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Longitudinal crossover and the dynamics of uniform electron ellipsoids focused by a linear chirp
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High-resolution single-shot nonrelativistic ultrafast electron microscopy (UEM) relies on adaptive optics to
compress high-intensity bunches using radio frequency (RF) cavities. We present a comprehensive discussion
of the analytic approaches available to characterize bunch dynamics as an electron bunch goes through a
longitudinal focal point after an RF cavity where space charge effects can be large. Methods drawn from the
Coulomb explosion literature, the accelerator physics literature, and the analytic Gaussian model developed for
UEM are compared, utilized, and extended in some cases. In particular the longitudinal focus may occur in two
different regimes, a bounce-back regime and a crossover regime; and we characterize the critical point separating
these regimes in the zero-emittance model. Results from N-particle simulations using efficient multipole methods
are compared to the theoretical models revealing features requiring extensions of the analytic approaches; and in
particular mechanisms for emittance growth and transfer are discussed.
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I. INTRODUCTION

Modern ultrafast microscopy has the goal of resolving sub-
picosecond time periods at sub-nanometer length scales [1,2].
Consistently obtaining such resolution would allow scien-
tists to visualize chemistry as it happens thus opening up a
deeper understanding of mechanisms at the nanoscale that
are important to life and modern technology [3,4]. While
a number of techniques are being explored to realize such
microscopy [3—15], weakly relativistic ultrafast electron mi-
croscopy (UEM), where the electron bunch has energies that
are at most a significant fraction of the rest energy of the
electron, has a number of attractive advantages. The first
advantage is the engineering fact that the device needed for
such experiments can be built on top of existing electron
microscopes keeping additional engineering and expenses to
a minimum. The second advantage is the physical fact that the
use of strongly interacting electrons means that the number
of electrons required to form an image is a relatively small
number as compared to x-rays, for example [12]. The ultimate
goal is to reach the single-shot limit where the number of
electrons in a bunch is large enough to form an image, but
weakly relativistic UEM also introduces technological hurdles
as the space-charge effects of a high-density probing elec-
tron bunch are considerable at a number of points within the
column [16-22]. These effects need to be characterized to pro-
vide an accurate model for design of high-intensity beamlines.
In this paper we present such a model that can capture such
space-charge effects at a longitudinal focal point.

While such so-called space-charge-dominated regimes
have been well described by accelerator physicists for cylin-
drical beams [23], the weakly relativistic bunched nature,
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which can be thought of as ellipsoids with finite longitudinal
extent, of the electrons in UEM requires additional tools.
Some work has already characterized such dynamics in the
nonrelativistic regime near the electron source. Models of the
longitudinal evolution of the bunch have been developed to
describe the early dynamics of a bunch within an acceleration
field before the center of mass motion becomes relativis-
tic [24-28], although we recently showed that the transverse
dynamics should not be ignored when attempting to capture
the important aspects of the electron bunch evolution [22].
Furthermore, once the bunch has expanded sufficiently, it is
often argued that the internal space-charge effects become
negligible; however, for weakly relativistic UEM the bunch is
recompressed resulting in the space-charge effects becoming
significant at and near focal points where the density of the
bunch is again high.

Fortunately, tools have been developed in the astrophysics
and Coulomb explosion literature where the mean-field ef-
fects of a uniform ellipsoidal electron bunch can be modeled
through ordinary differential equations. Specifically, Lin et al.
developed a model of gravitational collapse of an oblate el-
lipse that could be written as a system of differential equations
for the ellipses’ widths [29]. Similar techniques using the
repulsive electrostatic force were developed by Grech et al.
to model the inverse problem of Coulomb explosion [30].
Both techniques require a tractable force, and to simplify
the analysis, both techniques assumed a uniform ellipsoid
throughout the bunch evolution. However, such models as-
sume a one-to-one relation between particle location and
particle momentum, which is unphysical.

