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Stability of ablation flows in inertial confinement fusion: Nonmodal effects
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Fast transient growth of hydrodynamic perturbations due to nonmodal effects is shown to be possible in an
ablation flow relevant to inertial confinement fusion (ICF). Likely to arise in capsule ablators with material
inhomogeneities, such growths appear to be too fast to be detected by existing measurement techniques, cannot
be predicted by any of the methods previously used for studying hydrodynamic instabilities in ICF, yet could
cause early transitions to nonlinear regimes. These findings call for reconsidering the stability of ICF flows
within the framework of nonmodal stability theory.
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I. INTRODUCTION

Inertial confinement fusion (ICF) was proposed some 50
years ago as a viable means for harnessing thermonuclear
fusion with the aim of producing energy. This scheme relies
on the irradiation of spherical capsules of millimeter size,
filled with thermonuclear fuel, at high energy fluxes capa-
ble of producing, over nanoseconds, a fuel compression of
thousands of times solid density [1]. Such high compressions
critically depend, however, on a mitigation of hydrodynamic
instabilities during capsule implosion, since these may ham-
per the compression and heating of the fuel, possibly ruining
the whole process. In particular, the subsonic heat-wave flow,
or ablation flow, that results from the irradiation of the outer
layer, the ablator, of a fusion capsule and drives its implosion
was right away considered as a dominant factor of hydro-
dynamic perturbation growth [2,3]. Despite several decades
of dedicated numerical simulations, experiments, theoretical
works, and improvements in the understanding, prediction,
and mitigation of capsule implosion perturbations, ICF is still
in practice impeded by issues of hydrodynamic instability
(e.g. Refs. [4–6]).

The strongly compressible, nonuniform, and unsteady na-
ture of capsule implosions, besides the complexity of the
high-temperature physics at stake, renders the study of their
hydrodynamic stability especially arduous. Two types of ap-
proaches have then been pursued: (1) stability analyses using
simplified physical modelings and (2) computations of pertur-
bation amplifications trying to be as realistic as possible. The
framework of compressible inviscid fluid dynamics with non-
linear heat conduction has undoubtedly contributed to a better
understanding of ablation flow instabilities (cf. the review
of Ref. [7]). Corresponding stability analyses have exclu-
sively consisted in applying the method of normal modes, or
modal stability analysis, for idealized reduced portions of the
implosion flow (e.g. steady, quasi-isobaric, constantly acceler-
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ated, at times discontinuous, ablation flows) or more realistic,
i.e. simulated, flows under the frozen-time assumption. Such
analyses, since they focus on the least stable eigenmode of
the flow, can yield only asymptotic stability results and are
inevitably, given the implosion unsteadiness, of restricted
validity in time and perturbation wave number ranges. Per-
turbation amplification computations belong to a different
approach, sometimes called amplification theory (AT), which
consists in computing responses of an arbitrary base flow, the
solution to an initial and boundary value problem (IBVP), to
selected initial and/or boundary perturbations. Such compu-
tations are not sufficient by themselves for obtaining results of
stability. Nevertheless, this approach has been widespread in
ICF, especially using multidimensional hydrodynamics codes
dedicated to ICF physics since the restrictive settings of theo-
retical models are thus avoided.

Yet another approach exists that has never been considered
in ICF and which consists in applying methods of nonmodal
stability theory [8], the sole one capable of giving stabil-
ity results for unsteady flows, irrespective of time horizons.
However, given available computational means, the task is
daunting for a complete capsule implosion, and it is therefore
logical to start with a simpler flow. In the present work, we
initiate this effort by performing a nonmodal stability analysis
of an unsteady ablation flow modeling the early stage of a
capsule implosion.

Confidence in the ability of ICF hydrodynamics codes
to reproduce instability dynamics has been progressively
built through comparisons between AT computations and
specifically designed experiments where a dominant, i.e.
that considered most detrimental, perturbation source is se-
lected by carefully controlling experimental conditions (e.g.
Refs. [9,10]). However, AT computations, carried out with
these very codes, still display unexplained discrepancies with
ablation experiments on capsule ablators at standard spec-
ifications for fusion [11,12]. The short history of ICF has
shown that, among the many possible explanations, over-
looking some perturbation sources or unappreciated effects
is highest on the list (see Ref. [6], Sec. V). For several
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decades, based on modal stability analyses, AT computations,
and dedicated experiments, roughness of the ablator surfaces
was considered as the most detrimental perturbation source.
Intensive efforts were spent on this issue, leading to surface
finish requirements for fusion. By then ablator material inho-
mogeneities were thought to play a minor role. This way of
thinking was turned around by the experiments of Ref. [11]:
Ablator inhomogeneities in fact could be a major perturbation
source [13]. In such experiments [11,12], many perturbation
sources are competing, without an artificial dominance of
one on the others, and the characterization of their initial or
temporal contributions is insufficient for setting up sufficiently
representative AT computations. In addition, it is known that
perturbation eigenmodes that are stable according to modal
stability theory can induce, through their interaction, per-
turbation transient growth [14]. Hence different perturbation
sources—even though each of them, separately, is identified
to be minor—could lead, upon proper combination, to per-
turbation amplification. Modal stability theory, by assuming
that eigenmodes are orthogonal, ignores such interactions, or
nonmodal effects. In principle, AT computations could capture
such growths provided that they are started from appropriate
initial conditions. However, identifying systematically these
most detrimental initial perturbations requires the use of meth-
ods that have never been considered in ICF. The alternative—a
brute force use of AT computations for sampling the space of
eligible initial conditions so as to, hopefully, find those leading
to maximum amplification—is at best unrealistic. Therefore a
genuine risk exists of missing the most detrimental perturba-
tion sources due to a lack of a proper methodology.

