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Homoclinic chaos in strongly dissipative strongly coupled complex dusty plasmas
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The transport properties of the weakly nonlinear (WNL) two-dimensional (2D) quasilongitudinal dust lattice
mode is studied in an experimentally realized highly viscous, strongly coupled, weakly ionized plasma [V. E.
Fortov et al., Phys. Rev. Lett. 109, 055002 (2012)]. The WNL dynamics is found to be described by a 2D
dissipative-dispersive nonlinear partial differential equation. The analytical and computational (for gas discharge
plasma parameters) results predict strong viscosity induced Shilnikov homoclinic chaos, which, in turn, can cause
a phase transition.
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I. INTRODUCTION

The strongly coupled complex (dusty) plasma (SCCP) is a
many-particle interacting dissipative system applicable in var-
ious fields of science and technology [1–4]. There are mainly
two essential differences between the dissipative systems such
as SCCP and the other various biological (or chemical) sys-
tems. These are the different interaction potentials and the
presence of dissipation due to the collisions of particles with
the atoms or molecules of the surrounding medium [1,4,5].

The dust particles interact with each other through a
screened Coulomb potential of the Yukawa type, � ∼
Q2 exp(−κ )/(4πε0�), where, Q is the dust charge, ε0 is the
permittivity, � [= (3/4πnd )1/3, where nd is the dust density]
is the mean interdust distance, and κ (= �/λD, where λD is
the plasma Debye length) is the lattice parameter. This �

defines the coupling parameter � (= �/Td , where Td is the
dust temperature in energy unit). The combined effect of inter-
particle interactions and ambient plasma lead to the formation
of three-dimensional (3D) or quasi-2D strongly coupled (� �
1) complex structures (fluids or crystals) in gas discharge
plasma [3,6–10] that sustain three collective dust lattice
modes [11–15]. In the presence of “plasma wake” [16–18],
the coupling of two of these modes triggers mode coupling
instability that causes crystal melting [19–23].

In dissipative strongly coupled systems, kinematic viscos-
ity (ν) is one of the fundamental parameters that reflects
the nature of the interparticle potentials and characterizes
its thermodynamics [1,24,25], whereas the shear viscosity is
effectively negligible [26,27]. The collisions between the dust
particles and atoms or molecules of the surrounding neutral
gas exert a strong influence on the viscous properties of dust
particles [27–35]. It is observed that with increasing dust-
neutral collision frequency (νdn), ν decrease (increase) at low
(high) � [27–30].

Experimental and theoretical results [13,36–52] confirm
that in response to the relatively large amplitude dis-
turbances (due to the intrinsic nonlinearities of interdust
interactions), SCCP hosts a wealth of nonlinear collective
structures. Interestingly, it sustains dissipative solitons for
weak or moderate dust-neutral collision (νdn � ω∗, where

ω∗ = [∂2
rr�|r=�/(2M )]1/2 is the characteristic dust-dust fre-

quency and M is the constant dust mass) [36–40,45–
47,57] and shock for weak or moderate viscosity (ν �
ω∗�2) [48,49,51,52]. However, the nonlinear transport pro-
cesses in strongly dissipative (ν∗ = ν/ω∗�2 � 1 and ν∗

dn =
νdn/ω

∗ � 1) SCCP [27] are still an open question.
In this work, we present a theoretical and computational

study of the weakly nonlinear (WNL) transport properties of
a quasilongitudinal (QL) dust lattice wave (DLW) in recently
observed highly viscous, strongly coupled, weakly ionized gas
discharge plasmas where dust-neutral collisions have a strong
influence on kinematic viscosity [27–29,32,33]. For the WNL
dynamics, the SCCP is considered as the continuum medium
under the assumption that � is much less than the typical
characteristic scale length (L). A dissipative-dispersive (DD)
nonlinear partial differential equation (NLPDE) is developed
that governs the WNL dynamics of a QLDLW by employing
the well-known reductive perturbation technique (RPT) [53].
This equation is solved analytically and numerically on the ba-
sis of gas discharge plasma parameters by posing the problem
as a 3D autonomous nonlinear dynamical system. Depending
on the strength of the viscosity, Mach number, direction of
propagation, and wave number, the results predict (i) periodic
and quasiperiodic nonlinear structures, (ii) Shilnikov homo-
clinic chaos, and (iii) the usual shock structure in highly
dissipative SCCP.

