hirsch, attributed only to
beam-background reactions. However, in this model the NPR
pressure scaling curve only approaches Hirsch’s data in a
significantly higher pressure range.

In this study, a time-dependent numerical solver for the
Vlasov-Poisson system in a spherically symmetric geometry
was developed to analyze an ion-injected IEC device. Though
a spherically symmetric system is highly idealized, it rep-
resents a “best-case” scenario for the conditions described
by Farnsworth and Hirsch. In a real system, it is expected
that ion-ion Coulomb scattering and imperfect focusing will
impart an angular component to the ion velocity distribution.
However, even in the context of spherical symmetry there
are debated issues concerning the fusion source regime and
the formation of virtual electrodes within the IEC discharge.
The focus of this paper is to determine if a system operating
under parameters similar to those described by Hirsch would
be capable of trapping ions in a multiple virtual electrode
structure, and to help elucidate the conflicting experimental
and theoretical treatments of the fusion source regime in such
a device. The simulations that were performed suggest that the
NPR reported by Hirsch may arise primarily from beam-target
reactions.

The Vlasov equation describes the time evolution of colli-
sionless plasma:

∂ fα
∂t

+ �v · ∂ fα
∂�x + �F · ∂ fα

∂ �p = 0. (1)

where fα = fα (�x, �p, t ) represents the phase-space density of
particle species α (ions or electrons). The phase-space density
represents the number of particles at a particular position �x,
with momentum �p. (Here, �v is the time rate of change of �x, and
�F is the time rate of change of �p). A self-consistent field, in

the electrostatic limit, is obtained by relating the phase-space
density to the charge density [22]:

ρ(�x) =
∑

α

∫
qα fα (�x, �p, t )d3 p. (2)

The associated electric potential then obeys the Poisson equa-
tion, with the space charge density (due to the free charges)
acting as a source (in addition to any applied external poten-
tial):

∇2V = − ρ

ε0
, (3)

where V is the electrostatic scalar potential, ρ is the charge
density, and ε0 is the free space permittivity.

In this work, we consider the ions and electrons in the
IEC discharge as weakly collisional, though some collisional
effects with the background gas, including ionization, inelas-
tic scattering, and charge exchange reactions are included
by using the phase-space density to calculate the appropriate
reaction rates. Previous studies have modeled IEC devices
using particle-in-cell simulations [23–25], which use compu-
tational macroparticles to follow the characteristic curves of
the Vlasov equation. The work described here uses a finite-
volume scheme to directly solve the phase-space distribution
on a finite mesh, using a conservation form of the Vlasov
equation.

II. SIMULATION METHOD

For this study, we consider a phase space consisting of one
radial spatial dimension and one radial momentum component
(1D-1P). The spherical Vlasov-Poisson system is given by

∂ fα
∂t

+ vr
∂ fα
∂r

+ qαEr
∂ fα
∂ pr

= 0,
1

r

∂

∂r

(
r2 ∂φ

∂r

)
= − ρ

ε0
.

(4)

In this case the phase-space density represents the number
of particles within a spherical shell of radius r and width
δr, with momentum in the range (pr, pr + δpr ). The function
f has units of number of particles per meter per momenta.
Hereafter the radial subscripts will be assumed for velocity
and momentum.

A. Finite-volume method (FVM) with effective
electrode transparency

The numerical solver is implemented using the finite-
volume method (FVM), where the phase-space density is
represented on a rectangular mesh consisting of Nx spatial
cells, with spacing �x, and Np momentum cells with spacing
�p. The average phase-space density within a mesh cell, at

the kth time step, is denoted f
k
i, j , where i and j represent the

position and momentum indices of a mesh cell, respectively.
For a mesh cell with indices (i, j), the radial position is
given by

ri = (
i + 1

2

)
�x, (5)

so that a radius of zero (the center of the chamber) is repre-
sented at the left edge of the domain, and the momentum is
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given by

pi =
(

j −
⌊Np

2

⌋)
�p, (6)

so that the zero of momentum is taken to be the cell with index
�Np/2�. (It should be noted that �x is the same for all species,
but �p is species dependent.) The simulation time is given by
t = k�t .

In the FVM, the Vlasov equation is integrated over the
phase-space volume of a cell, and over one time step. This
casts the equation into a conservation form where the change
in the average phase-space density within one mesh cell is
determined by the flux through the cell boundary averaged
over one time step:

f
k+1
i, j = f

k
i, j − �t

�x�p

3∑
m=0

Gm. (7)

In Eq. (7), the summation of Gm represents the time-
averaged flux of phase-space density through the edges of a
phase-space cell. The flux terms are approximated using the
first-order Godunov flux functions [26]:

G0 = −�p

{
v f

k
i−1, j v > 0

v f
k
i, j v < 0,

G1 = �x

{
F f

k
i, j F > 0

F f
k
i, j+1 F < 0,

(8)

G2 = �p

{
v f

k
i, j v > 0

v f
k
i+1, j v < 0,

G3 = −�p

{
F f

k
i, j−1 F > 0

F f
k
i, j F < 0.

Each of the four flux terms has two cases: flow into a mesh cell
and flow out of a mesh cell. A unique feature of this solver
is that for the velocity flow, the flux terms corresponding to
an inward flow of particles are modified with an effective
transparency coefficient which reduces the particle flux, rep-
resenting particle loss to the electrode grids:

G0 = −�p

{
k(p)v f

k
i−1, j v > 0

v f
k
i, j v < 0,

(9)

G2 = �p

{
v f

k
i, j v > 0

k(p)v f
k
i+1, j v < 0.

These transparency coefficients can be defined for each grid,
and can be momentum dependent. This is useful when looking
at systems like Hirsch’s, in which ions are injected through
portals and may not escape as easily.