Nonmodal stability theory precisely furnishes such a
methodology by fully exploiting the fact that the finite-time
dynamics of a system is ruled not only by the eigenvalues of
its evolution operator but also by this operator eigenmodes
[15]. Elaborated over the last 30 years, this theory has been
successful in elucidating some withstanding problems in hy-
drodynamic stability [8]. Until proven otherwise, nonmodal
effects and associated transient growths cannot be ruled out
nor held as negligible in ICF ablation flows. By performing a
linear nonmodal analysis, local in space and time, we address
the questions (1) of whether or not an ICF ablation wave may
present nonmodal effects and (2) of the associated mecha-
nism(s) of transient growth.

In the rest of this article, we first present the chosen model-
ing and equations of motion for the base flow and linear per-
turbations (Sec. II). Necessary notions of nonmodal analysis
are then reviewed (Sec. III A) and a local nonmodal stabil-
ity analysis of linear perturbations is performed, leading to
initial conditions for maximal initial growth of perturbations
(Sec. III B). Temporal responses of these maximal growth ini-
tial conditions are computed (Sec. III C) and the mechanisms
underlying these transient growths are analyzed (Sec. IV). The
implications of the results in the context of ICF are discussed
(Sec. V) and the main results are recalled (Sec. VI).

II. ABLATION FLOWS

The present stability analysis is conducted on a self-similar
ablation flow in slab symmetry representative of the early
stage of an ICF capsule implosion [16–19]. During this

FIG. 1. Self-similar ablation-wave solution to Eq. (1) for
γ = 5/3, (μ, ν ) = (2, 13/2), and boundary condition parameters
(Bφ,Bp) = (0.8, 0.31). Dimensionless spatial profiles in the coor-
dinate x at time t0 = 1 of the fluid density ρ, longitudinal velocity
vx , and heat flux ϕx . Correspondence with the actual physical extent
of the wave, relative to the shock front, at the chosen reference time
of a simulated capsule implosion is also indicated (top axis) (see the
Appendix).

so-called shock transit stage, the leading shock front of the
ablation wave has not yet reached the ablator inner surface and
the capsule has not started its converging motion. Since the ab-
lator is thin compared to the capsule radius, the approximation
of slab symmetry is amply justified. The chosen self-similar
flow presents the essential features of the subsonic heat wave
that prevails within the capsule ablator during this stage of
the implosion (compressibility, stratification, unsteadiness),
including its whole structure (Fig. 1): (i) a leading shock front,
(ii) a quasi-isentropic compression region, (iii) an ablation
layer, and (iv) an expansion wave where heat conduction
dominates (“conduction region”).

A. Base flow

A dimensionless formulation of the equations of motion
is retained so as to keep the flow description as general as
possible [18,20]. For one-dimensional motion along the x-axis
of a Cartesian coordinate system (O, x, y, z), the equations of
motion, written in the Lagrangian coordinate m where dm =
ρ dx, are written as

∂t (1/ρ) − ∂mvx = 0,

∂tvx + ∂m p = 0, (1)

∂t
(
CvT + v2

x /2
) + ∂m(pvx + ϕx ) = 0,

where ρ, vx, p, T , ϕx denote, respectively, the fluid density,
velocity, pressure, temperature, and heat flux as functions of
(m, t ). The dimensionless equation of state for a polytropic
gas,

