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Dynamics of the transition from a linear plasma wave to a nonlinear state characterized by the Bernstein-
Greene-Kruskal mode is studied within the framework of the Vlasov-Poisson system. In the linear stage, the
plasma distribution function ( f ) develops finer and finer structures in velocity space through a series of “mixing”
processes leading to the Landau damping of the plasma wave. These mixing processes inevitably result in strong
phase irregularities in velocity space. Using numerical simulations, it was observed that starting from the wave-
particle resonance region, this irregular phase pattern gets “smoothed out” through a process of spreading of
phase synchronization, which tends to reduce Landau damping, facilitating the formation of the nonlinear plasma
wave as a fully synchronized final state. It is also found that there exists a residual damping for the quasisteady
nonlinear wave when the phases of the particles are not fully synchronized.
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I. INTRODUCTION

The concept ofLandau damping as the collisionless damp-
ing of a perturbed Maxwellian plasma through wave particle
interactions [1] is one of the pillars of plasma physics stud-
ies since its key mechanisms were verified repeatedly in
experiments (e.g., Ref. [2]) and observed in countless nu-
merical simulations [3–5] of different kinds of plasmas. The
phenomenon generalizes readily to a system of coupled os-
cillators [6] and is probably one of the key contributions of
plasma physics to science at large [7] as it is observed in many
other physical problems.

Even though Landau damping is a well established ro-
bust phenomenon, it is also well known in the plasma
physics community that if the system is initially excited by
a strong perturbation, the nonlinear interaction induced parti-
cle trapping effect [8–10] can lead to saturation, resulting in
the formation of the Bernstein-Greene-Kruskal (BGK) mode
[11–13]. The history of its study probably goes back to the
first calculation of the nonlinear Landau damping rate by
O’Neil for an electron plasma wave with constant and uniform
amplitude [14]. The general issue of the nonlinear dynamics
of Landau damping attracted significant attention throughout
the years as it is pertinent to key questions in different areas of
plasma physics. For instance, the case of an arbitrarily varying
amplitude of a laser driven electron plasma wave has been
analyzed for stimulated Raman scattering in the context of
inertial confinement fusion [15]. The subject even attracted
detailed mathematical scrutiny as Mouhot and Villani studied
the nonlinear Landau damping from a mathematical perspec-
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tive, based on the assumption of regularity of its solutions
[7,16]. It is also interesting to note from the point of view of
coupled oscillators that Landau damping takes place below a
certain threshold of synchronization [6], implying that above
such a threshold evolution towards a nonlinearly synchronized
state (corresponding to the BGK mode in the plasma context)
is preferred. This suggests that synchronization or its absence
must also be a key issue for Landau damping in plasma
physics.

Thus, in this article, we approach the problem of nonlinear
Landau damping from the perspective of phase synchroniza-
tion dynamics [17] by considering the nonlinear behavior of
a plasma wave that is self-generated by a large initial pertur-
bation (without any external drive, such as a laser beam, for
example). This underlines a fundamental difference to previ-
ous works that study nonlinear Landau damping [7,14–16]. In
particular, we focus on the evolution of the phase pattern of the
particle distribution function in velocity space, which is shown
to be a powerful tool in the study of nonlinear plasma waves.
Although there are multiple examples of global wave phases
playing an important role in the nonlinear dynamics of plasma
physics, such as, for example, the study of the role of global
phases in strong coupling Brillouin scattering [18,19], the
phase dynamics of the particle distribution function in velocity
space, which contains detailed information on wave-particle
resonant interaction is rarely studied in detail.

Based on the phase pattern of the electron distribution
function in velocity space, we find that there exists a third
state between the linear and the nonlinear Landau damping,
which we call the transition stage in this paper. The transition
stage is crucial in order to understand the depletion of the
linear Landau damping and the formation of the nonlinear
wave. In terms of phase dynamics, these three stages corre-
spond, respectively, to phase mixing, phase synchronization
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spreading, and full phase synchronization of the electron dis-
tribution function in velocity space. Furthermore, the damping
rate is different in these three periods: In the linear stage
the plasma wave damps as e−γ t , in the transition stage the
plasma wave damps algebraically following t−β , and in the
fully nonlinear stage no evident damping is observed. It is
interesting to observe that in the transition stage, the phase
mixing and phase synchronization coexist, which forms a
chimera phase pattern [20] in velocity space. The rate of
spreading of the synchronization of the phases determine how
fast the depletion of the damping occur, resulting either in
a quick or a slow decrease of the damping rate. In some
marginal cases, depending on initial conditions, the damping
may persist indefinitely as there appears to be no significant
spreading of the phase synchronization even as time tends to
infinity.

In order to formulate an analytical description of these
phenomena, we employ the method used by Strogatz et al. [6]
and Kuramoto [21] to study the synchronization of coupled
oscillators and treat the nonlinear wave-particle interaction
term as a complex order parameter [22]. This formulation
can help understand the nonlinear wave-particle interaction
inherent in the numerical simulation. We find, in particular,
that the primary physical mechanism of phase synchronization
in this system is the synchronization of individual electron
motions as they accelerate or decelerate due to their relative
phase with the wave, which, in turn, is collectively generated
by the motions of all the other electrons.

This paper is organized as follows: In Sec. II the phase
and amplitude equation of the electric field and the parti-
cle distribution function is derived from the Vlasov-Poisson
equation. The phase mixing and the phase synchronization
spreading in the transition stage is discussed in Sec. III. The
self-regulation regime of the kinetic and electric energy flow
in fully synchronized stage is studied in Sec. IV. In the end the
main results of this article are summarized, and some possible
applications to more complicated systems are proposed.