B. Boundary conditions

The phase-space distribution is truncated at the momentum
boundaries (the maximum momentum is made large enough
that the particle density is negligible at this boundary), and at
the boundary r = rmax. At r = 0, a mirror symmetry bound-
ary condition is employed so that f (−r, p) = f (r,−p) at the

FIG. 1. A system of N spherically symmetric electrode grids. The
simulation code takes the number of grids, as well as the radius and
time-dependent potential of each grid, as user-defined parameters.

i = 0 mesh cell. At this boundary, as particles with negative
momentum pass the center of the chamber, particles origi-
nating from the opposite side pass the center with a positive
momentum at the same time. In the limit that �x → 0, the
Coulomb force becomes large enough that no particle can
pass through this symmetric boundary; this is the case of
complete spherical convergence; since this is not attainable in
a physical device, the symmetric boundary condition and the
finite value of �x together embody the effects of imperfect
spherical focusing.

C. Electrostatic field solver

The code models a device consisting of any number of
spherically symmetric electrode grids, held at a potential Vn(t )
(Fig. 1). When setting up a simulation, the user defines the
number of electrodes, their radial locations (rn), and the poten-
tial Vn(t ) at which each is held, which can be a user-supplied
function of time. The largest electrode defines the outermost
radius of the device (rmax) and corresponds to the inner wall
of a spherical vacuum chamber.

In the one-dimensional (1D) spherical system, the number
density of particle species α is related to the 0th momentum
moment (μ0)α of its phase-space density by

nα (r) =
∫

fα (r, p)d p

4πr2
= (μ0)α

4πr2
, (10)

giving a charge density of

ρα (r) = qα (μ0)α
4πr2

. (11)

The electric field within the device at a radius r is due to
the effective charge of the closest electrode at rn (such that
rn < r), as well as the free charge enclosed between rn and
r (the electrodes are assumed to shield any other enclosed
charge). Letting Qn, Vn, and rn represent the effective charge,
voltage, and radius of the nth electrode (numbered in order of
increasing radius), the effective charge for the nth electrode
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can be calculated from Gauss’s law:

Qn =
[

(Vn− Vn+1)+
∫ rn+1

rn

qenc(r)dr

4πε0r2

]
4πε0

(
1

rn
− 1

rn+1

)−1

,

(12)
where qenc(r) represents the free charge enclosed between rn

(the nearest electrode with radius less than r) and r:

qenc(r) =
∑

α

∫ r

rn

ρα (r′)4πr′2dr′ =
∑

α

∫ r

rn

qα (μ0)αdr′.

(13)
In the discrete phase space, the 0th momentum moment is
calculated as

(μ0)α =
∑

j

( fi, j�p)
α
�x, (14)

and the integrals that appear in Eqs. (12) and (13) are cal-
culated using a trapezoid rule. Once Qn is known for all the
electrodes, and qenc is calculated for all spatial cells, the total
electric field at the ith spatial cell (between n and n + 1) is
directly calculated using Gauss’s law:

E (ri ) = 1

4πε0r2
i

(qenc(ri ) + Qn), (15)

which satisfies the Poisson equation in spherical coordinates.
In addition to the grid parameters, the user can also define
the particle injection in terms of an injection current and the
radius of a spherical injection surface.

D. Calculating the simulated neutron production
rate and atomic processes

Once the phase-space distribution function, f (r, p), is
known at a time t , it can be integrated to determine the fusion
rate. In general, to calculate the fusion rate density (reactions
per volume per second) for collisions between two particle
species (labeled 1 and 2), the number density (as a momentum
distribution) for each species can be integrated as follows:

Rfusion =
∫∫

σ (Erelative )| �v1 − �v2|n1( �p1)n2( �p2)d3 p1d3 p2.

(16)
The factor σ (Erelative )| �v1 − �v2| contains the relative velocity
between the particle species and the fusion cross section
which depends on the relative energy between the two species
within a infinitesimal volume of phase space. This value will
subsequently be abbreviated (σ |v|).

To calculate the NPR, two reaction regimes are considered:
beam-beam reactions (between energetic particles, either ions
or fast neutrals) and beam-background reactions (between the
energetic particles and the background gas). In the 1D-1P
spherical system, there is only one momentum component,
and from Eq. (10) it can be seen that the momentum distri-
bution of the number density is given by

n(r, p) = f (r, p)

4πr2
. (17)

Using this expression in Eq. (16) for beam-beam reactions
gives

Rbeam(r) =
∫∫

f1(r, p) f2(r, p)

(4πr2)2
(σDD|v|)d p1d p2. (18)

(For same-species interactions, the double integral over mo-
mentum space is performed without double counting.) In this
study, we are looking only at the neutron production rate,
so in this context σDD refers only to the cross section for
the D(d, n) 3He reaction channel. These cross sections were
evaluated using the parametrization described by Bosch and
Hale [27]. For beam-background reactions, the momentum
distribution for the background gas is considered to be a Dirac
delta distribution, so Eq. (16) simplifies to:

Rbg(r) = n0

∫
f (r, p)

(4πr2)
(σ |v|)d p. (19)

In both cases, the total neutron production rate is obtained by
integrating the reaction rate density over the entire spherical
volume:

NPR =
∫

(Rbg(r) + Rbeam(r))(4πr2)dr. (20)

In addition to the fusion rate discussed above, atomic pro-
cesses between the charged particles (electrons and deuterons)
and the neutral background gas are considered, these include:
electron-impact ionization, ion-impact ionization, electron-
impact excitation, ion-impact excitation, and charge-transfer
(CX). The background gas is modeled as atomic deuterium
with a negligible momentum distribution, and a uniform
density n0 throughout the volume. These reaction rates are
evaluated in a similar manner to the beam-background fusion
reactions [Eq. (19)], but with the appropriate cross section for
the atomic process. The cross sections used for these charged
particle neutral interactions are implementations of the fitting
curves of Janev [28].