p = ρT, with Cv = 1/(γ − 1),

γ being the fluid adiabatic exponent, and the heat-flux expres-
sion

ϕx = −ρ−μT νρ ∂mT, μ � 0, ν > 1,

supplement this system. For the choice γ = 5/3, (μ, ν) =
(2, 13/2), Eq. (1) describes the motion of a monatomic gas
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with the radiative conduction model of Kramers [21]. This
modeling is an approximation for the ablation of a fusion
capsule ablator by hohlraum x rays in current ICF laser fa-
cilities. This approximation is relevant to the ablator opaque
portion which stays at temperatures below a few 106 K and at
thermodynamic equilibrium. Radiation diffusive effects then
dominate those of thermal conduction and viscosity, and ra-
diation pressure and energy are negligible in front of their
material counterparts. If Eq. (1) cannot render nongray irra-
diation effects, it contains the basic diffusion mechanism at
stake, at the hydrodynamic scale, in this ablation process.
Such a modeling of radiative ablation compares favorably
with any of the models previously used for investigating
hydrodynamic stability of ablation flows and designing exper-
iments (e.g. see Ref. [7] and references therein): it retains the
same compressible inviscid fluid model for a polytropic gas
with a nonlinear heat conductivity in powers of the density
and temperature. However, none of the additional restrictive
assumptions (e.g. flow steadiness, constant and uniform ac-
celeration field, quasi-isobaric approximation, semi-infinite
fluid domains) that are commonly used in these other stability
studies of ablation flows are invoked here.

Self-similar reductions of Eq. (1) occur when considering
a semi-infinite slab (m � 0), initially such that (ρ, vx, T ) =
(const, 0, 0), is subject to boundary conditions, at the mate-
rial surface m = 0, of the form

ϕx(0, t ) = Bφt3α−3, p(0, t ) = Bpt2α−2, for t � 0, (2)

with α = (2ν − 1)/(2ν − 2); cf. Refs. [17–19]. Self-similar
solutions to Eq. (1) with such initial and boundary conditions
are presently computed by means of an adaptive multidomain
Chebyshev method capable of a high-accuracy description of
the flow down to its finest scales [22]. This numerical method
has been verified against results from a hydrocode simulation
[18, Fig. 11] of an IBVP defined after Eqs. (1) and (2) and
approximate analytical solutions [19, Appendix A].

For the present study, the base-flow solution (Bφ,Bp) =
(0.8, 0.31) that has been retained (Fig. 1), is computed using
39 domains with 50 collocation points each. This solution has
been chosen among a large set of self-similar ablation waves
[19], on the basis of its hydrodynamic characteristic numbers
which are typical of the early stage of a capsule implosion:
subsonic ablation Mach number, high Froude number (>80)
at the ablation front, steep ablation front, and fast expansion
flow with Chapman–Jouguet point (Fig. 1). In actual or simu-
lated implosions, neither the radiative heat flux at the capsule
external surface, nor the pressure exerted by the hohlraum
filling gas, nor the capsule ablator opacity complies with the
constraints required for self-similarity. Yet spatial profiles of
self-similar flow variables possess essential features that re-
semble those obtained in simulations of the shock transit stage
of a realistic ICF capsule design; cf. Ref. [19]. In that respect,
results obtained with the chosen self-similar ablation wave
may be equally used in connection with a capsule ablation
simulation.

B. Linear perturbations

The stability of flows ruled by Eq. (1) is studied using
an Eulerian description of three-dimensional linear perturba-

tions in the coordinate system (x, y, z). Once expressed with
the Lagrangian coordinate m and Fourier transformed in the
variables (y, z), the corresponding system of governing par-
tial differential equations for the Fourier components of the
linear perturbations of the density, ρ̂, longitudinal velocity,
v̂x, transverse divergence of the transverse velocity, d̂⊥, and
temperature, T̂ , reads [cf. Ref. [20] and Eq. (4) in Ref. [23]]

∂t ρ̂ + ρ2 ∂mv̂x + ρ ∂mvx ρ̂ + ρ ∂mρ v̂x + ρ d̂⊥ = 0,

∂t v̂x + T ∂mρ̂ + ρ ∂mT̂ − ρ−1 T ∂mρ ρ̂

+ ρ ∂mvx v̂x + ∂mρ T̂ = 0,

∂t d̂⊥ − k2
⊥ ρ−1 T ρ̂ − k2

⊥ T̂ = 0,

∂t T̂ + C−1
v ρ ψT ′ ∂2

m2 T̂ + C−1
v ψρ ∂mρ̂ + C−1

v p ∂mv̂x

+ C−1
v [∂m(ρ ψT ′ ) + ψT ] ∂mT̂

+ C−1
v [∂mψρ − ρ−1 ∂mψ] ρ̂ + ρ ∂mT v̂x + C−1

v T d̂⊥

+ C−1
v [ρ ∂mvx + ∂mψT − k2

⊥ ρ−1 ψT ′] T̂ = 0,

or in vector form

∂t Û = A(m, t, ∂m., k⊥) Û, Û = (̂ρ v̂x d̂⊥ T̂ )�, (3)

with the convention

ψ(ρ, T, ∂xT ) ≡ −ρ−μT ν ∂xT = −ρ−μT νρ ∂mT,

and the notations ψρ , ψT , ψT ′ for the partial derivatives of
the heat-flux function ψ with respect to the density, temper-
ature, and temperature gradient. The perturbation evolution
operator, A, depends on space, time, and the wave num-
ber k⊥ = √

(k2
y + k2

z ). When considering self-similar ablation
waves solutions to Eqs. (1) and (2), boundary conditions
for linear perturbations at the location, m = msf (t ), of the
leading shock-wave front are derived from the nonisothermal
Rankine–Hugoniot relations for a perturbed shock front [20,
Appendix B]. At the fluid external boundary, m = 0, perturba-
tion boundary conditions correspond to the continuity of the
pressure and heat flux supplemented by the kinematic bound-
ary condition at this material surface [Eq. (5) of Ref. [23]]. For
the present study, zero perturbations for the state upstream to
the shock front and for the incident heat flux and boundary
pressure at the fluid external surface are retained.