II. PHASE EQUATIONS OF THE VLASOV-POISSON
SYSTEM

The fundamental model of a kinetic plasma is the Vlasov-
Poisson equation, written as

∂ f

∂t
+ v

∂ f

∂x
− E

∂ f

∂v
= 0,

∂E

∂x
= 1 − ∫ +∞

−∞ f dv, (1)

where f (x, v, t ) is the electron distribution function and
E (x, t ) is the electric field. Here (x, v) is the two dimensional
phase space with one dimension (1D) in space x and 1D in
velocity v. The ions are considered as a uniform motionless
background in contrast to the high frequency Langmuir os-
cillations of electrons. Equation (1) is in dimensionless form
with the space coordinate x normalized by the Debye length
λD, the time t normalized by the inverse plasma frequency
ω−1

pe , and the velocity v normalized by the electron thermal
velocity vTe. The boundary is assumed to be periodic in the
x direction for simplicity. This means that the results that
are presented here are rigorously valid only for a spatially

periodic system or one that can be modeled as such. However,
note that choosing a compact initial perturbation far from the
boundaries, a similar exercise can be performed to imitate an
infinite system. This allows us to write this system in Fourier
space as

∂ f (k, v, t )

∂t
= −ikv f (k, v, t ) +

(
E (x, t )

∂ f (x, v, t )

∂v

)
k

,

ikE (k, t ) = δ(k) −
∫ +∞

−∞
f (k, v, t )dv, (2)

where f (k, v, t ) and E (k, t ) are the spatial Fourier trans-
forms of the distribution function and the electric field,
respectively. The term [E (x, t )∂v f (x, v, t )]k is the Fourier
transform—which can be computed using a fast Fourier
transform algorithm in numerical applications—of the
nonlinear term representing the wave-particle interaction con-
tribution to the mode k. Here, δ(k) is the Dirac δ function
representing the Fourier transform of the ion distribution
function. Due to the quasineutrality condition, the mean-field
E (k = 0) is zero, which means

∫ +∞
−∞ f0(v, t )dv = 1, hence,

the total number of particles is conserved.
We introduce a complex order parameter R(k, v, t ) as

R(k, v, t ) ≡
(

E (x, t )
∂ f (x, v, t )

∂v

)
k

, (3)

with which Eq. (2) can be written as

∂ f

∂t
= −ikv f + Rei�, (4)

where R(k, v, t ) and �(k, v, t ) are the amplitude and the
phase of the complex order parameter, respectively.

The distribution function in Fourier space f (k, v, t ) can
be characterized by its phase θ f (k, v, t ) and amplitude
| f (k, v, t )|: f (k, v, t ) ≡ | f (k, v, t )|eiθ f (k,v,t ), whose evolution
can be obtained by inserting these into (4) as

∂| fk|
∂t

= Rkcos(�k − θ f ), (5)

∂θ f

∂t
= −kv + Rk

| fk| sin(�k − θ f ). (6)

Note that Eq. (6) is similar to the mean-field equation of the
Kuramoto model [22,23], which was initially developed by
Kuramoto to study the synchronization of coupled oscillators.
In contrast to Eq. (6), the Kuramoto model is written as

∂θn/∂t = ωn + Kr sin(ψ − θn), (7)

with n = 0, . . . , N being the oscillator number. The nonlin-
ear interaction among the oscillators is given by the term
Kr sin(ψ − θn), where K is a constant defining the coupling
strength, r is an evolving real variable between 0 and 1
measuring the coherence of the system (the larger the r,
the more coherent the system becomes), and ψ is an evolv-
ing mean phase created by all the oscillators. Using the
coupling to the mean phase instead of the direct couplings
between each two oscillators, the Kuramoto model allows
us to cut an all-to-all coupling problem into two separated
steps: An all-to-one coupling followed by a one-to-all cou-
pling. First, all the oscillators create a time evolving mean
phase, which can be resolved by the self-consistent relation:
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TABLE I. Comparison of the phase equation in Kuramoto and Vlasov systems.

Kuramoto Vlasov

Phase equation ∂θn
∂t = ωn + Kr sin(ψ − θn)

∂θ f

∂t = −kv + Rk
| fk | sin(�k − θ f )

Natural frequency ωn −kv

Nonlinear coupling Kr sin(ψ − θn) 1
| fk | Rksin(�k − θ f )

Coupling strength K 1
| fk |

Self-consistency reiψ = 1
N

∑
n eiθn Rkei�k = [E (x, t ) ∂ f (x,v,t )

∂v
]
k

reiψ = 1
N

∑
n eiθn . Then each oscillator interacts exclusively

with this mean phase resulting in a nonlinear coupling of the
form Kr sin(ψ − θn).

Table I compares the Vlasov and the Kuramoto systems.
The wave-number/velocity pair k, v in Vlasov corresponds
to the oscillator number n in Kuramoto, and the natural fre-
quency ωn in Kuramoto is represented by −kv in Vlasov.
Therefore, the phase of the distribution function as a function
of scale θ f (k, v) in Vlasov corresponds to the phase of the
oscillator θn in Kuramoto, and the complex order parame-
ter R(k, v, t )ei�(k,v,t ) represents the phase coherence variable
reiψ , which defines the nonlinearity of the mode k and al-
lows a separation of the problem into two conceptual steps
as described above for the Kuramoto system. Note that the
transformation of the Kuramoto model into a mean-field
model as discussed above is a simple theoretical transforma-
tion where the coherence variable r, the mean phase ψ , and
the coupling strength K can be chosen as constants for all
oscillators. But the Vlasov equation describes a more complex
physical system where the nonlinear term and its phase and
amplitude depend on the wave number and velocity.

More generally, the phase equations of the Vlasov and Ku-
ramoto systems, [i.e., Eqs. (6) and (7)] both have the form of
an Adler equation [24] with kv as the free streaming frequency
and Rk/| fk|, the phase coupling coefficient that locks θ f to the
mean phase �k (or θE since as we will show later, the two are
strongly correlated).