Energy interpolation

Ionization and excitation collisions between charged parti-
cles and neutrals result in small energy losses for the charged
species of just a few eV. This small loss of energy is, in most
cases, beyond the resolution of the momentum cell spacing
(this is compounded by the nonlinear spacing in terms of en-
ergy). However, these energy losses should still be accounted
for in order to determine overall device efficiency. If some
fraction of the phase-space density, � f , of a charged species
is to be scattered to a lower energy due to neutral collisions,
care should be taken to make sure that neither too little nor
too much energy is lost in the simulation due to the limited
resolution in momentum space.

In order to do this, an interpolation scheme based on con-
servation of energy and particle number was implemented.
Consider two adjacent momentum cells, with indices j and
j′, where j′ represents the next lowest energy cell. Let fi, j and
fi, j′ be the densities before the collision, and let f ′

i, j and f ′
i, j′

be the densities after the collision. The total particle number
between the two cells is conserved:

fi, j�x�p + fi, j′�x�p = f ′
i, j�x�p + f ′

i, j′�x�p

⇒ ( fi, j − f ′
i, j ) = −( fi, j′ − f ′

i, j′ )

⇒ � fi, j = � fi, j′ . (21)

In addition, the change in the integrated energy over two
adjacent momentum cells should equal �U , which represent
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the total energy lost due to a particular collisional process
within a cell over one time step:

p2
j

2m
( fi, j�x�p) + p2

j′2m( fi, j′�x�p) = �U . (22)

Using expression (6), and defining the relative momentum
index jr = j − �Np/2�, Eq. (22) becomes

�x�p3

2m
[( jr )2� fi, j − ( jr ± 1)2� fi, j] = �U . (23)

Using Eq. (23) to solve for � fi, j gives the interpolation
scheme:

� fi, j = 2m�U/�x�p3[
j2
r − ( jr ± 1)2

] . (24)

[Here, ( jr ± 1) represents the nearest momentum cell with
lower energy.]

E. Secondary electrons and backscattered particles

The role of secondary electron emission from the inner
surface of the cathode electrode in the creation of a virtual
cathode was discussed by Farnsworth [2]. A simple model of
secondary electron emission and ion backscattering was in-
cluded in the FVM Vlasov code in order to study the possible
effects of these processes on the IEC discharge, fusion rate,
and device efficiency. In each case, the incident particles are
assumed to impact the grid structure at normal incidence. Due
to the grid transparency, only a fraction of the incident flux
is considered to have undergone a collision with the grid’s
surface. To calculate the fraction of incident particles giving
rise to secondary electron emission (SEE), a modified form of
Eq. (9) is used:

G0 = −�p

{
[k(p) − 1]v f

k
i−1, j v > 0

v f
k
i, j v < 0,

(25)

G2 = �p

{
v f

k
i, j v > 0

[k(p) − 1]v f
k
i+1, j v < 0.

where the coefficient [k(p) − 1] determines the fraction of
incidence particle flux lost to the grid. For electron-impact, the
probabilistic model described by Pivi and Furman [29] was
used to determine the SE yield and the energy of the secondary
particles. The secondary electron emission is broken into three
components: backscattered, rediffused, and true secondary
electrons. For each momentum value represented on the finite
grid, the yield (Nemitted/Nincident ) and the average fraction of
the incident energy (Eemitted/Eincident ) of the emitted particles
are evaluated for each component and stored as a look-up
table. During the update step of the Vlasov simulation, the lost
flux to the grid is evaluated for each momentum cell, and this
value is multiplied by the appropriate SEE yield coefficient
to determine the scattered flux. The scattered flux is added
to back to the momentum cell corresponding to the scattered
energy and opposite direction.

The secondary emission due to ion impact is considered to
be proportional to the electronic stopping power (Se) of the
incident ions [30,31]. The electronic stopping power is deter-
mined for the relevant range of energies using the program

SRIM (Stopping and Range of Ions in Matter [32,33]), and
the resulting curve is multiplied by the constant � = 0.07442
Å/eV. This constant was determined using a weighted average
of the values compiled in Table III in Ref. [31] for Fe, Ni, and
Cr, with the weights 0.74, 0.18 and 0.08 reflecting the compo-
sition of stainless steel. The ion-induced secondary electrons
were assumed to have negligible energy in the Vlasov simula-
tion (the peaks of the secondary spectrum are assumed to be
only a few eV [34]). The yield of backscattered ions and their
average energies were computed using TRIM (Transport of
Ions in Matter [32]) for ions at normal incidence on stainless
steel over the possible range of incident energies. Interpola-
tion between the tabulated values obtained from SRIM/TRIM
was performed within the Vlasov simulation to obtain the ap-
proximate coefficients needed for the ion-induced secondary
electron and backscattered ion yields.

F. Implementation

For the finite volume scheme to be numerically stable,
an adaptive time step is used. The allowed time step for an
individual species is

�t = 1

2
min

(
�p

|qEmax| ,
�x

|vmax|
)

, (26)

and the simulation is advanced using the smallest �t among
all species. (Time steps are typically on the order of �t ≈ 1 ×
10−14s for the runs performed on this study). The code was
written with C++/CUDA, as Eqs. (7) and (8) can be com-
puted independently for each phase-space cell, which lends
itself well to parallelization. Several of the auxiliary equations
described above rely on taking momentum moments of the
phase-space distributions; in this case, the moments can be
computed using parallel reduction algorithms, which greatly
speeds computation times. For the present study, the resolu-
tion of the phase-space mesh used was 1024 × 1024 cells,
and the momentum space was truncated to the momentum
of a particle accelerated by 10× the cathode potential (for
example, a simulation with a cathode potential of −100 kV
has a maximum represented momentum corresponding to a
particle accelerated to 1 MeV.