Solutions to IBVPs based on Eq. (3) are computed, in
space, using the same multidomain Chebyshev method as for
Eq. (1) and, in time, with a three-step implicit-explicit Runge–
Kutta scheme. Verification of this computational method has
been performed in several instances by comparisons with ex-
act perturbation solutions [24–27]. This method has also been
previously used for computing linear perturbation responses
in perturbed configurations of ablation waves relevant to ICF
and corresponding to illumination asymmetries [17,20,28,29]
and to the ablative Richtmyer–Meshkov instability [29]. Cor-
responding results were analyzed to be in general agreement
with previous models of perturbation evolution for laser im-
printing [30,31] and ablative Richtmyer–Meshkov instability
[9,32] with, however, distinctive differences emphasizing, in
particular, the influence of the base-flow unsteadiness and
stretching; see Refs. [17,20,29] for details and discussions.
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III. LOCAL NONMODAL STABILITY ANALYSIS

A. Necessary notions of nonmodal analysis

Modal stability analysis infers the stability of a dynami-
cal system, ruled by an equation like Eq. (3), from the sole
basis of the least stable eigenvalue of its evolution operator,
A. This analysis is correct if the eigenmodes of A form an
orthogonal set—equivalently, if the operator A is normal—
and is otherwise only indicative of the long-time behavior of
the system. For finite-time horizons, a non-normal operator
A may induce transient growth of the system state variable
through eigenmode interactions, even if the system is stable
according to modal analysis [8,15]. For a time-dependent evo-
lution operator as in Eq. (3), the growth of the state variable
Û can be assessed at any given time t∗ from the instantaneous
growth rate of some chosen norm ‖Û‖, namely [14],

σ (t∗) ≡
(

1

‖Û‖2

d‖Û‖2

dt

)∣∣∣∣
t∗

= 2 Re

( 〈Û,A Û〉
〈Û, Û〉

)∣∣∣∣
t∗
, (4)

where 〈·, ·〉 denotes the scalar product associated to this norm.
The global norm is here defined after the scalar product

〈Û, V̂〉 = 1

2

∫ msf

0
ρ−1 Û†V̂ dm,

where the superscript † indicates the transconjugate. The ratio

〈Û,A Û〉
〈Û, Û〉

∣∣∣∣
t∗

is known as the numerical range of the operator A|t∗ and
defines a region of the complex plane, which, in the case of
an operator A of finite dimension, contains the spectrum of
A|t∗ . For a non-normal operator, as is generally the case, the
numerical range is larger than the convex hull of the spectrum.
In the case of a normal operator, the two regions coincide
[33]. In particular, this numerical range may protrude into
the unstable half-plane (Re > 0) even though the spectrum
of A|t∗ may be confined to the stable half-plane (Re < 0); cf.
Fig. 2(c). In such a case nonmodal growth occurs, i.e. an initial
amplification—transient growth—of Û may be observed, al-
though all eigenvalues are stable according to modal stability
analysis. The potential for such a transient growth is measured
by means of the maximum of the instantaneous growth rate
σ (t∗) over all nonzero possible states, or numerical abscissa
of A|t∗ , say,

σ∗ ≡ max
Û

σ (t∗). (5)

This numerical abscissa is given by the largest eigenvalue
of the normal operator (A + A†)|t∗ and is achieved when Û
is the principal eigenmode of this operator (cf. Ref. [14]),
thus defining the optimal-growth initial condition at time
t∗, say, Ûopt

∗ . The situation of non-normal growth described
above corresponds to the case max Re(�) < 0 < σ∗, where
� denotes the eigenvalues of A|t∗ . However, nonmodal effects
are not restricted to this specific configuration. Indeed, when
0 < max Re(�) < σ∗ [Fig. 2(b)], the system is unstable at all
time horizons but may display a transient growth that is faster
than the exponential growth of the least stable eigenmode. For
max Re(�) < σ∗ � 0 [Fig. 2(a)], the system is stable, here
again at all time horizons, but with an eventual transient decay

FIG. 2. Schematic layouts in the complex plane of eigenvalues
and numerical ranges corresponding to (a) modal stability with
slower nonmodal transient decay, (b) modal instability with faster
nonmodal transient growth, and (c) modal stability with nonmodal
transient growth.

that is slower than the exponential decay of the least stable
eigenmode.