The manuscript is organized in the following manner: The
NLPDE is developed in Sec. II. The nonlinear analysis is
described in Sec. III. The computational results with graphical
representations are discussed in Sec. IV. Finally, a brief sum-
mery of the results and its possible applications are discussed
in Sec. V.

II. WEAKLY NONLINEAR DYNAMICS OF
QUASILONGITUDINAL DUST LATTICE WAVE

The homogeneous plasma is composed of neutrals, elec-
trons, ions, and nonemitted dust particles with large (constant)
negative charge Q = −Ze (Z ∼ 103–105 is the number of
electrons that reside on the dust particles and e is the electron
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FIG. 1. Elementary monolayer 2D hexagonal lattice cell. Co-
ordinate is (xs = �(n + m/2), ys = m

√
3�/2), s = (n, m) ∈ I =

{(0,±1), (±1, 0), (1, −1), (−1, 1)}.

charge). Experimental observations [27–29,32,33] reveal that
the physical properties of 2D SCCPs have two singular points:
the first one relates to the liquid-to-hexatic phase transition
at effective coupling parameter �∗[= �(κ2 + 2κ + 2)/2] ≈
98 ± 3 and the second one at �∗ ≈ 154 ± 4 that corresponds
to the crystallization with the hexagonal latex (hexatic-to-
solid phase transitions). For the geometrical modeling of
this crystalline structure, we use the “dust lattice string”
model [13,38,41–43,46,50,54], allowing for the 2D motion,
in the longitudinal (horizontal, along the X axis, with site
ordering denoted by the index n) and transverse (vertical,
along the Y axis, with site locations denoted by m) directions,
as shown in Fig. 1.

The dust particles interact through the Debye-Hückel in-
teraction potential (Yukawa potential) and the corresponding
interdust force between sth and śth (s, ś ∈ I) particle is
given by

�F = −
∑
s 	=ś

∇rs

[
Q2

4πε0rś,s
exp

(
− rś,s

λD

)]
. (1)

Here, rś,s = |rś − rs| and assume �rś,s − �rś,s(0) = dL(ś, s)x̂ +
dT (ś, s)ŷ [dL(T )(ś, s) = dL(T )(ś) − dL(T )(s) is the longitudinal
(transverse) component of relative displacement of the sth
lattice from equilibrium position �rś,s(0)] due to weak external
force.

The waves in SCCP are the elastic deformation of the
lattices of dust particles that frequently collide with the neutral
atoms. The system is not in thermodynamic equilibrium at
every instant mainly because of dust-neutral collisions and
also the finite velocity of internal motion of the system.
Thus the diffusive processes that tend to return the elastic
body to thermodynamic equilibrium will take place and make
the motion irreversible. This energy dissipative mechanism
causes “viscosity” in a strongly correlated system [55] as
observed in experiments and simulations [27–32,34,35]. The
corresponding dissipative force can be expressed in discrete
relation as [49,50,55]

�Fś,s(vis) = Mν∂t

[
dL(ś, s)x̂ + dT (ś, s)ŷ

�2

]
. (2)

An approximated analytical form of (normalized ν) ν∗ ≡
ν∗(�∗, ν∗

dn, D∗) is provided in Ref. [27] as

ν∗
(
= ν

ω∗�2

)
≈ 2

√
πD∗

3�∗(1 + ν∗
dn)

+
√

�∗(1 + ν∗
dn)

32
√

πD∗ , (3)

where D∗ = D(νdn + ω∗)M/Td and D is the diffusion coeffi-
cient.