Separate from these efforts, Michalik and Sipe introduced
an Analytic Gaussian (AG) model that is able to capture the
effect of local momentum spread at every location [31-33].
To capture such effects, Michalik and Sipe utilize a measure
common in accelerator physics, the normalized rms emittance
(henceforth emittance), that represents the phase-space area
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occupied by the ensemble and that we will define mathemati-
cally later. The AG model is presented in the reference frame
of the bunch, so it is applicable only as long as the bunch re-
mains nonrelativistic within the laboratory frame. Further, we
argue here that the AG model is equivalent to the much older
Kapchinskij-Vladimirskij (KV) envelope equations initially
developed to describe the evolution of uniform ellipsoidal
distributions [34]. Sacherer provided a simple perspective
that showed that the KV envelope equations could be de-
rived from basic, fundamental statistical considerations with
applications of the mean-field force present from a uniform
distribution [35], and the mathematical form of the AG model
may be derived from similar considerations again assuming
emittance conservation. We provide such a derivation later in
this paper.

We have recently argued that emittance is an important
measure in the statistical description of any ensemble of
particles as it appears in the dynamics of the second-order
moments, as we will show here. We emphasize that the use of
emittance is valid for understanding collective particle effects
reflected in the statistical description of any physical situation,
not just the one-component plasma situation we investigate
here. Of special note, the emittance is conserved for systems
where all forces are perfectly linear, therefore ideal uniform
distributions within the fields of gravitation and electromag-
netism are of specific theoretical interest to the understanding
of the dynamics of such ensembles [24]. Furthermore, the col-
lective effects of an ensemble of particles may be conveniently
partitioned into mean-field effects [36,37], and momentum
spread effects [31,35], and particle-particle scattering-like ef-
fects, and such effects drive changes within the emittance.
Therefore, the analysis of emittance is fundamental in under-
standing the collective effects of any ensemble.

In this work, we have three primary goals: (1) We extend
the model of Grech er al. to capture focusing events, (2) we
place the envelope equations within the context of the UEM
and accelerator physics literature, and (3) we analyze changes
in emittance during well-controlled focusing and crossover,
as a leading indicator of typical non-mean-field interaction
effects within the ensemble. We start by extending the model
employed by Grech et al. to include linear initial momentum-
spatial correlations, also known as chirps, in Sec. II. We show
that the use of a chirp to introduce crossover can be treated
precisely in the zero emmitance limit by an important exten-
sion of the mathematics utilized in the paper of Grech et al.
We call this the modified Coulomb explosion (MCE) model.

We find that this MCE model naturally leads to the concept of
a critical chirp that describes a collective behavior transition
for particles within this model. Next, in Sec. III we derive
the AG formalism from a statistical vantage point assuming
a linear force. We explicitly demonstrate how the Gaussian
assumption differs from the uniform assumption only by a
constant that can be absorbed into the number of particles in
the bunch if the model is used to represent experimental data,
for example (see Appendix B 2). Further we point out that the
envelope equations we derive from this statistical perspective
are a generalization of the MCE model. This observation
allows us to partially disentangle the effects of the collective
self-force and momentum spread on the predicted dynamics of
the bunch, and we analyze some important physics of bunch
evolution using this insight. As the deviation of real systems
from such a model is due to stochastic effects that simulta-
neously result in emittance change, the theoretical predictions
are compared to N-particle simulations where such stochastic
scattering events are present. Consistent with previous the-
ory [23], we show that emittance is transferred from hotter
to colder dimensions; however, we also show that emittance
increases almost simultaneously in both the transverse and
longitudinal directions around crossover when the initial chirp
is larger than the critical chirp. We note that this cannot be
explained through the standard mechanism of heat transfer;
and we postulate two mechanisms that may be important in
the collective dynamics of a focused, charged bunch.