B. Maximal initial growth rate

The possibility of perturbation short-time growth for the
self-similar ablation wave of Fig. 1 is investigated by means
of a local analysis, in time and space, of Eq. (3). In effect, for
some reference time t0 > 0 and at any location x◦ = x(m◦, t0)
within the wave extent, we consider perturbations of longitu-
dinal characteristic lengths that are shorter than the smallest
local gradient length of the flow, say, l∇ (x◦). Under this as-
sumption of a weakly stratified flow the operator A|t0 may
be held as uniform over a neighborhood of x◦, reducing the
analysis of Eq. (3) to that of the m-Fourier transform of A|t0 ,
say, A0, under the condition κx(x◦) ≡ ρ(x◦) km l∇ (x◦)  1
bearing on the longitudinal wave number km. Perturbation
transient growth is then assessed at t∗ = t0 by comput-
ing the maximum instantaneous growth rate σ0(km, k⊥, m◦),
which, in this configuration of longitudinal Fourier transform
amounts to

σ0(km, k⊥) ≡ max
Ũ∗

(
1

‖Ũ∗‖2

d‖Ũ∗‖2

dt

)∣∣∣∣
t0

, (6)

where Ũ∗ stands for the m-Fourier component of the re-
striction of Û to a neighborhood of m∗. Such computations
[34] are carried out for m◦ covering the whole extent of the
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FIG. 3. Intensity map, in the plane (x, κx ), of log σ0, σ0 > 0, ob-
tained from Eq. (5) for k⊥ = 1.2: (a) regions of nonmodal growth but
modal stability (color) and regions of modal instability (black) and
(b) σ0 − max Re(�) everywhere. Same horizontal axis conventions
as in Fig. 1.

ablation wave, for ranges of km such that κx(x◦) � 10, and
for different values of k⊥. Maps of σ0 as a function of the
flow location x◦ and of the normalized longitudinal wave
number κx are thus obtained (Fig. 3). Regions of nonmodal
growth, i.e. regions of modal stability but with positive σ0

[configuration of Fig. 2(c)], are identified [colored areas in
Fig. 3(a)] and distinguished from regions of modal instability
[configuration of Fig. 2(b)] (black areas). Sizable portions
of the conduction region (−1.15 � x � −0.12), the abla-
tion layer (x ≈ −0.12), for extended ranges of κx, and the
compression region (−0.12 < x < 0), for restricted κx, are
prone to nonmodal growth. In regions of modal instability
[black areas in Fig. 3(a)], the numerical range is larger than
max Re(�) [Fig. 3(b)], indicating a configuration of faster
transient growth [configuration of Fig. 2(b)]. These observa-
tions depict a situation where the local short-term dynamics
of flow fluctuations are determined by nonmodal effects, im-
plying that modal stability analysis is nowhere suitable for
their predictions and that perturbation transient amplifications
have to be taken into account and searched for. In short, for
all the perturbation wavelengths that have been tested, the
perturbation evolution operator for an ablation wave driven
by nonlinear heat conduction is non-normal.

C. Responses to optimal-growth initial perturbations

The actual occurrence of nonmodal growth is confirmed
by means of AT computations of Û by solving Eq. (3) for
t � t0 = 1 with the aforementioned boundary conditions at

TABLE I. (a) Characteristic growth times: σ−1
0 “predicted” via

Eq. (5) for the flow location x◦ = −0.06, and σ−1
AT extracted from

AT computations. (b) Corresponding values obtained for the chosen
reference time of a simulated capsule implosion(see the Appendix)
at the equivalent location, 1.1 μm downstream to the shock front.

(a)
(κx, κ⊥) (1758, 1.40) (1758, 5.26) (1758, 131.5)

σ−1
0 (10−5) 15.7 15.7 8.06

σ−1
AT (10−5) 15.2 15.2 7.87

(b)
(λ̄x, λ̄⊥) (μm) (0.080, 100) (0.080, 26.6) (0.080, 1.06)

σ̄−1
AT (ps) 0.22 0.22 0.11

the external surface and shock front (Sec. II B). Initial con-
ditions, inferred from the above nonmodal stability analysis,
are defined so as to comply with the assumption of a weakly
stratified flow. For a given longitudinal wave number km, the
solution is reconstructed from Ũopt

0 (see Sec. III A) as

Û(m, t0, k⊥) = w(m, km) Re
[
Ũopt

0 (m◦, km, k⊥) eikmm
]
, (7)

where w is a sufficiently smooth mask function, nonzero over
a limited domain centered on m = m◦. The comparison of
the measured initial growth rate σAT of the intial condition
(7) with the numerical abscissa, or optimal growth rate, σ0

assesses the relevance of the local nonmodal analysis. If σAT

and σ0 are close, then the dominant mechanisms are captured
by the local analysis. Otherwise the local analysis misses
some major features.