Note that for the Vlasov system, the Poisson equation plays
the role of the self-consistency relation that is used to close
the system in the Kuramoto model. In order to write the
Poisson equation in this form, we recall that the electric field
in Fourier space is defined as: E (k) ≡ |E (k)|eiθE (k) with |E (k)|
and θE (k), the amplitude and the phase of E (k). Substituting
this into Eq. (2) we obtain the evolution equations for |E (k)|
and θE (k) as

∂|E (k)|
∂t

=
∫ +∞

−∞
v| f |cos(θ f − θE )dv, (8)

∂θE (k)

∂t
= 1

|E |
∫ +∞

−∞
v| f |sin(θ f − θE )dv. (9)

III. PHASE SYNCHRONIZATION SPREADING IN THE
TRANSITION STAGE

The Vlasov-Poisson system described above can be im-
plemented numerically in the (x, v) plane using a second
order Euler method [5]. The phase space (x, v) is discretized
in a rectangular domain D ≡ {(x, v)|0 � x < Lx, |v| � vmax}
with Lx = 4π , the periodic spatial length and vmax = 6, the
cutoff velocity. The space x and the velocity v are dis-

cretized with a homogeneous mesh size δx = Lx/Nx and δv =
2vmax/Nv , where Nx = 256 and Nv = 256 are the number of
grid elements along the x and v directions, respectively. The
wave number in Fourier space is defined as kn = 2πn

Lx
with

n = 0, . . . , Nx
2 . Such an implementation can be used to simu-

late the long time behavior of a perturbed Maxwellian plasma
by using the following initial condition:

f (x, v, t = 0) = 1√
2π

exp

(
−v2

2

)
[1 + α cos(kx)], (10)

where α = 0.15 determines the initial perturbation strength
and k = 0.5 is the initial excitation wave number, which
corresponds to the first Fourier mode (i.e., the largest scale)
available in the wave-number domain.

A. Free streaming: phase mixing

Here we focus on the evolution of the large scale mode
(k1). |E (k1, t )| as a function of time t = [0, 8000ω−1

pe ] is
presented in Fig. 1 with a long enough integration time so
that the spectrum contains all the different states of |E (k1)|.
For t � 20ω−1

pe , |E (k1, t )| damps exponentially due to linear
Landau damping. The analytical damping rate [25] for this
case is as follows: γ (k1 = 0.5) = −0.1536. The numerical
implementation can reproduce the analytical result well since
it agrees with the analytical prediction as shown in the subplot
of Fig. 1. After the linear stage, the wave damps algebraically

FIG. 1. The evolution of |E (k1)| in the simulation of α =
0.15. The subplot compares |E (k1, t < 20ω−1

pe )| (blue) to 0.1e−γ t

(red line) with γ = 0.1536. The black line show t−β with β =
−0.5. |E (k1, t < 2500ω−1

pe )| can be fit with 0.12t−0.5 (the black solid
line). For t > 2500ω−1

pe , t−β (black dashed line) is no longer valid.
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FIG. 2. Correlation of |Ek | and
∑

v δθ f (k1, v) in the simulation
of α = 0.01.

in the form t−β (black line), with β = 0.5 up to t ≈ 2500ω−1
pe .

After that, it is hard to observe any damping of the wave.
In previous studies [26], the linear Landau damping arises

from the phase mixing of the particle distribution function
in velocity space. This can be explained using the Poisson
equation: ik|Ek|eiθE = − ∫ +∞

−∞ | fk (v)eiθ f dv. In the phase-slip
state, θ f ’s are randomly distributed in velocity space, and the
integral gives a small |Ek|. On the other hand, in the phase-
locked state, θ f ’s are organized into patches in velocity space,
and the integral is likely to give a finite value for |Ek| [27].
In numerical simulations, the phase mixing can be measured
quantitatively by the sum of the phase differences between
neighboring velocity points, which can be defined as follows:∑

v

δθ f (k, v) =
∑

j

min{[θ f (k, v j+1) − θ f (k, v j )]mod 2π

×[θ f (k, v j ) − θ f (k, v j+1)]mod 2π}.
If

∑
v δθ f (k, v) is large (small), θ f (k, v) is disorganized (or-

ganized), and the phase mixing is strong (weak) in velocity
space, resulting in a decrease (growth) in |Ek|. This can be
observed in numerical simulations as shown in Fig. 2.

In Eq. (6), the free streaming frequency represents the
natural frequency for the electron distribution function with
the wave-number k and velocity v. Since this is a function
of the velocity, it leads to phase slipping in velocity space.
In contrast, the wave-particle interaction acts as a phase
coupling force locks θ f to the mean phase. If we assume
that the dynamics for that wave number is dominated by
free streaming, i.e., Rk/| fk| � kv, the solution is f (k, v, t ) =
f (k, v, 0)e−ikvt . In this case, θ f (k, v) and δθ f (k, v) are given
as follows:

θ f (k, v, t ) = −kvt + θ f (k, v, 0),

δθ f (k, v, t ) = k δv t + δθ f (k, v, 0).

This means that the sum of the phase difference becomes:∑
v δθ f (k, v, t ) = Nvk δv t , resulting in a periodic evolution

with the period T = 2π
k δv

[5,28]. For timescales that are much
shorter than T , such as that of the linear Landau damping, the

FIG. 3. The sum of phase difference
∑

v δθ f (k1, v, t ) (top) and
the detailed structure of the phase difference δθ f (k1, v, t ) in velocity
space for t = [0, 8000ω−1

pe ].

free streaming frequency causes
∑

v δθ f (k, v, t ) to increase
linearly in time, which results in the phase mixing and the
damping of the plasma wave. Note that in this case the system
is able to go back to its initial state at t = nT with n, an
integer because f (k, v, t ) = f (k, v, 0)e−ikvt . This agrees ap-
proximately with the frequency observed in the linear stage. In
the bottom of Fig. 2,

∑
v δθ f (k1, v, t ) oscillates with a period

T � 266.78ω−1
pe , which is close to the analytical result of

T = 2πNv

2k1vmax
= 267.03ω−1

pe . The growth of
∑

v δθ f (k1, v, t ) can
be fit with Nvk δv t (blue), hence, at this stage the nonlinearity
is negligible.