To verify convergence of the neutron production rate, the
solver was run multiple times with the same physical pa-
rameters, but at various mesh resolutions. The results of this
convergence test are shown in Fig. 2. For each trial, the
simulation was run until an approximately steady-state NPR
was achieved (typically after 5 × 106 iterations), while the
NPR was logged every 1 × 104 iterations (500 data points
total). Due to small variations about the steady-state value, an
average of the last 50 data points is used as the reported NPR.
The geometry used in these tests matches that described in the
following section.

III. SIMULATION RESULTS

A. Simulation of Hirsch’s IEC device

In an attempt to simulate the six ion gun device described
by Hirsch, the simulation was set up with two electrodes: a
solid, grounded anode of radius rA = 8.9 cm, and a semi-
transparent cathode of radius rC = 5.7 cm with a potential VC
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FIG. 2. Convergence testing for the neutron production rate at
n0 = 1.0 mTorr, VC = −110 kV, with an ion injection current
of 10 mA.

applied by a power supply with an output limited to 10 kW.
An ion current of Ii = 10 mA was injected at the inner anode
surface. The geometry of this configuration is shown in Fig. 3.
Note that instead of six converging beams, the simulation
assumes a radially symmetric ion injection distributed over
a spherical surface, with the transparency coefficient of the
cathode emulating the admittance of ions through an accep-
tance port, and their subsequent trapping within the largely
opaque cathode structure. This transparency coefficient was
defined for the ions as

k(p) =
{

0.05 p > 0
0.95 p < 0,

(27)

FIG. 3. Schematic representation of the geometry used in simu-
lating the ion-injected IEC device.

FIG. 4. Representative snapshots of the phase-space density for
ions as determined using the time-dependent Vlasov model. (Here,
n0 = 1.0 mTorr, VC = −110 kV, Iion = 10 mA.)

this momentum dependence makes it so the majority of in-
jected ions are admitted through the cathode (due to the
acceptance ports) on their first pass, while being trapped
within the inner cathode region on subsequent transits through
the chamber. For the electrons, the transparency was set to
k(p) = 0.05, representing confinement of the electrons to the
inner region of the cathode, as was the case described by
Farnsworth [3] and Hirsch [2].

Representative samples of the simulation results for the
ion species are shown in Fig. 4. The cold beam of ions is
injected near rmax = 8.9 cm, and accelerated by the cathode
grid at rgrid = 5.7 cm. As the ion density reaches the cham-
ber’s center, ions injected from the other side reach the center
at the same time with opposite momentum, resulting in the
mirror-symmetric boundary near r = 0. Note that as ions with
positive momentum encounter the inner side of the cathode
grid, only a fraction of them pass due to the transparency
defined in Eq. (27).

For the first set of simulation runs, the solver was config-
ured to include the effects of space charge, charge exchange,
and ion/electron impact ionization and excitation (secondary
electrons and backscattered ions were omitted). Each run used
an injection current of I= 10 mA; and the background pres-
sure was swept from 0.1 to 60 mTorr; this sweep was repeated
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FIG. 5. Simulated neutron production rate over time (0.1 mTorr,
VC = −110 kV). The vertical dashed line represents the time it takes
an ion starting from rest at the outer edge of the chamber to reach the
center, as determined semi-analytically.

for cathode potentials of −50, −70, −90, and −110 kV.
(These parameters were chosen to cover the experimental
values used by Hirsch.) For each trial, the simulation was
run until an approximately steady-state NPR was achieved, as
shown in Fig. 5. The collected results from this set of pressure
sweeps are shown in Fig. 6.

FIG. 6. The simulated NPR pressure scaling for a Hirsch-like
device with pressure, for several cathode voltages.

FIG. 7. The simulated NPR compared to Hirsch’s results. Note
that the pressure scaling trend is inverted in the experimental pressure
range.

It was found that the NPR initially increases rapidly with
pressure, consistent with ion-background reactions being the
dominant source of fusion reactions. The NPR reaches a
maximum value, after which loss mechanisms such as charge
transfer begin to reduce the possible fusion rate. Plotting
these results alongside the original data published by Hirsch

FIG. 8. The effects of secondary electron emission and backscat-
tered particles on the fusion rate (0.1 mTorr, VC = −110 kV).
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FIG. 9. The radial distribution of the particle number density
(0.1 mTorr, VC = −110 kV). The spike of electron density at the
electrode grid is due to secondary electron emission.

(Fig. 7), it can be seen that the time-dependent Vlasov simula-
tion shows a lower NPR and an inverse pressure scaling trend
compared to the experiment results (though at 7.8 mTorr of
background pressure the simulation does begin to approach
the experimental results).

B. Effects of secondary electron emission

One aspect this simulation was aimed at investigating
was the formation of multiple potential wells near the cen-
ter of the cathode, which could be enhanced by secondary
electron emission from the inner surface of the cathode
grid, and the confinement of electrons to the inner cathode
area.

However, with all other parameters being the same, the
inclusion of secondary electrons and backscattered particles
did not cause the NPR to vary much, making it less in some
cases, and primarily caused the power supply model to reach
its current limit at pressures above 16 mTorr. A comparison
of the same pressure sweep at −110 kV with and without
secondary particles is shown in Fig. 8. Steady-state snap-
shots of the particle and reaction rate densities are shown
in Figs. 9 and 10, respectively. These snapshots were taken
from a single run but are qualitatively similar to the profiles
taken from other points in the pressure sweep. The particle
density profile (Fig. 9) shows a sharp increase of ion den-
sity toward the center of the device and an overall higher
density of ions throughout the inner region of the cathode.
While this does give rise to an increase in electric potential
toward the center of the device; no multiple virtual electrode
structures were seen in any of the simulation runs performed.
The simulated reaction rate is due to two contributions: ion-
ion and ion-background fusion (including energetic neutrals
created through charge exchange). The radial distribution
of the reaction rate densities for both (Fig. 10) shows that
ion-background reactions are the primary contributor to the
overall fusion rate, which is consistent with estimates by
Thorson [35].