Results obtained at a midpoint location within the com-
pression region for normalized wave numbers κx, κ⊥ =
k⊥ l∇ (x◦) for which the method of normal mode predicts sta-
bility are detailed in Table I(a) and illustrated in Figs. 4(a),
5, and 6(a). Additional results at a location immediately
upstream to the ablation layer are illustrated in Figs. 4(b)
and 6(b). Growth rates σAT, extracted from AT computations
with initial conditions (7), are in good agreement with the
values of σ0(km, k⊥) given by Eq. (5). This agreement and
growth times, σ−1

AT , much smaller than the base-flow charac-
teristic time, here t ≈ 1, validate the local analysis leading to
Eq. (5). Through these simulations, initial transient growth
is verified at flow locations where modal stability analysis
predicts decaying perturbations, thus substantiating the reality
of local nonmodal effects in a typical ablation flow. The cor-
responding transient growths, with significant amplifications
of the perturbation norm [event A, Fig. 4(a)], result from
the constructive interaction between the localized entropy and
acoustic waves that dominate the optimal-growth initial condi-
tions (7) [event A, Figs. 5(a)–5(d)]. The ensuing perturbation
dynamics proceed from further mutual interactions of these
waves [events A and C, Figs. 4(a) and 5(a)–5(c)], their prop-
agation [Figs. 5(b–5(d)], and interactions with the ablation
layer [event B, Figs. 4(a) and 5(a), 5(b), and 5(d)] and shock
front [event D, Figs. 4(a) and 5(a) and 5(b)].

Hydrodynamic disturbances are classically detected in
ICF through measurements of longitudinal optical depth
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FIG. 4. Amplification of the perturbation norm, ‖Û‖/‖Û‖|t0 ,
(thick lines, left axis) and of the optical depth perturbation,
ÔD/ÔD|t0 (thin lines, right axis), for initial conditions Eq. (7) at
(a) a midpoint location within the compression region, x◦ = −0.06,
and (b) a location immediately upstream to the ablation layer, x◦ =
−0.11, with κx = 1758, κ⊥ = 1.40 (solid) or κ⊥ = 131.5 (dash).
Remarkable events in the evolution of ‖Û‖ are identified by letters A
to D.

perturbation [10], presently amounting to

ÔD =
∫ msf

0
ρ−1 (κρ ρ̂ + κT T̂ ) dm + [∂xκ x̂]sf

es,

where κ = 4 ρμT 3−ν is the fluid opacity [35], and x̂es|sf , the
deformation of the external surface-shock front. The pertur-
bation of the longitudinal optical depth is notably insensitive
to the transient growth, varying only when waves interact with
the ablation layer and shock front [events B and D, Fig. 4(a)].

IV. TRANSIENT GROWTH MECHANISM:
CONSTRUCTIVE INTERACTION OF

COMPRESSIBLE WAVES

The dynamics of perturbations in the flow compression
region, i.e. between the shock front and the ablation layer,
during the shock transit stage of a capsule implosion deserve
special attention. These dynamics are especially important
for the outcome of the implosion since they set the initial
conditions for the subsequent acceleration stage during which
major perturbation amplification occurs due to the ablative
Rayleigh–Taylor instability. The computations of perturbation
evolutions, started from the optimal-growth initial conditions
of Eq. (7) at locations within the compression region, show
that the fastest transient growth comes from the construc-
tive interaction between the different fundamental waves—or
Kovásznay modes [36]—that constitute these initial pertur-

bations (see Fig. 5) for t � 1). For the sample of transverse
wavelengths considered (Table I), these fundamental waves
are dominantly of the acoustic and entropy types, the initial
vorticity waves being of negligible contributions. This mech-
anism of wave interaction is intrinsic to compressible fluid
motion and is expected to occur in the compression regions of
actual ablation flows since in such regions effects of advection
prevail over those of heat transfer.

Corresponding dimensional data obtained in connection
with a simulation of a chosen ICF capsule implosion (see the
Appendix) are given in Table I(b), on upper axes of Figs. 4 and
6, and upper and right axes of Fig. 5. The associated figures
are indicative of characteristic lengths of perturbations that
are susceptible to yield transient growth. The perturbations
presently identified are in the tens of nanometers in the longi-
tudinal (or radial) direction and within the range 1–100 μmin
the transverse (or azimuthal) direction, corresponding for the
chosen capsule to Legendre modes ranging from 60 to 6000.
These lengths fall within the characteristic sizes of known
bulk inhomogeneities of currently used ablator materials [12].