However, the system cannot go back exactly to its initial
state because the maximum of |E (k1, t )| decreases slowly in
time with the timescale T as shown in Figs. 1 and 2. This
suggests the existence of another type of damping in the
system. Furthermore, this new damping is different from the
linear Landau damping for two reasons: First, the timescale
of the linear Landau damping is on the order of 2π

k1vph
with vph,

the phase velocity of the electric wave, but the timescale of
this new damping is on the order of T = 2π

k1 δv
and T � 2π

k1vph
;

second, linear Landau damping (e−γ t ) is much stronger than
this new damping (t−β ).

Note that the decrease in the maximum perturbed wave
amplitude is comparable to that observed in the resonance ab-
sorption of a nonlinear electron plasma wave in a laser plasma
system [29,30] where the maximum of the perturbed electric
field and electron density decease periodically in space before
the wave breaking. However, these works focus on the thresh-
old of laser intensity in the plasma wave breaking whereas we
study the details of this decrease.

B. Transition stage: chimera phase pattern

Since we observe another damping after the linear stage,
it would be interesting to explore the details of its na-
ture. The sum of the phase differences presented in Fig. 3
shows that

∑
v δθ f (k1, v, t ) is still very large in this stage,

even though its maximum decreases slowly in time. This
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means that although the main mechanism still is phase mixing,
its efficacy decreases over time.

In Eq. (6), the nonlinear wave-particle interaction is the
only factor that can counter the effect of phase mixing due
to free streaming. Since Rk/| fk| depends on velocity, this
balance for θ f (k1, v) will be velocity dependent, which may
result in an inhomogeneous phase pattern in velocity space.
As the phase is still disorganized, but the sum of the phase
difference decreases, evolution of the phase difference seems
to be a more important variable in comparison to the phase
itself.

∑
v δθ f (k1, v, t ) and δθ f (k1, v, t ) are presented, respec-

tively, at the top and the bottom plots of Fig. 3. In the
wave-particle resonance region, i.e., v close to vph = 2.83
[28], δθ f is strongly modified by the wave-particle resonance
and becomes zero before the rest of the phase space as
the system evolves. Note that phase differences being close
to zero is a direct result of the synchronization of those
phases. However, in the rest of the velocity space, phase
difference keeps evolving periodically between −π and π ,
suggesting that these regions of the velocity space are still
dominated by free streaming. As the time passes, the phase
synchronization spreads from the resonance region to the rest
of the velocity space, resulting in a significant decrease in∑

v δθ f (k1, v, t ) and, thus, to suppression of phase mixing in
velocity space.

The structure of the phase difference indicates that
θ f (k1, v, t ) is partially synchronized in velocity space dur-
ing the phase synchronization spreading. In the region where
θ f (k1, v, t ) is not yet synchronized, the particle motion is
dominated by free streaming. During this stage linear and
nonlinear effects coexist and dominate in different regions
of the velocity space. We call this the transition stage since
it corresponds to the transition from the linear to the fully
nonlinear stage.

The plasma wave is collectively generated by the streaming
motion of electrons with different velocities, and the fre-
quency ωk of this wave is actually an average frequency over
those different velocities. If electrons in different velocities
manage to beat together with this average frequency, syn-
chronization occurs. Since the natural frequencies of those
electrons that are traveling with a velocity close to vph, are
close to the plasma wave frequency, they can synchronize with
the plasma wave frequency very easily. On the other hand, the
electrons that are either very fast or very slow, (i.e., v � vph

or v � vph), the nonlinear term R(k)
| f (k)| sin(� − θ f ) needs to

make up for the difference between their natural frequency
and the frequency of the plasma wave. In order to satisfy this,
R(k1, v)/| f (k1, v)| should be, at least, on the order of k|v −
vph| since |sin(� − θ f )| � 1. The fact that R(k1, v)/| f (k1, v)|
should be on the order of k|v − vph| for phase synchroniza-
tion, indicates that it is easier to synchronize if v is closer to
vph. Thus, it is observed that the phase synchronization occurs
initially in wave-particle resonance region and then spread to
other regions.

Since | f (k1, v)| is large and the nonlinearity is weak in
the linear stage, R(k1, v)/| f (k1, v)| is small compared to the
free streaming frequency and, therefore, the k1 mode under-
goes phase mixing, resulting in decreasing of |E (k1)| and
| f (k1, v)|. This, in turn, causes R(k1, v)/| f (k1, v)| to grow
in time until the synchronization of the phases since |E (k1)|

FIG. 4. |R(k1, v)|/| f (k1, v)| (top) as a function of time. The sec-
ond and the third figures present |R(k1, v, t )| (blue) and | f (k1, v, t )|
(red) for v = 0.6 and v = 2.8, respectively.

and | f (k1, v)| keep decreasing as long as the phase mix-
ing continues. When R(k1, v)/| f (k1, v)| is on the order of
k|v − vph|, ∂tθ f (k1, v) matches the frequency of the plasma
wave, and the saturation occurs.

The dynamics of R(k1, v)/| f (k1, v)| is depicted in Fig. 4.
In the resonance region R(k1)/| f (k1)| is close to zero because
R(k1, v ∼ vph) is much smaller than | f (k1, v ∼ vph)| during
the whole simulation as shown in the bottom of Fig. 4. This is
due to the fact that resonant electrons see a stationary wave [9]
since v ∼ vph. Thus, the plasma wave pushes these electrons
to neighboring regions causing a flattening of the distribution
function (i.e., making ∂v f ∼ 0) in the resonance region. Since
R ∝ ∂v f , the strength of nonlinearity ends up being small in
the resonance region. The fact that R(k1, v ∼ vph)/| f (k1, v ∼
vph)| remains close to zero means that the natural frequency
of the resonant electrons match the frequency of the plasma
wave. For the faster and slower electrons, R(k1)/| f (k1)| keeps
growing in the transition stage due to damping of | f (k1, v)|
in the phase mixing regime. In the end the nonlinear phase
coupling modifies the natural frequency of these electrons
sufficiently to allow them to synchronize themselves to the
plasma wave.