The lattice parameter κ is assumed to be large (κ �
1) so that the dust particles in the 2D hexagonal crystal
(Fig. 1) interact with their six nearest neighbors. The “plasma
wake” [16–18] effect (which plays an important role for κ �
1) and external force (which accounts for the parabolic con-
finement potential for a stable 2D crystal and/or initial laser
excitation triggering the oscillations in experiments which has
no direct influence on transport processes) are not considered
here. Then, the X (Y ) component of the equation of motion of
the sth particle can be written as

M∂2
tt dL = FX + FX , M∂2

tt dT = FY + FY , (4)

where dL(T ) ≡ dL(T )(ś, s), and FX (Y ) and FX (Y ) are the X (Y )
component of the forces [Eqs. (1) and (2)], respectively. In the
absence of dissipation (ν = 0), following the standard proce-
dure [41–43,56], one can easily derive the discrete dispersion
relations for DLWs.

In strongly dissipative SCCP experiments [27–29,32,33],
it is observed that the macroparticles form a 2D-fluid-like
structure with hexagonal symmetry (Fig. 1). Also, in these
experiments, the footprint diameter of an Ar+ laser beam
that excites the SCCP is ∼3 × 103 μm (= L) and � is
∼(550 ± 100) μm so that � � L. These experimental condi-
tions permit us to adopt the continuum approximation, which
is very convenient to model a fluidlike medium. Since this
approximation erases the molecular discontinuities by aver-
aging the microscopic quantities, it converts the difference
equations into differential equations for dL(T ) and neglects the
nonlinear effects due to the particle discreteness [13,38,41–
43,46,50,54]. Moreover, the equations under the continuum
approximation well explain the experimentally observed non-
linear phenomena in SCCP [37–39,57].

In the continuum approximation, s = (n, m) is considered
as a quasicontinuous variable [coordinate (x, y)]. By expand-
ing dL(T )(ś, s) in the Taylor’s series up to the terms O(�/L)4,
the viscous dissipative force [Eq. (2)] can be approximated as

FX (Y ) ≈
(

3M

2

)
ν∂t

[
∇2

(
1 + �2

16
∇2

)
dL(T )

]
, (5)

where ∇2 ≡ ∂2
xx + ∂2

yy. For weak external harmonic distur-
bance of the form dL, dT ∼ exp i(ωt − kxx − kyy), where ω

(ω ≡ ω/ω∗) is the frequency, kx = k cos θ (ky = k sin θ ) (k ≡
k�) is the wave number along the X (Y ) axis, and θ is the
angle of the wave vector �k (k = |�k|) with the X axis (Fig. 1),
the dissipative force (5) in (ω, k) space becomes

FX (Y )(ω, k) = −iων∗k2

(
3M

2

)(
1 − k2

16

)
dL(T ). (6)

This clearly shows that in the sufficiently long wavelength
(k → 0), the wave suffers the usual viscous damping. On the
other hand, the wave suffers an instability for short wave-
length perturbations (k > 4). Such strong viscosity induced
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instability is observed in fluid dynamics [58,59] and also in a
1D lattice chain falling in a viscous fluid [60].

However, here we are interested in studying the effects of
strong viscosity (ν∗ � 1) on the WNL dynamics of QLDLW
by employing the well-known RPT [53]. Accordingly, we
assume that the amplitude of the nonlinear wave is propor-
tional to ε (0 < ε � 1) [53] and introduce slow space (ξ, ζ )
and time (τ ) variables in terms of the small parameter ε

as [41,42,46]

ξ = ε�−1(x − ω∗�t ), ζ = ε2�−1y, τ = ε3ω∗t . (7)

For QL wave dynamics, the transverse displacement (dT ) has
a higher-order smallness than the amplitude of longitudinal
displacement (dL ) and thereby, for consistent perturbation
dL(T ), is represented as

dL ∼ εd̃L and dT ∼ ε2d̃T . (8)