In the flow compression region during the shock transit
stage, these materials are in a complex liquid state (densi-
ties of several g cm−3, temperatures around 1 eV), partially
dissociated and ionized, which is far from being known with
sufficient details and is still the object of ongoing studies.
The characteristic growth times σ−1

AT of the identified transient
growths are especially small: Tenths of a picosecond [Table
I(b)]. For CH plastic ablators, such times are an order of
magnitude larger than the acoustic transit time between atoms
and thus compatible with the assumption of local thermo-
dynamic equilibrium for translation motions. Nonequilibrium
effects associated to rotation and vibration motions cannot be
ruled out, but their assessment would require a more detailed
knowledge of these ablator materials under these liquid state
conditions. Effects of thermal conduction and of viscosity on
this transient growth mechanism would also need to be as-
sessed at the perturbation scales of tens of nanometers which
are involved [Table I(b)]. But here again adequate data and
modelings relevant to these specific liquid states are currently
insufficient for doing so.

Past the initial growth, the constructive interaction of
acoustic and entropy waves associated with the present tran-
sient growth leads to perturbation amplifications in the range
5–20 in a few picoseconds (Fig. 4). These amplifications,
as the instantaneous growth rates, are enhanced by a reduc-
tion of the transverse wavelength: compare the perturbation
norm responses, ‖Û‖/‖Û‖|t0 , for the two wave umbers κ⊥ =
1.40 (λ⊥ ≈ 100 μm) and κ⊥ = 131.5 (λ⊥ ≈ 1 μm) in Fig. 3.
The residual amplifications, once the initial wave interactions
have ended [i.e. after event A in Figs. 4 and 5(a)], slowly
decrease over tenths of nanoseconds while remaining at sig-
nificant levels. Such evolutions correspond to the advection,
or propagation (see Fig. 4), of the three kinds of waves
(i.e. entropy waves plus forward- and backward-propagating
acoustic waves) that are present in the initial perturbations,
and to their subsequent interactions with either the ablation
layer (event B) or the shock front (event D). All of these
processes and trends are reproduced for other locations of the
optimal-growth initial conditions Eq. (7), with a systematic
enhancement of amplifications when the zone of transient
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FIG. 5. Evolution of Û in the compression region for initial conditions Eq. (7) at x◦ = −0.06, in the case (κx, κ⊥) = (1758, 1.40). Same
conventions as in Fig. 1 with shock (sf) and ablation (af) front trajectories. (a) Local Euclidean norm. Components (absolute value) in
longitudinal pseudo-characteristic variables [23]: (b) forward and (d) backward acoustic waves, (c) entropy waves. (e) Transverse potential
vorticity. Labeled circles in (a) relate to the events identified in Fig. 4(a).

growth, or transient-growth spot, is close and upstream to
the ablation layer, as illustrated in Fig. 4(b) by comparison
with 4(a). This increased influence of a transient-growth spot
located close to the ablation layer is also obvious from the
dynamics of the ablation front deformations (Fig. 6).

V. DISCUSSION

This analysis of the consequences of constructive interac-
tions of compressible waves on the compression region and
ablation layer of an ablation flow presently involves isolated
transient-growth spots that are of limited spatial extents (in
effect, five longitudinal wavelengths). The conditions for the
occurrence of such constructive interactions—the presence of

acoustic and entropy plane waves of identical, or proportional,
longitudinal wavelengths—are likely to be met in ablators pre-
senting bulk material inhomogeneities. In such configurations,
the leading shock front of the ablation wave, encountering
these inhomogeneities, emits backward-propagating acous-
tic waves and leaves entropy or vorticity waves in the flow
compression region downstream (cf. Ref. [37]). These waves
will trigger emission, from the ablation layer, of forward-
propagating acoustic waves—as in the case of event B in
Fig. 4(a)–which will in turn interact with upstream acoustic
and entropy waves, at times constructively. For randomly dis-
tributed material inhomogeneities, constructive interactions
will occur repeatedly giving birth to distributions of transient-
growth spots within the compressed portion of the ablator. The
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FIG. 6. Time evolutions of the ablation front deformation, nor-
malized by ‖Û‖|t0 , for initial conditions Eq. 4 at (a) a midpoint
location within the compression region, x◦ = −0.06, and (b) a lo-
cation immediately upstream to the ablation layer, x◦ = −0.11, with
κx = 1758, κ⊥ = 1.40 (solid) or κ⊥ = 131.5 (dash).

repetitive encounters of these spots with the ablation layer
could result in an enhanced level of perturbations, including
ablative Rayleigh–Taylor modes, at the onset of the accel-
eration phase of a capsule implosion. As well, this process
could foster a build up of perturbations over a wide range
of characteristic lengths and over times shorter than the du-
ration of the shock transit phase, leading possibly to local
transitions to nonlinear regimes. Assessing the possibility of
such mechanisms and their consequences for an ICF capsule
ablation would require flow simulations not only at extremely
fine spatial resolutions, which so far have been undertaken
only once [5], their results showing enhanced shock-front per-
turbations, but also, given the nature of the transient-growth
mechanism, capable of a high-fidelity rendering of acoustic
phenomena at very disparate scales—something for which
ICF hydrodynamics codes are not particularly suited.