Complete phase synchronization in velocity space requires
a large value of R(k1)/| f (k1)|, which is also similar to what
happens in the Kuramoto model. In Kuramoto, the global
synchronization among oscillators can be achieved if the cou-
pling strength, which is a global quantity independent of the
oscillator number, is larger than a critical value, and the global
synchronization is independent of the initial phase distribution
[22]. In Vlasov, on the other hand, the phase and the ampli-
tude are strongly coupled, which is a significant distinction
from the Kuramoto model. In particular, there is a feedback
mechanism in the Vlasov system since phase mixing causes
| f (k1)| to decrease, which, in turn, increases the effect of
phase locking.

In order to estimate the damping parameter β that we
observe in the transition stage, consider the following discrete
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approximation to the Poisson equation:

ikEk = −
∑

j

F (θ j, δθ j ), (11)

with

F = 1

2
| fk (v j )|eiθ j (1 + ei δθ j ),

where j is the index of discretized velocity δv ≡ v j+1 − v j

and δθ j ≡ θ j+1 − θ j . Since phase mixing is the critical ele-
ment in determining the amplitude of |Ek|, we can formulate
the problem in terms of the probability distribution function
(pdf) P(δθ j ) of phase differences δθ j . From Fig. 3, we know
that θ j is getting smoothed with time in velocity space. This
means that we can approximate this process at the lowest order
in terms of diffusion of the pdf, i.e.,

∂P(δθ j )

∂t
= Dst

∂2

∂ δθ2
P, (12)

where Dst is a phenomenological phase diffusion coefficient.
Note that in order to derive the temporal scaling of |Ek|, we do
not need the detailed form of Dst . Equation (12) has the well
known solution,

P(δθ j, t ) = 1√
2π δθ2

c t
exp

(
− δθ2

j

2 δθ2
c t

)
,

where δθ2
c is the characteristic value of δθ2

j . Because θ f tends
to get synchronized, δθ2

c tends to be a constant C that is close
to zero. For large t , we approximately have: P ∝ t−1/2. With
the invariant measure, Eq. (11) gives

ik|Ek| = −
∑

j

∫
F (θ j, δθ j )P(δθ j, t )d δθ j ∝ t−(1/2). (13)

Thus, |Ek| has the approximate temporal scaling: |Ek| ∝
t−(1/2), which agrees with the numerically observed scaling of
|Ek|. However, it should be noted that t−β is more general than
t−0.5 as we will show later that the damping in the transition
stage depends also on the initial perturbation strength.

We end this subsection with some particular snapshots of
θ f (k1, v) shown in Fig. 5. As can be seen in the top plot of
Fig. 5, at t = 10ω−1

pe , the system is dominated by free stream-
ing, i.e., θ f (k, v) � kvt . The slight deviation of θ f (k1, v) in
the range of v � ±(2, 3) is due to resonant wave particle
interactions, but it is very small before the free streaming.
In contrast, at t = 1000ω−1

pe , the phase synchronization starts
to appear since θ f tends to be locked in the resonant region.
Then, at t = 2000ω−1

pe , the phase synchronization becomes
more apparent, and it starts to spread in velocity space. Dur-
ing the synchronization spreading, θ f is organized near the
resonant region and disorganized in the rest of velocity space,
which forms a chimera phase pattern [20] as can be seen
in the snapshot at t = 3000ω−1

pe . Finally, at t = 5000ω−1
pe , the

phase synchronization is complete across the velocity space
with a phase difference of π between the phase of the fast
(|v| > vr ) and the slow (|v| < vr ) electrons. Note that the
natural frequency of the slow (fast) particle is accelerated
(decelerated) due to this phase difference of π (the detail
is given in Sec. IV B). This way, the time variation of θ f

corresponds to the frequency of the plasma wave everywhere.

FIG. 5. θ f (k1, v) in velocity space at ωpet = 10, 1000,

2000, 3000, 5000 (from the top to the bottom).

C. Lifetime of the transition stage

The complete phase synchronization takes a long time as
shown in previous simulations. Yet, it would be useful to
estimate exactly how long. In order to measure the speed of
phase synchronization spreading in velocity space, we define
a parameter Tt as the synchronization time, which is the time
at which θ f (k1, v) is fully synchronized across the velocity
space. Hence, in some sense Tt represents the duration or
lifetime of the transition stage. It is observed in numerical sim-
ulations that Tt depends on the initial perturbation strength.
Figure 6 shows the evolution of |E (k1, t )| and δθ f (k1, v) for
a strong (top) and a weak (bottom) initial perturbation where
the parameters which define the initial perturbation strengths
are α = 0.5 and α = 0.05, respectively. Although in the case
of the strong initial perturbation, the full synchronization in
velocity space is observed at t � 200ω−1

pe for the weak initial
perturbation, and θ f is not fully synchronized at the end of the
simulation at t = 10 000ω−1

pe .
In order to obtain the relation between Tt and

α, we have performed a scan of the parameter
α = [0.5, 0.4, 0.3, 0.2, 0.18, 0.15, 0.13], and the full
synchronization times that are observed roughly at
Tt = [233, 276, 365, 486, 665, 5000, 9000]ω−1

pe , respectively,
are shown in Fig. 7. The dependence of Tt on α indicates that
a strongly (weakly) perturbed system is easier (harder) to be
fully synchronized.

We have also checked the behavior of |R(k1, v, t )| and
| f (k1, v, t )| during these scans, which show that the main
reason for the long and slow dampings for the weak initial
perturbation case is that the nonlinearity remains too weak to
balance free streaming.

Extrapolating from the observed behavior Tt (α), one may
argue that Tt will tend to infinity if the initial perturbation is
extremely small. This means that the phase mixing as well as
the damping of the plasma wave may continue indefinitely or
until the wave is completely extinguished. This is a reasonable
conclusion also in the sense that if α tends toward zero the
system tends to be linear. For example, in the simulation of
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FIG. 6. Comparison of |E (k1, t )| and δθ f (k1, v, t ) for a strong
(top) and a weak (bottom) initial perturbation. The initial perturba-
tion strengths are α = 0.5 and α = 0.05, respectively. The color bar
is same as that of Fig. 3.

α = 0.01, it is hard to observe any significant phase synchro-
nization spreading in velocity space even if the simulation
time is long enough.