FIG. 10. Neutron production rate density, radial distribution (0.1
mTorr, VC = −110 kV). The radius of the cathode grid is indicated
by the vertical dashed line.

IV. DISCUSSION

A. Comparison with a previous steady-state model

A method for solving the steady-state Boltzmann equation
applied to an IEC-like system was previously presented by
Baxter and Stuart [21], who had reached similar results to
what is reported here. Their model was based on the idea
that a beam of ions interacting with a cold background of
neutral particles could explain Hirsch’s results. It was as-
sumed that the ions would start at rest, and would undergo
constant acceleration from anode to cathode, before drifting
through the inner cathode region which is devoid of electric
fields (space charge effects were neglected in this model). Ions
that made it across the inner cathode region were lost to the
inner surface of the cathode. Along the entire path, ions could
undergo charge exchange with the background gas (resulting
in the formation of fast neutral particles). Both the ions and
the fast neutrals could undergo ionization, creating a spatially
distributed ion source, as well as fusion reactions with the
background gas. To validate the time-dependent Vlasov model
described in the current work, the simulated NPR was com-
pared to that predicted by this steady-state model.

To match the assumptions made in Baxter and Stuart’s
work, the following modifications were made to the time-
dependent Vlasov model: the radial electric field was replaced
with a constant electric field of magnitude E0 =VC/(5 cm), the
effects of space charge were removed, and the electron den-
sity function was omitted. Ion-neutral ionization and charge
exchange effects were included. The simulation was set up
with two electrodes: a solid, grounded anode of radius rA =
10.7 cm, and a cathode of radius rC= 5.7 cm. The cathode po-
tential was set to VC = −100 kV. The cathode only permitted
the flow of ions in one direction, this was accomplished by
defining the transparency coefficient as

k(p) =
{

0.0 p > 0
1.0 p < 0.

(28)

These parameters cause the time-dependent simulation to
behave as a 1D linear system in slab geometry, with an ac-
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FIG. 11. Comparison of the time-dependent FVM Vlasov code
to the steady-state model of Baxter and Stuart.

celeration region 5.0-cm long, and a field-free drift region
11.4 cm long (before an ion would collide with the inner
cathode wall); this is the same system considered by Baxter
and Stuart. The value of the background gas pressure, n0,
was swept over the range 0.1 100 mTorr, and the neutron
production rate was allowed to reach an equilibrium value
which was recorded for each trial.

It should be mentioned that Baxter and Stuart’s work was
reproduced for this paper by numerically integrating Eq. (11)
of their paper (see the Appendix for details). We believe that
the modified numerical scheme used for this reproduction and
the use of the fusion cross section parametrization described in
Ref. [27] provides a more accurate result than that originally
published in Ref. [21] and puts the two models into good
agreement. This pressure sweep was performed using both the
steady-state and time-dependent models, using both the DD
(Deuterium-Deuterium) and DT (Deuterium-Tritium) cross
sections. Both models give nearly identical results, which are
shown Fig. 11.

B. The role of surface fusion

The time-dependent Vlasov model presented here predicts
that beam-background fusion would be the primary source
of neutrons in an ion-injected IEC device like that described
by Farnsworth and Hirsch; the inclusion of secondary elec-
trons and backscattered particles into the model does not lead
to a substantially different outcome. While both the time-

dependent Vlasov model the steady-state model of Baxter and
Stuart agree with each other (in the limiting case that such
a comparison is applicable), both models fail to predict the
NPR of Hirsch’s experimental data and the observed pressure
scaling relationship.

A possible explanation for this discrepancy is the role of
embedded deuterium fusion, which is not an effect included
in the Vlasov simulation. As ions pass through the cathode
region, they collide with the inner wall of the cathode grid
and implant into the metal surface acting as a target for the
ion beam. Experimental evidence for this beam-target reac-
tion being a primary fusion source in a six-ion gun device
similar to Hirsch’s (University of Wisconsin’s SIGFE device)
is discussed in Ref. [20]. The following calculation was used
to obtain a rough estimate of the fusion rate due to embedded
deuterium at −110 kV and 10 mA of ion current: The beam
is considered monoenergetic, with a fusion rate per volume
between the beam and the embedded target given by

dRfusion = 1
2 ntargetnbeam〈σ (E )〉dV, (29)

where dV is an infinitesimal volume over which the reactions
occur. Assuming the ion beam has a uniform density over
an incident surface area A, the volume element dV is given
by dV = Adx, and the number density of the beam can be
expressed as

| �J| = |�I|
A

, |ρ�v| = |�I|
A

, |en�v| = |�I|
A

, nbeam = |�I|
evA

.

(30)

Inserting the expression for the beam density and the volume
element into Eq. 29 gives the following expression for the
infinitesimal fusion rate:

dRfusion = 1

2
ntarget

I

e
σ (E (x))dx. (31)

Due to energy loss via scattering of the incident ions within
the target material, the fusion cross section becomes a func-
tion of depth, which is integrated over the ion range, d , to
obtain the total fusion rate:

Rfusion = 1

2
ntarget

I

e

∫ d

0
σ (E (x))dx. (32)

This integral can be evaluated using the total stopping
power, St (x), as a function of depth:

E (x) = E0 −
∫ x

0
St (x)dx, (33)

where E0 is the incident energy of the particles impinging on
the metal surface. This gives the total fusion rate for the beam-
target reaction:

Rfusion = 1

2
ntarget

I

e

∫ d

0
σ

[
E0 −

∫ x

0
St (x)dx

]
dx︸ ︷︷ ︸

F (E0 )

,

Rfusion = 1

2
ntarget

I

e
F (E0). (34)

The integral factor, F (E0), which depends only on the energy
of the incident particles and the target material, was numer-
ically integrated. To do so, TRIM was used to calculate the
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total ion stopping power, St (x), for 110 keV deuterium ions
at normal incidence on stainless steel, as a function of depth;
as before, the parametrization given in Ref. [27] was used to
evaluate the DD cross section. Once F (E0) is determined, the
fusion rate is proportional to the incident current (assumed to
be 10 mA to match Hirsch’s data), and ntarget, the saturation
density of embedded deuterium.