The insensitivity of the longitudinal optical depth to
transient growth and the growth timescales [Fig. 4(a)], signif-
icantly below current experimental measurement capabilities,
make the experimental detection of the above fast amplifi-
cation dynamics most unlikely in practice. Ablator materials
with bulk inhomogeneities, such as those used in the ex-
periments of Ref. [12], are likely to induce constructive
interactions of fluid waves since such inhomogeneities trig-
ger emissions by the shock front (ablation layer) of acoustic
and entropy (respectively, acoustic) fluctuations. High-density
carbon or beryllium materials for ablators can hardly be
processed so as to impose controlled bulk inhomogeneities,

similarly to what has been done for oxygen concentration
in CH plastic ablators. Therefore the detection of transient
growth events mainly relies on improved diagnostics. First,
current diagnostics do not have sufficient temporal resolutions
to capture subnanosecond growth phenomena. Second, optical
depth measurements in the longitudinal direction are blind to
compressible perturbation modes, as shown in Figs. 4(a) and
4(b). Optical depth measurements in a direction transverse to
the flow could yield some information about the dynamics
and spatial structures of perturbations in the flow compression
region, but under conditions of sufficiently high temporal and
spatial resolutions that thus far are not available.

Simulations with surface roughness alone could not ex-
plain the levels of shock-front nonuniformities that were
observed in these experiments. However, the leading mech-
anisms responsible for such perturbation levels are still
uncertain and cannot be unraveled on the sole basis of avail-
able experimental and simulation data. The present transient
growth mechanism is potentially one of them, contributing
to perturbation amplification in the compression region and
the ablation layer, and thus to an enhanced seeding of abla-
tive Rayleigh–Taylor modes for the subsequent acceleration
stage of a capsule implosion. Assessing the importance of this
mechanism in capsule implosions requires therefore experi-
mental diagnostics and/or detailed analyses of high-fidelity
simulations that have yet to come.

VI. CONCLUSION

The present work presents evidence of nonmodal effects
in the stability of an ablation flow related to ICF. In effect,
local transient growth of perturbations may occur in flow
regions that are stable according to the classical method of
normal modes. The identified mechanism of transient growth
is intrinsic to compressible fluid motion and thus generic
to any ICF ablation flow. This mechanism puts forth the
possibility, in an ablator with material inhomogeneities, of
fast perturbation amplifications, not directly detectable by
existing experimental diagnostics but contributing to pertur-
bation enhancement. Such amplifications, compatible with
trends observed in inhomogeneous ablator experiments and
simulations, could induce transitions to perturbation nonlin-
ear regimes earlier than foreseen by modal stability analysis.
Global nonmodal stability analyses and high-fidelity simula-
tions would at least be needed to investigate such a possibility,
which cannot be neglected until proven otherwise. More gen-
erally these findings call for applying methods of nonmodal
stability theory to ICF implosions so as to establish on firmer
grounds their predictions, thus reducing uncertainties thereof.

APPENDIX: CONNECTION WITH A CAPSULE
IMPLOSION SIMULATION

Considering a particular ICF capsule design (here that
given in Ref. [38], Fig. 1) and its implosion simulation with
an ICF hydrocode (code FCI2; cf. Ref. [39]), time and length
scales may be defined respectively from the duration of the
ablation flow regime within the period of the shock transit
stage and the distance traveled by the leading shock front
during this period. The starting time of this ablation regime
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is established as being one of the earliest times for which, in
the simulation, an ablation wave structure with a nonvanishing
extent of its shock-compressed region is clearly identified
within the ablator, presently t̄0 = 2.8 ns. This starting time is
associated with the reference time of the self-similar ablation
wave which may be set arbitrarily to be t0 = 1. The final time
of the ablation regime, in the simulation, is taken to be the
time of the leading shock-front breakout at the ablator inner
surface, here t̄1 = 12.9 ns. Over the flow period thus defined,
a linear perturbation initiated at the ablation front may prop-
agate as a forward acoustic wave towards the shock front
and then back to the ablation front as an advected entropy

wave [23], the whole being repeated a limited number of
times. This finite sequence of propagation-then-advection of
perturbations between the ablation and shock fronts is a key
mechanism of perturbation dynamics during the shock transit
stage; e.g. see Refs. [9,30]. Seeking to reproduce the same
wave sequence in the present self-similar flow is therefore
desirable and presently sets a lower bound on the maximum
time horizon for this flow, here t1 = 8. The correspondence
of flow durations and shock traveled distances between the
simulated flow and the self-similar solution defines the time
and length scales for the latter, in effect t� = 1.44 ns and
l� = 19.04 μm.
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