To summarize, we conclude that both the damping of the
form e−γ t in linear stage and the damping of the form t−β in
the transition stage are due to phase mixing of the particle
distribution function in velocity space. As a result of the
spreading of phase synchronization in velocity space, θ f tends

FIG. 7. The lifetime of transition state Tt as a function of the
initial perturbation strength α.

to be more organized, and the damping of the plasma wave
becomes weaker in the transition stage. When θ f is fully syn-
chronized in velocity space, the damping is hardly observable,
and the system becomes nonlinearly saturated. Since θ f is
organized in the fully nonlinear stage, it is possible to study
and understand wave-particle interaction from the perspective
of phase evolution.

IV. SELF-REGULATION OF ENERGY TRANSFER IN THE
FULLY NONLINEAR STAGE

There are many examples of saturation of the Landau
damping in different contexts in plasma physics, such as, for
example, the resonance absorption in a laser plasma system
[19,29,30] or the current drive theory in Tokamaks [31], etc.
Here, we focus on the problem of resonant wave-particle
interaction from the perspective of phase dynamics.

In order to do that, we first derive the energy variation as
a function of phase and amplitude. The kinetic energy EK

is defined as: EK (t ) ≡ 1
2

1
Lx

∫
x

∫
v

f (x, v, t )v2dv dx where the
distribution function f (x, v, t ) can be written using its Fourier
transform: EK (t ) = 1

2
1
Lx

∫
x

∫
v

∑
k f (k, v, t )eikxv2dv dx. Since∫ Lx

0 eikxdx gives zero for any nonzero wave number, the kinetic
energy becomes: EK (t ) = 1

2
1
Lx

∫
v

f (k0, v, t )v2dv. This means
that in a periodic system the kinetic energy is stored only in
the k = 0 mode.

Since f (k0, v) is the mean value of the electron distribution
function, it must be real and non-negative, hence, θ (k0, v)
as well as ∂tθ (k0, v) should be zero during its evolution,
which means

∂| f (k0, v)|
∂t

= R(k0, v)cos[�(k0, v)],

∂θ (k0, v)

∂t
= R(k0, v)

| f (k0, v)| sin[�(k0, v)] = 0, (14)

where �(k0, v) is either 0 or π . As ∂t | f (k0, v)| depends
on cos[�(k0, v)], �(k0, v) = 0 (π ) means the accumulation
(loss) of electrons of velocity v. Using the definition of
∂t | f (k0, v)| in Eq. (15), the kinetic energy evolves as ∂tEK =
1
2

1
Lx

∫
v
R(k0, v)v2dv. Furthermore, R(k0, v) can be rewritten

as a convolution in wave number space as follows:

R(k0, v) = 1

2

∑
k

(
E (k)

∂ f ∗(k, v)

∂v
+ E∗(k)

∂ f (k, v)

∂v

)
,

(15)

integrating ∂ f (k,v)
∂v

by part and using f (k, v = ±∞) = 0,
yields

∂EK

∂t
= − 1

Lx

∑
k

∫
v

v|Ek|| fk|cos(θE − θ f )dv. (16)

The electric field energy EE in wave number space is de-
fined as EE = 1

2
1
Lx

∑
k |E (k)|2. Using ∂t |E (k)| in Eq. (8), it

evolves as

∂EE

∂t
= 1

Lx

∑
k

∫
v

v|Ek|| fk|cos(θE − θ f )dv. (17)

Equations (16) and (17) indicate that the total energy of the
system should be conserved. Furthermore, the energy flow
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FIG. 8. Evolution of the kinetic energy EK (red line) and the elec-
tric energy EE (shown by the blue line) for t = [1800ω−1

pe , 1820ω−1
pe ].

between the wave and the electrons is controlled by the phase
difference between the plasma wave and the electron distribu-
tion function.

The evolution of the kinetic energy (red) and the electric
field energy (blue) in the saturated state are presented in
Fig. 8 for the simulation of α = 0.5. It shows that the energy
conservation is satisfied by the numerical simulation. The
kinetic energy is much higher than the electric field energy (or
wave energy) because in simulations the particle distribution
function has an unperturbed part, which carries a lot of energy
but does not participate in the wave-particle energy exchange.

The distribution function during the plasma oscillation is
shown on the (x, v) plane in Fig. 9. The left and the right
figures present f (x, v) at the moment where the wave energy
is maximum and minimum, respectively. The holes are formed
due to the trapping of resonant electrons in the electric po-
tential well [9], which propagate in different directions along
the x axis with the velocity equal to the phase velocity of the
wave. During the propagation of these phase holes, f (x, v) is
perturbed along the v direction, which leads to the appearance
of energy fluctuations.

FIG. 9. The electron distribution function f (x, v) in phase space
at the maximum (left) and the minimum (right) of |E (k1)|.

FIG. 10. Evolution of |E (k1)| (top) and θE (k1) (center) at t =
[1800, 1820]. The bottom figure presents the detailed evolution of
θE (k3) (bottom) near the phase jump, and a logarithmic function
of t (blue) is used to fit θE (k3) during the phase jump. Recall
that kn = 2πn

Lx
.

A. EE → EK , determined by θE

The energy transfer from the plasma wave to the electrons
is determined by the sign of θE . This can be seen from Fig. 10,
which shows the detailed evolution of |E (k1)| and θE (k1) in
the saturated state, where t1 and t2 correspond to the moments
where |E (k1)|’s are maximum and minimum, respectively, and
t3 is the moment when |E (k1)| is maximum in the next period.
During the oscillation of k1 mode, the maximum of |E (k1)| is
constant [i.e., |E (k1, t1)| ≈ |E (k1, t3)|] whereas its minimum
tends to zero. Detailed analysis of the numerical simulation
with a very small integration time step near its minimum
shows that whereas the minimum of |E (k1)| approaches zero,
it does not exactly become zero because |E (k1)| changes in-
stantaneously from decreasing regime to increasing regime as
it approaches zero. This happens because of the instantaneous
phase jump by π of θE (k1).