The effective saturation density is dependent on both tem-
perature and previous damage to the target material [36,37];
since these are unknown in Farnsworth and Hirsch’s experi-
ments, an estimated density of 2 × 1021 cm−3 was assumed
(this estimated value is chosen based on previous mea-
surements [38–40]). These calculations give an embedded
deuterium fusion rate of around 2.5 × 107 N/s which is
nearly the value reported by Hirsch at the lowest pressure of
0.1 mTorr. This suggests that embedded deuterium fusion may
explain the discrepancy between the kinetic model presented
in this work, and the experimental results reported by Hirsch.

V. CONCLUSION

In this work, a time-dependent Vlasov solver was imple-
mented using the finite volume method, and applied to an IEC
device similar to that described by Hirsch in 1968. When con-
sidering only fusion reactions between the energetic particles
and themselves or the background gas (neglecting embedded
target fusion), it was found that the fusion rate of such a
device, even with the inclusion of secondary electron emission
and strong confinement of electrons, is consistent with beam-
background fusion as a primary source. While these results are
consistent with the steady-state model of Baxter and Stuart,
they are inconsistent with the experimental results of Hirsch,
who found an inverse pressure scaling trend. It is suggested
that these experimental results may primarily be due to beam-
target fusion between the ion beam and deuterium embedded
on the inner surface of the cathode. This result is supported by
experimental findings from another ion-injected device [20],
as well as other IEC devices [39,41].

Farnsworth and Hirsch’s design aimed to create a multiple
virtual electrode structure within the inner radius of the cath-
ode which would allow for the acceleration and recirculation
of ions. With the parameters used in these simulation runs,
no such multiple virtual electrode formation was noted, and
there was little to no ion recirculation due to the transparency
parameters chosen for the grid. However, with the 10-mA
ion current used, space-charge effects were not dominant, so
further work should be done simulating the operation of such
a device at much higher ion injection currents where such
effects can play a larger role in the discharge characteristics.

VI. FUTURE WORK

A primary reason this code was written was to study the
efficiency of RF-modulated and high current IEC systems.
A pulsed system may be able to take advantage of transient
increases in the fusion rate efficiency; such modes of oper-
ation were suggested by Farnsworth [1], as well as Barnes
and Nebel [42,43]. To understand the efficiency of a device
with RF modulation, the Vlasov code should be coupled to
an accurate model for the external power supply circuits, as

the discharge can couple to a multiple power supply system
in a complicated way. A high-efficiency IEC device would
require better ion confinement, lower background pressures
and higher injection currents in order to leave the regime
where beam-target and beam-background reactions are dom-
inant. Under these conditions space charge effects are more
appreciable (which has been seen in the Vlasov simulation at
higher currents) giving a possibility for self-organization of
the discharge under the influence of a pulsed external voltage
source, which may enhance particle trapping.

To study a higher current discharge would require a few
modifications to the simulation code. Currently, the neutral
gas is modeled as a constant background density. For larger
currents, the depletion of the neutral species (due to ioniza-
tion) would need to be tracked. This could be done using
a 1D model in which each spatial cell tracks the average
background density, which would be subjected to a nonlinear
diffusion equation. At higher core densities, the Fokker-
Planck model is more appropriate than the collisionless
Vlasov equation. While this is much more computationally
expensive, it could be selectively applied only to cells with a
threshold particle density; this would mainly apply only to the
central core region thereby reducing this computational cost.
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APPENDIX: STEADY-STATE MODEL

In Ref. [21], Baxter and Stuart find analytic expressions
for the phase space density of ions and fast neutral particles
by using the method of characteristics to solve the steady-
state Boltzmann equation. Inserting these expressions into the
charge continuity equation results in the following expression
[Eq. (11) in the reference]:∫ ε0x/l

0
dε

l

ε0
S

(
x − lε

ε0

)
− n0

∫ x

0
dx′

∫ ε0x′/l

0
dε

× σION(ε)e−ξ (ε)

[
ε

l

ε0
S

(
x′ − lε

ε0

)
+ n0

× σCX (ε)
∫ x′

lε/ε0

dx′′ l

ε0
S

(
x′′ − lε

ε0

)]
= mI0

e
. (A1)

Here, ε represents energy, l is the interelectrode distance, ε0 is
the energy corresponding to the full cathode potential, x is the
distance from the anode, σION and σCX are the ionization and
charge-exchange cross sections, S(x) is an unknown spatially
distributed ion source, and ξ (ε) is defined as

ξ (ε) = n0l

ε0

∫ ε

0
dε′σCX (ε′). (A2)

Once the function S(x) is determined, the ion and fast
neutral density functions can be integrated to calculate the
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fusion rate (see the reference for details). In the reproduction
of this model, Eq. (A1) was integrated numerically to find
S(x). To do so, variable substitution was used to convert all
integration to integration over x:∫ x

0
dx′ f

[ε0

l
(x − x′)

]
S(x′)

− n0

∫ x

0
dx′

∫ x′

0
dx′′g

[ε0

l
(x′ − x′′)

]
S(x′′)

− n2
0

∫ x

0
dx′

∫ x′

0
dx′′h

[ε0

l
(x′ − x′′)

]

×
∫ x′′

0
dx′′′Sx′′′ = mI0

e
, (A3)

with the following definitions:

f (ε) = e−ξ (ε), g(ε) = σION(ε)e−ξ (ε),
(A4)

h(ε) = σCX (ε)σION(ε)e−ξ (ε).