Experimental and numerical simulation results [27–29,32,33]
around the second singular point (98 � �∗ � 161, where
crystallization with the hexagonal structure forms) estimate
that ν∗ ∼ O(10) [for a dust particle of radius a ≈ 1 μm,
ν∗

dn ∼ O(10), and κ � 1.5]. In particular, a = 0.95 μm, κ =
2, ν∗

dn ≈ 10, and �∗ ≈ 100 estimate ν∗ ≈ 10 [27]. Thus to in-
corporate such strong viscosity in WNL transport, we consider
the following scaling:

ν∗ = ν0ε
−1, (9)

where ν0 = O(1) (of the order of unity). Note that if ν∗ is
not so large, one can still use the same substitution, but now
ν0 should be small. This does not present any hurdle to the
subsequent theoretical analysis [53].

Finally, by applying continuum approximation to
Eqs. (1), (2), and (4), and then transforming the continuum
equations in (ξ, ζ , τ ) variables [using scalings (7)–(9)], we
obtain [keeping terms O(ε5)] the following NLPDE for the
WNL transport of QLDLW in highly dissipative SCCP:

∂ξ [(1 + η∂ξ )uτ − αuuξ + βuξξξ − γ uξξξξ ] + 1
2 uζ ζ = 0.

(10)

Here, u = �−1∂ξ d̃L, u� ≡ ∂�u,

α = 9

64

[
2κ3 + 5(κ2 + 2κ + 2)

κ2 + 2κ + 2

]
,

β = 11

256
, η = 3ν0

4
= 3εν∗

4
, γ = 3ν0

64
= 3εν∗

64
. (11)

The strong kinematic viscosity is responsible for the both
(lower- and higher-) order dissipative terms η and γ . The term
β is the usual dispersion and the last term in Eq. (10) arises
due to the anisotropy. In the absence of dissipation (ν0 = 0),
we recover the Kadomtsev-Petviashvili (KP) II equation [61]
for the WNL dynamics of QLDLW [41] and further, in one
dimension (1D), the Korteweg–de Vries equation [62] for the
WNL dynamics of DLW [13,54]. Dissipation is inherent in
almost every physical system and therefore the derived DD
NLPDE (10) should be applicable to all physical systems
where such equation arises. The solutions of Eq. (10) are
interesting and applicable in different fields of physics and
mathematics as demonstrated later.

III. NONLINEAR ANALYSIS

The first two invariants of the derived DD NLPDE (10),

∂τ J = 0 and ∂τE =
∫∫

[ηuτ uξ + γ (uξξ )2]d ξ́d ζ́ , (12)

reveal that the mass (J = ∫∫
ud ξ́d ζ́ ) is conserved, but the

energy (E = 1
2

∫∫
u2d ξ́d ζ́ ) is not conserved so that Eq. (10) is

non-Hamiltonian and not exactly integrable [63]. For ν0 = 0,
Eq. (10) is believed to be stable for a plane-wave solution and
possess a large family of interesting soliton solutions [63].
Thus, in the presence of weak dissipation (ν0 	= 0), one
can employ the soliton perturbation technique [64] to find
an approximated (leading-order) soliton solution [46] of the
NLPDE (10).

However, here we are interested to find the other non-
trivial solutions, which will help us to gain insight into the
complexity of the dynamics (in the presence of higher-order
dissipation). To achieve this goal, we follow Whitham [65]
and analyze the NLPDE (10) in a stationary plane-wave
frame,

χ = γ −1/3kξ
−4/3(Vf τ − kξ ξ − kζ ζ ).

The frame velocity Vf is related to Mach number (M) through
the relation

M = ω∗� + ε2Vf

ω∗�
= 1 + ε2

( Vf

ω∗�

)
⇒ Vf ∝ (M − 1).