In Fig. 10, it is observed that θE (k1) is fixed at π
2 (or

−π
2 ) during one period, which means that ∂tθE is zero. The

behavior of θE (k1) is determined by Eq. (9), which can be
rewritten as

∂θE (k)

∂t
= 1

|E (k)|
∫ +∞

−∞
v| f (k)|

[
sin[θ f (k)]cos[θE (k)]

+cos[θ f (k)]sin(θE (k)]

]
dv. (18)

Since θE is ±π
2 during one period, the first term in Eq. (18)

vanishes. The second term vanishes too due to the structure
of the distribution function in velocity space. We can see this
by writing the Poisson equation in the same expanded form
of (18) as

ik|E |[cos(θE ) + i sin(θE )] = −
∫

| f |[cos(θ f ) + i sin(θ f )]dv.
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Because θE (k1) = ±π
2 , the imaginary part of the Poisson

equation should be zero, [i.e., i
∫ | fk|sin(θ f )dv = 0], and in

order to satisfy this θ f should be an odd function of v,

θ f (k1, v) = −θ f (k1,−v),

| f (k1, v)| = | f (k1,−v)|.
Using these relations, the second term of Eq. (18), i.e.,∫ +∞
−∞ v| f (k1, v)|cos[θ f (k1, v)]dv should be zero. As a result

of this, θE (k1) can remain fixed at ±π
2 during one period.

In Eq. (18), |E (k)| is the denominator in the evolution
of θE (k). This produces a singularity for θE (k) once |E (k)|
becomes extremely small [32]. The jump of θE (k) results from
this singularity. The detailed structure of θE (k3) (red) near the
phase jump is shown in the bottom plot of Fig. 10, and it can
be fit with a logarithmic function (blue). Note that we present
the result of the third harmonic, i.e., k3 mode rather than the k1

mode in order to show that the phase jump is a general feature
of all the Fourier modes k. When |E (k)| is minimum near
t2, θE diverges, and one may assume: |∂t ln θE | � |∂t ln|E ||.
Therefore, |E (k)| as well as its temporal variation can be seen
as a constant compared to the rapid variation of θE (k) near
t2. With this assumption, one has |E (k)| � c0 + c1t , where c0

and c1 present |E (k)| and the integral of ∂t |E (k)| at a certain
moment t near t2. This yields: ∂tθE ∝ 1

|E | ∝ 1
tc−t with tc ≡

c0/c1, the time where the jump of θE (k) occurs. Thus, θE (k)
has a logarithmic finite-time singularity (FTS) at the point
where the |E (k)| is minimum: θE ∝ ln(tc − t ). Furthermore,
when θE leaves one fixed point, it is attracted by another one
because the new invariance of θE can be built once it is close
to the next fixed point. In between t1 and t2, the field energy
decreases as it is transferred to particles. When it reaches its
minimum value at t2, θE jumps instantaneously by π due to
the FTS. Since the energy evolves as: ∂tEE ∝ cos(θE − θ f ),
the phase jump of θE changes the sign of the energy transfer
before and after t2, that is, ∂tEE (t2 + δt ) � −∂tEE (t2 − δt ).
This means that after t2 the kinetic energy will start to be
transferred back to the plasma wave when the field energy
is at its minimum. This analysis is rigorously true assum-
ing that θ f cannot jump instantaneously when θE jumps by
π . The dynamics of θ f is discussed in the next subsection,
and it controls the energy transfer from the electrons to the
electric wave.

B. EK → EE , controlled by θ f

In Eq. (6), the evolution of θ f is determined by a constant
natural frequency −kv and �. In order to understand the be-
havior of θ f , it is necessary to understand the evolution of �.
The complex order parameter can be represented as a convo-
lution in wave-number space: R(k, v) = ∑

p E (p, t ) ∂ f (k−p,v)
∂v

.
The numerical simulations show that the wave-particle inter-
action in the nonlinearly saturated state is dominated by the
interaction with the background mode f (k0). Hence, R(k1, v)
can be estimated by R(k1, v) ∼= E (k1, t ) ∂ f (k0,v)

∂v
, which can

then be used to argue �(k1, v) ∼= sgn( ∂ f (k0,v)
∂v

)θE (k1). In a
Maxwellian plasma ∂v f (k0, v > 0) is negative, except in the
wave-particle resonance region as shown in the top of Fig. 11.
So �(k1, v > 0) equals −θE (k1) in the nonresonant region.
On the other hand, in the wave-particle resonance region

FIG. 11. The top figure shows f (k0, v) at t1 (blue) and t2 (red).
The bottom figure shows �(k1, v) as a function of time t and
velocity v.

∂v f (k0, v ∼ vr ) is positive and, hence, �(k1, v ∼ vr ) equals
θE (k1). The detailed structure of �(k1, v, t ) is shown in the
bottom of Fig. 11. It shows that �(k1, v) is strongly cor-
related with θE (k1). In other words, when θE (k1) jumps by
π, �(k1, v) also jumps by π , regardless of its detailed veloc-
ity space structure.

Since � is same for the fast and slow electrons, but a differ-
ence of π exists between θ f (k1, v < vr ) and θ f (k1, v > vr ) as
shown in Fig. 12. This difference can slow down (accelerate)
the natural frequency of the fast (slow) electrons, based on
Eq. (6). This allows all the electrons with different natural
frequencies to be able to follow the frequency of the plasma
wave resulting in full synchronization in the nonlinear satu-
rated state.

Note also that, the energy transfer depends on cos(θ f − θE )
with θE remaining a constant during one period. A difference
of π between the fast and the slow electrons also means that
these two parts play opposite roles in energy evolution. The
quantitative contribution of these two parts in the energy trans-
fer is presented in the bottom plot of Fig. 12, where cH and
cL, respectively, are defined as cH ≡ ∫

v>vr
v| f (k1)|cos(θ f −

θE )dv and cL ≡ ∫
0<v<vr

v| f (k1)|cos(θ f − θE )dv. It shows
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FIG. 12. The top figure presents the structure of θ f (k1) in ve-
locity space as a function of time. The bottom figure presents the
quantitative contribution of the high velocity zone cH and low veloc-
ity zone cL to |E (k1)| during one oscillation.

that the evolution of |E (k1)| is dominated by the slow
electrons. This is due to the fact that | f (k1, |v| > vr )| is
much smaller compared to | f (k1, |v| < vr )| in a Maxwellian
plasma.