On a uniform discrete grid, S(x) is defined as S(x) =
S(n�x). The x = 0 element is found by noting that S(x)
contains a Dirac delta term to describe the ion injection [this
must be the case for Eq. (A3) to hold for any x]. The discrete
representation of this 0th element is

S0 = mI0

e�x
. (A5)

For x > 0, both sides of Eq. (A3) can be differentiated, and
written as a discrete sum (noting that f (0) = 1):

Sn − n0

n∑
i=0

�xgn,iSi − n2
0

n∑
i=0

�xhn,i

i∑
j=0

�xS j = 0. (A6)

The coefficients gn,i and hn,i represent the functions
g(ε0/l (xn − xi )) and h(ε0/l (xn − xi )), both of which go to 0
when n = i. Noting this, and picking off the last term of each

FIG. 12. The spatially distributed ion source function S(x), as
determined by Eq. (A7).

summation gives the following result:

Sn = n0�x
n−1∑
i=0

(
gn,iSi + n0�xhn,i

i∑
j=0

S j

)
. (A7)

Equation (A7) gives an iterative solution to the spatially
distributed ion source, S(x), which can then be used to eval-
uate the fusion rate. Examples of these source functions
(excluding the Dirac delta term) are shown in FIG. 12.

[1] P. T. Farnsworth, Electric discharge device for producing inter-
actions between nuclei, US Patent 3258402 (June 28, 1966).

[2] R. L. Hirsch, Inertial-electrostatic confinement of ionized fu-
sion gases, J. Appl. Phys. 38, 4522 (1967).

[3] P. T. Farnsworth, Method and apparatus for producing nuclear-
fusion reactions, US Patent 3386883 (May 13, 1968).

[4] T. H. Rider, A general critique of inertial-electrostatic confine-
ment fusion systems, Phys. Plasmas 2, 1853 (1995).

[5] T. H. Rider, Fundamental limitations on plasma fusion sys-
tems not in thermodynamic equilibrium, Phys. Plasmas 4, 1039
(1997).

[6] W. M. Nevins, Can inertial electrostatic confinement work be-
yond the ion-ion collisional time scale? Phys. Plasmas 2, 3804
(1995).

[7] W. M. Nevins, A review of confinement requirements for ad-
vanced fuels, J. Fusion Energy 17, 25 (1998).

[8] D. L. Bleuel, C. B. Yeamans, L. A. Bernstein, R. M. Bionta,
J. A. Caggiano, D. T. Casey, G. W. Cooper, O. B. Drury, J. A.
Frenje, C. A. Hagmann, R. Hatarik, J. P. Knauer, M. G. Johnson,
K. M. Knittel, R. J. Leeper, J. M. McNaney, M. Moran, C. L.
Ruiz, and D. H. G. Schneider, Neutron activation diagnostics
at the national ignition facility (invited), Rev. Sci. Instrum. 83,
10D313 (2012).

[9] G. H. Miley, H. Momota, H. Leon, B. Ulmen, G. Amadio,
A. Khan, G. Chen, W. Matisiak, A. Azeem, and P. Keutelian,
Cylindrical IEC fusion neutron source for broad area NAA, J.
Eng. Gas Turb. Power 133, 124502 (2011).

[10] J. C. Laul, Neutron activation analysis of geological materials,
At. Energy Rev. 17, 603 (1979).

[11] B. B. Cipiti and G. L. Kulcinski, Embedded d-3he fusion reac-
tions and medical isotope production in an inertial electrostatic
confinement device, Fusion Sci. Technol. 44, 534 (2003).

023212-11

https://doi.org/10.1063/1.1709162
https://doi.org/10.1063/1.871273
https://doi.org/10.1063/1.872556
https://doi.org/10.1063/1.871080
https://doi.org/10.1023/A:1022513215080
https://doi.org/10.1063/1.4733741
https://doi.org/10.1115/1.4002889
https://doi.org/10.13182/FST03-A392


BLACK, WOOD-THANAN, MARONI, AND SÁNCHEZ PHYSICAL REVIEW E 103, 023212 (2021)

[12] B. B. Cipiti, The fusion of advanced fuels to produce medical
isotopes using inertial electrostatic confinement, Ph.D. thesis,
University of Wisconsin, Madison, WI, 2004.

[13] M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and
J. Banhart, Advances in neutron radiography and tomography,
J. Phys. D 42, 243001 (2009).

[14] N. Kardjilov, I. Manke, A. Hilger, M. Strobl, and J. Banhart,
Neutron imaging in materials science, Mater. Today 14, 248
(2011).

[15] A. Buffler, Contraband detection with fast neutrons, Radiat.
Phys. Chem. 71, 853 (2004), 9th International Symposium on
Radiation Physics (ISRP-9).

[16] K. Yoshikawa, K. Masuda, T. Takamatsu, E. Hotta, K.
Yamauchi, S. Shiroya, T. Misawa, Y. Takahashi, M. Ohnishi,
and H. Osawa, Research and development on humanitarian
landmine detection system by use of a compact d-d fusion
neutron source, Fusion Sci. Technol. 52, 1092 (2007).

[17] N. Elsheikh, G. Viesti, I. ElAgib, and F. Habbani, On the use of
a (252cf-3he) assembly for landmine detection by the neutron
back-scattering method, Appl. Radiat. Isot. 70, 643 (2012).

[18] C. Dietruch, Improving particle confinement in inertial-
electrostatic fusion for spacecraft power and propulsion, Ph.D.
thesis, Massachusetts Institute of Technology, Cambridge, MA,
2007.

[19] I. Radia and Y. Rep, Neutron Generators for Analytical Pur-
poses, Radiation Technology Reports No. 1, IAEA, Vienna
(2012).

[20] B. J. Egle, Nuclear fusion of advanced fuels using converg-
ing focused ion beams, Ph.D. thesis, University of Wisconsin,
Madison, WI, 2010.

[21] D. C. Baxter and G. W. Stuart, The effect of charge exchange on
ion guns and an application to inertial-electrostatic confinement
devices, J. Appl. Phys. 53, 4597 (1982).