(13)

Interestingly, in the linear limit, we recover the usual relation
M = 1. In the χ frame, by integrating Eq. (10) twice and
choosing integration constants as zeros (Galilean symmetric
group invariant), we construct the 3D autonomous nonlinear
system,

Ẋ ≡ [φ̇, ψ̇, ϕ̇]T =
[
ψ, ϕ, φ

(
U − φ

2

)
− εψ − δϕ

]T

,

(14)

where � ≡ d/dχ , φ = −αkξ u, φ̇ = ψ , ψ̇ = ϕ, and

U = Vf − 0.5 kξ tan2 θ, δ = 0.33 kξ
1/3ν

−2/3
0 ,

ε = 2.1 Vf kξ
−5/3ν

2/3
0 . (15)

The system (14) is a dissipative system as ∇ · Ẋ = −δ < 0
(δ > 0). The volume (ϒ) satisfies the equation

ϒ̇ =
∫

ϒ

∇ · Ẋdϒ ⇒ ϒ(χ ) = ϒ(0)e−δχ .

This clearly shows that ϒ contracts as χ advances, and
thereby an arbitrary set of initial points in phase space
(φ, ψ, ϕ) gradually condenses into a region of zero volume.
The system (14) possesses two critical points, namely,

c0 = (0, 0, 0) and c1 = (2U, 0, 0). (16)

The nature of c0(c1) is determined by the eigenvalue (λ) of the
characteristic equation

λ3 + δλ2 + ελ ∓ U = 0. (17)

However, for nonlinear analysis, we consider only the point c0

as it corresponds to the equilibrium state.
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TABLE I. The values of �∗, nonlinear coefficient (α), and ν∗ for
different κ . The values of ν∗ are calculated from formula (3). The
value of the normalized diffusion coefficient D∗ � 0.1 for 130 �
�∗ � 160 [28].

κ �∗ α ν∗

2 155 0.93 20.80
2.1 149 0.95 20.40
2.2 143 0.97 20.01
2.3 137 0.99 19.60
2.4 130 1.01 19.09

IV. NUMERICAL ANALYSIS

The numerical simulations are carried out for the typ-
ical gas discharge laboratory plasma parameters [27–29]:
electron temperature (Te) = 3 eV, ion temperature (Ti ) =
0.03 eV, ion mass (mi ) = 6.69 × 10−26 kg, and neutral den-
sity (nn) = 8.4 × 1021 m−3 (pressure = 35 Pa). The dust
(melamine formaldehyde) mass density = 1.5 × 103 kg m−3,
a = 0.95 μm (M = 5.4 × 10−15 kg), Td = 0.03 eV, � =
420 μm, and κ = 2. These parameters estimate Q = −1.42 ×
103 e, ω∗ ∼ 20 rad s−1, νdn ∼ 1.7 × 102 rad s−1 (ν∗

dn ∼ 8.5),
and �∗ ∼ 155 [27–29]. This estimated value of �∗ is large
enough to predict a hexagonal latex structure [29]. Also, ac-
cording to these experimental conditions, L ∼ 3 × 103 μm so
that �/L ≈ 0.14 � 1 justifies the quasicontinuum approxi-
mation used to derive the NLPDE (10). The values of different
physical parameters are provided in Table I. The values of ν∗
in Table I justify the assumption ν∗ � 1 and the perturbation
scaling (9). In the computation, the frame velocity Vf (> 0) is
estimated as

Vf = [
1 + 0.5 kξ tan2 θ/

(
1 − 2.1 kξ

−5/3ν
2/3
0

)]
,

i.e., M ∝ [
2 + 0.5 kξ tan2 θ/

(
1 − 2.1 kξ

−5/3ν
2/3
0

)]
.

We simulate the nonlinear system (14) for ν0 = 0.1, 0.8 and
θ = 100.

First, we consider a small disturbance around c0 and then
solve the system (14) with initial conditions φ = c0 + 10−3,
ψ = 10−5, and ϕ = 10−5. For the long wavelength distur-
bance with kξ = 0.25, the critical point c0 is a saddle point
[node for ν0 = 0.1 and focus for ν0 = 0.8 according to the
eigenvalues of the Eq. (17)] and the disturbance develops
into shocklike structures as illustrated in Fig. 2. The curves
in this figure show the transitions of φ from zero value
to a fixed value with the oscillatory [Fig. 2(a); for weak

(a) (b)

FIG. 2. Numerical solutions for kξ = 0.25. (a) Weak (ν0 = 0.1)
and (b) strong (ν0 = 0.8) dissipations.