Figure 12 also shows that θ f (k1, v > 0) rotates continu-
ously in the clockwise direction, and, thus, ∂tθ f (k1, v > 0)
is always negative. As θE = ±π

2 , the Poisson equation be-
comes: k|E |sin(θE ) = 2

∫
v>0 | f |cos(θ f )dv. From this relation

one may induce that when θE is π
2 (−π

2 ), the phase of the
dominant part, i.e., θ f (k1, 0 < v < vr ), should be in the range
of (−π

2 , π
2 ) [( π

2 , 3π
2 )]. Meanwhile �(v > 0) remains fixed

at −π
2 ( π

2 ), hence, sin[� − θ f (k1, 0 < v < vr )] is negative.
Therefore, ∂tθ f (k1, v < vr ) is always negative during the evo-
lution of the system. In the high velocity zone, ∂tθ f (k1, v >

vr ) is negative because the free streaming frequency is
very large.

Since θE is constant during one period and θ f rotates
continuously on the complex plane, once θ f passes a certain
threshold, the sign of cos(θE − θ f ) changes, resulting in the

FIG. 13. Evolution of θ f (k1, 0 < v < vr ). The blue (red) line
is the trajectory of θ f (k1, 0 < v < vr ) during the period of θE =
− π

2 ( π

2 ). θ f (k1, v > vr ) has a difference of π compared to θ f (k1, 0 <

v < vr ) and θ f (−v) = −θ f (v).

inversion of energy transfer. In other words, when θE takes the
value of π

2 in one period, θ f (k1, 0 < v < vr ) moves from π
2 to

−π
2 . In this case θ f (k1, 0 < v < vr ) = 0 is the threshold of

the energy transfer. When θ f (k1, 0 < v < vr ) is localized in
the interval ( π

2 , 0), ∂tEE ∝ cos(θE − θ f ) is positive, and the
kinetic energy is transferred to the field. When θ f (k1, v < vr )
passes this threshold and moves into the interval (0,−π

2 ),
the field energy is transferred back to the electrons. In the
case of θE = −π

2 , π is the threshold of θ f (v < vr ). From the
Poisson equation, one may find that when |Ek| is maximum
(minimum), θ f should be 0 and π (±π

2 ). So the transfer of
kinetic energy to field energy is reversed at the maximum
of |Ek|.

The rotation of θ f (k1, 0 < v < vr ) on the complex plane,
and the energy transfer during the evolution of θ f is sum-
marized in Fig. 13. If θ f ,E (v < vr ) is localized in (0, π

2 ), the
kinetic energy will be transferred to the electric field. This
transfer is limited when θ f passes its threshold (0 or π ).
If θ f ,E (v < vr ) is localized in ( π

2 , π ), the wave energy will
now transfer to the electrons. And this transfer is stopped
by the instantaneous phase jump of θE due to the finite time
singularity. Thus, the system evolves self-consistently.

V. CONCLUSION

In this paper, we have studied the transition from linear
Landau damping to the nonlinear BGK mode from the per-
spective of phase dynamics. We proposed a formulation of
treating the nonlinear wave-particle interaction term playing
the role of a complex order parameter, which allowed us
to deepen our understanding of the nonlinear wave-particle
interaction as a process of phase synchronization.

As a result of detailed analysis of numerical simulations
of the evolution of initial perturbations in a one dimensional
Vlasov-Poisson system, we found that the phase synchro-
nization appears initially in the wave-particle resonant region
and then spreads to the rest of the velocity space through a
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process that we call phase synchronization spreading. As this
happens, the phase mixing becomes weaker and weaker, and
the plasma wave transitions from the usual exponential form
of linear Landau damping to an algebraic damping of the
form t−β . This damping can persist indefinitely if the initial
perturbation is sufficiently small.

We have also shown that the phase mixing provides a
positive feedback mechanism for the nonlinear phase coupling
by decreasing the amplitude of the electron distribution func-
tion. This means that unless the amplitudes become negligibly
small, the tendency for phase locking keeps growing in com-
petition with the constant free streaming that leads to phase
slipping. This results, eventually, in a fully synchronized state.

Although the usual phenomenon of forward or inverse
Landau damping can explain how individual particles can
accelerate and decelerate depending on if they are faster or
slower than the wave, it is the collective indirect coupling
among individual electrons as they accelerate and decel-
erate because of their nonlinear interaction with the wave
that results in synchronization. This means that the under-
lying physical mechanism of phase synchronization can be
identified as occurring through the synchronization of indi-
vidual electron motions as they accelerate or decelerate due to

nonlinear wave-particle interaction, somewhat similar to the
synchronization of other weakly coupled oscillator systems.

Note also that in a fully synchronized state, the phase
evolution of individual electrons matches the frequency of the
plasma wave, and the energy is able to be transferred back
and forth between the wave and the electrons in a periodic
fashion. This energy transfer is self-regulated by the phases
of the plasma wave and the electron distribution function,
where θE is constant during one period and θ f evolves con-
tinuously in a self-consistent manner. In particular, θE jumps
instantaneously by π when the wave energy is at its minimum,
resulting in energy transfer from the electrons to the wave. On
the other hand, when the wave energy is at its maximum, θ f

arrives at its threshold value, which causes the wave energy to
be transferred back to the electrons.

The method that we have developed in this paper may be
applied to more complex systems, such as the Gyrokinetic
Vlasov-Poisson system or its electromagnetic generalization
[33], which may provide a better understanding of the non-
linear evolution of fusion plasmas. It may also be applied to
other systems where 1D Vlasov-Poisson can be applicable,
such as, for example, the description of self-gravitating matter
in cosmological systems [34,35].
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