[22] F. Filbert, E. Sonnendrucker, and P. Bertrand, Conservative
numerical schemes for the Vlasov equation, J. Comput. Phys.
172, 166 (2001).

[23] M. Ohnishi, Y. Yamamoto, M. Hasegawa, K. Yoshikawa, and
G. H. Miley, Study on an inertial electrostatic confinement
fusion as a portable neutron source, Fusion Eng. Des. 42, 207
(1998).

[24] K. Noborio, T. Sakai, and Y. Yamamoto, Investigation of spatial
distribution of neutron production rate and its dependency on
pressure in spherical IECF by one-dimensional simulations, in
20th IEEE/NPSS Symposium on Fusion Engineering (IEEE,
New York, 2003) pp. 59–71.

[25] K. Noborio, Y. Yamamoto, Y. Ueno, and S. Konishi, Confine-
ment of ions in an inertial electrostatic confinement fusion (iecf)
device and its influence on neutron production rate, Fusion Eng.
Des. 81, 1701 (2005).

[26] J. Büchner, Vlasov-code simulation, in Advanced Methods for
Space Simulation, edited by H. Usui and Y. Omura (TERRA-
PUB, Tokyo, JP, 2007), pp. 23–46.

[27] H. S. Bosch and G. M. Hale, Improved formulas for fusion
cross-sections and thermal reactivities, Nucl. Fusion 32, 611
(1992).

[28] R. Janev, D. Reiter, and U. Samm, Collision Processes in
Low-Temperature Hydrogen Plasmas (Max Planck Institute for
Plasma Physics, Jülich, DE, 2003).

[29] M. A. Furman and M. T. F. Pivi, Probablistic model for the sim-
ulation of secondary electron emission, Phys. Rev. ST Accel.
Beams 5, 124404 (2002).

[30] E. J. Sternglass, Theory of secondary electron emission by high-
speed ions, Phys. Rev. 108, 1 (1957).

[31] E. W. Thomas, International Atomic Energy Agency Report
INDC(NDS)-322, Vienna, Austria (1995).

[32] J. F. Ziegler, J. Biersack, and U. Littmark, The Stopping of Ions
in Matter (Pergamon, New York, 1985).

[33] J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Srim - the
stopping and range of ions in matter (2010), Nucl. Instrum.
Meth. B 268, 1818 (2010).

[34] S. Y. Lai, D. Briggs, A. Brown, and J. C. Vickerman, The re-
lationship between electron and ion induced secondary electron
imaging: A review with new experimental observations, Surf.
Interface Anal. 8, 93 (1986).

[35] T. A. Thorson, R. D. Durst, R. J. Fonck, and A. C. Sontag,
Fusion reactivity characterization of a spherically convergent
ion focus, Nucl. Fusion 38, 495 (1998).

[36] K. L. Wilson and A. E. Pontau, The temperature dependence of
deuterium trapping in fusion reactor materials, J. Nucl. Mater.
85-86, 989 (1979).

[37] S. M. Myers, S. T. Picraux, and R. E. Stoltz, Defect trapping
of ion-implanted deuterium in fe, J. Appl. Phys. 50, 5710
(1979).

[38] R. A. Langley, J. Bohdansky, W. Eckstein, P. Mioduszewski,
J. Roth, E. Taglauer, E. W. Thomas, H. Verbeek, and K.
L. Wilson, Data compendium for plasma-surface interactions,
Nucl. Fusion 24, S9 (1984).

[39] R. Bowden-Reid, J. Khachan, J.-P. Wulfkühler, and M. Tajmar,
Evidence for surface fusion in inertial electrostatic confinement
devices, Phys. Plasmas 25, 112702 (2018).

[40] J. Kasagi, H. Yuki, T. Baba, T. Noda, T. Ohtsuki, and
A. G. Lipson, Evidence for surface fusion in inertial elec-
trostatic confinement devices, J. Phys. Soc. Jpn. 71, 2881
(2002).

[41] M. Bakr, K. Masuda, and M. Yoshida, Improvement of the neu-
tron production rate of iec fusion device by the fusion reaction
on the inner surface of the iec chamber, Fusion Sci. Technol. 75,
479 (2019).

[42] R. A. Nebel and D. C. Barnes, The periodically
oscillating plasma sphere, Fusion Technol. 38, 28
(1998).

[43] J. Park, R. A. Nebel, S. Stange, and S. K. Murali, Periodi-
cally oscillating plasma sphere, Phys. Plasmas 12 056315-1
(2005).

023212-12

https://doi.org/10.1088/0022-3727/42/24/243001
https://doi.org/10.1016/S1369-7021(11)70139-0
https://doi.org/10.1016/j.radphyschem.2004.04.110
https://doi.org/10.13182/FST07-A1642
https://doi.org/10.1016/j.apradiso.2012.01.004
https://doi.org/10.1063/1.331309
https://doi.org/10.1006/jcph.2001.6818
https://doi.org/10.1016/S0920-3796(97)00199-3
https://doi.org/10.1016/j.fusengdes.2005.09.013
https://doi.org/10.1088/0029-5515/32/4/I07
https://doi.org/10.1103/PhysRevSTAB.5.124404
https://doi.org/10.1103/PhysRev.108.1
https://doi.org/10.1016/j.nimb.2010.02.091
https://doi.org/10.1002/sia.740080302
https://doi.org/10.1088/0029-5515/38/4/302
https://doi.org/10.1016/0022-3115(79)90390-8
https://doi.org/10.1063/1.326761
https://doi.org/10.1088/0029-5515/24/S1/001
https://doi.org/10.1063/1.5053616
https://doi.org/10.1143/JPSJ.71.2881
https://doi.org/10.1080/15361055.2019.1609821
https://doi.org/10.13182/FST98-A51
https://doi.org/10.1063/1.1888822