FIG. 3. Numerical solutions for short wavelength disturbances
(kξ � 1) with strong dissipation ν0 = 0.8. Left and right panels are
for φ and projections of the corresponding phase-space diagrams.
Bounded solutions are observed for 0 � χ � 104. Only solutions for
subintervals of χ are displayed for better clarity.

dissipation (ν0 = 0.1)] and monotonic [Fig. 2(b); for strong
dissipation (ν0 = 0.8)] nature corresponding to the stable
focus (c1) [66]. Viscous dissipation induced similar shock
structures in weakly dissipative SCCP are observed in theory
and experiment [48–51].

The physical system (14) is then simulated for relatively
short wavelength disturbances (kξ � 1). A series of bifurcated
states of (14) for a small disturbance around c0 is shown
graphically in Fig. 3. This figure reveals that increasing kξ

eventually forms a limit cycle [Figs. 3(a) and 3(b): kξ = 1],
then bifurcates to a period-doubling [Figs. 3(c) and 3(d):
kξ = 1.33; Figs. 3(e) and 3(f): kξ = 1.35] and, finally, leads
to a complex structure [Figs. 3(g) and 3(h): kξ = 1.5]. The
transitions of the qualitative behavior of φ for different kξ
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FIG. 4. (a) Bifurcation diagram of the system (14) with respect
to kξ and (b) Poincaré return map of φ for kξ = 1.5.

are shown in the bifurcation diagram in Fig. 4(a). This
figure clearly shows that with the increase of kξ , the transi-
tions occur through the formation of periodic (limit cycle) →
quasiperiodic (period-doubling) → complex structure.

To analyze the qualitative behavior of the complex struc-
ture observed in Figs. 3(g) and 3(h) for kξ = 1.5, we construct
the following 1D Poincaré return map [67–69] as

φN+1 = f (φN ).

This return map is constructed from the χ series data of the
variable φ by collecting the local maxima of φ in such a way
that the (N + 1)th local maxima φN+1 of φ is a function f of
the N th local maxima φN . The first return map for kξ = 1.5
(constructed with the series of the maxima of φ) is plotted in
Fig. 4(b). A close inspection of this figure clearly reveals that
the points are densely populated with irregular distributions
(without any known pattern). Such first-return map is the
characteristic of chaotic oscillations [67–69].

Also the numerical solution of the characteristic equa-
tion (17) for the short wavelength perturbations (kξ � 1)
around c0 reveals that the eigenvalues (say, λ1, λ2, and λ3)
of the nonlinear system (14) are of the form

λ1 = � > 0 and λ2,3 = −ρ ± i� (ρ > 0).

This implies that c0 is a saddle focus. Thus for the analyt-
ical characterization of the computational results described
in Fig. 3 (for the short wavelength perturbations), we follow
the mathematical recipes of Refs. [70,71]. Accordingly, we
define the saddle index (μ) and the first (second) saddle value
(σ1(2)) as

μ = |Re λ2,3|
|λ1| = ρ

�
, σ1(2) = λ1 + 1(2)Re λ2,3. (18)

The values of μ and σ1(2) of the solutions in Fig. 3 are shown
in Table II. The integral curves of the linearized system of
(14) can be written as φ � φ1D + φ2D, where

φ1D = Ae�χ and φ2D = Be−ρχ cos(�χ + φ0)

(A, B, and φ0 are constants), and satisfy biasymptotic condi-
tions,

φ � φ1D|χ→−∞ and φ � φ2D|χ→∞.

TABLE II. Values of μ and σ1(2) for different curves in Fig. 3.
For fixed values of θ and ν0, μ = μ(kξ ).

Fig. 3 kξ μ σ1 σ2

(a),(b) 1 1.02 −4.6 × 10−3 −0.41
(c),(d) 1.33 0.93 4 × 10−2 −0.44
(e),(f) 1.35 0.92 4.2 × 10−2 −0.46
(g),(h) 1.5 0.84 0.1 −0.50

Thus, starting from c0 at χ = −∞, all the integral curves
of the field flow escape from the vicinity of it, but spirally
return back at χ = ∞. These two integrals correspond to two
invariant manifolds intersecting in a neighborhood of c0: a 1D
unstable manifold Mu

1D(c0) and a 2D stable manifold Ms
2D(c0).

The intersection of these two manifolds [Mu
1D(c0) ≈ Ms

2D(c0)]
forms a homoclinic loop [70], as illustrated in Fig. 5 for
kξ = 1.51.

The nonlinear system (14) with the homoclinic loop of
c0 (saddle focus) forms a bifurcation manifold B1 of codi-
mension 1 in the Banach space of the system with a smooth
topology [70]. Hence, a small smooth perturbation around c0

of the vector field breaks the homoclinic loop. Later, for μ > 1
(σ1(2) < 0), the transition over B1 leads to the emergence of a
single, stable periodic orbit from the homoclinic loop [71] by
forming a limit cycle, as observed in Figs. 3(a) and 3(b).

The computational results in Table II clearly show that for
a fixed value of θ and ν0, μ ∝ k−1

ξ , i.e., with the increase of kξ ,
μ decreases (μ = 1 is the boundary of the bifurcations) and a
small disturbance triggers the system to the homoclinic explo-
sion (μ < 1) by forming period-doubling structures [70,71],
as illustrated in Figs. 3(c) and 3(d) and Figs. 3(e) and 3(f).
All of these are clearly shown graphically in the bifurcation
diagram in Fig. 4(a).

The first (second) saddle value σ1(2) is the most positive
(negative) at kξ = 1.5 (shown in Table II) and the system is

FIG. 5. Homoclinic loop around c0 for kξ = 1.51.
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then very close to the homoclinic loop, as illustrated in Fig. 5
at kξ = 1.51. According to Shilnikov [70], the system (14)
then possesses uncountably many nonperiodic trajectories
(chaotic invariant sets). Thus, the complex structures (solu-
tions) presented in Figs. 3(g) and 3(h), indeed, resemble the
situation of a homoclinic chaos.

V. DISCUSSIONS

In the quasicontinuum limit, a realistic DD nonlinear
model [Eq. (10)] is developed to study the WNL transport
of QLDLW in an experimentally observed highly dissipative
SCCP [27–29]. The plane-wave nonlinear analysis of the de-
rived DD NLPDE (10) and also the computational results
reveal that for the long wavelength perturbations, the WNL
wave possesses the usual shock solution. However, for the
short wavelength perturbations (kξ � 1), the WNL wave pos-
sesses a wide class of nonlinear structures such as periodic,
quasiperiodic, and Shilnikov homoclinic chaotic structures.

Physically, an increase in wave number (kξ ) enhances
and creates new perturbations in the collective dynamics
that generates new harmonics. These harmonics interact
among themselves (many wave interactions) and form coher-
ence structures, which for suitable physical parameters show

chaotic dynamics [72]. This chaotic flow gives rise to energy
diffusion (direct microscopic exchange of kinetic energy be-
tween structure and plasma) leading to an increase of particle
kinetic energy, which, in turn, can cause a phase transition.
Theoretically and experimentally, it is observed [19–23] that
resonance instability due to mode coupling is responsible for
the crystal melting. However, the result of this investigation
reveals that strong viscosity induced homoclinic chaos could
also be a viable physical process for crystal melting. This
is theoretical evidence of the existence of a phase transition
through homoclinic chaos due to strong viscous effects.

Finally, the computational results are on the basis of real
dissipative SCCP experiments, so we expect that the results
of this work could be observed in future experiments.
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