II. SPATIAL EVOLUTION

We revisit the model of Grech et al. for Coulomb explo-
sion. Broadly, this model assumes that the force acting on a
particle within the uniform ellipsoidal ensemble is the mean-
field force calculated by the application of Laplace equations
to a uniform distribution of electrons. The modification we
introduce is an initial linear relationship between the initial
position and the initial velocity of the particle, which we will
call the “chirp,” and this modification naturally leads to the
identification of a critical chirp that demarcates two qualita-
tively different regimes of bunch behavior within this model.

A. The mean-field framework

We first recall the well-known quadratic form of the
electrostatic potential for position (x, y, z) inside a uniform
electron ellipsoidal bunch with semiaxes of (a, b, c) and
charge number density » that can be obtained using Laplace’s
equations [38]:

nabce [ x2
Vv o) = / (1
0

480

where &y is the vacuum permittivity. We assume rotational
symmetry about the z axis enabling us to introduce the radial
coordinate r = /x2 + y2. Although the detailed calculations
below are performed specifically for prolate ellipsoids (a =
b < c), similar results are valid for general uniformly charged
ellipsoidal bunches.

i +s P+s s

7 ) ds "
V(@ + )0+ 5) (2 +5)

The electrostatic field may be obtained from Eq. (1) using
E = —VV. Due to the symmetry, the angular portion of the
field is zero. Thus the electric field may be written as

E(r,z) = E.(r)} + E.(2)? )
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with 7 and Z representing the radial and longitudinal unit
vectors, respectively, and

ne

Er) = 3—&@)r, (3a)
€0

E.(z) = z”—esz«x) -z (3b)
€0

where o = a/c is the ellipsoid aspect ratio and the corre-
sponding geometry coefficients &.(«) and &,(«) are

£ () = o f h ds , (4a)
o (@452 +5)1?

E) = o f h ds . 4b)
0o @+ +s)3?

Provided that the initial velocity of the particles in the ellip-
soid can be expressed as linear functions of their coordinates,
the linear relation between the electric field felt by a particle
and the particle’s position results in the preservation of the
uniformity of the ellipsoidal bunch. This greatly simplifies
our analysis as the formulation presented above applies to the
bunch for all time and the evolution reduces to the determi-
nation of two degrees of freedom. Specifically, the temporal
evolution of the entire bunch can be represented by the evo-
Iution of two dimensionless scaling functions, R(¢) and Z(t);
i.e., the trajectory of any particle with initial position (7, zo)
inside the uniform ellipsoid is given by (roR(?), z0Z(t)),
where R and Z are independent of the initial position (7, o).
Thus, the parameters for describing the bunch changes ac-
cordingly: (1) the semiaxis of the ellipsoids can be written
as (a, c) = (apR, cpZ), (2) the transient aspect ratio can be
written as «(t) = o - R/Z, (3) the number density can be de-
rived using conservation of charge Ny = ng - (47 / 3)agc0 =
n(t) - (47(/3)a2c giving n(t) = no/(RzZ), and (4) the spatial
variance of the bunch changes to 0Z2 )= 0120 - Z%and 0,2 ) =
o7 - R*. Therefore, it should be apparent that any parameter
in the problem can be determined from R and Z, which we set
out to determine for all time.

In the nonrelativistic limit, the equations of motion (EOM)
of a particle inside the field determined in Eq. (3) can be
simply determined using X = %E . These EOM reduce to two
dimensionless ordinary differential equations (ODEs) for our
scaling parameters:

d’R & (a)
T , 5
drt? RZ (52)
d’Z  &(a)
i , 5b
dt? R? (5b)
with dimensionless reduced time,
2
r=r. |20 _ 4l q,, 6)
2e0m

and electron mass m. Notice that (1) the time scaling factor
Qo = JLEQ’PO where w,o(ng) =,/ i)—”’;: is the initial plasma fre-
quency and (2) the geometry coefficients &, and &, depend
solely on the aspect ratio « rather than specific value of a and
c. This means that starting with the same initial conditions

for the ODEs, bunches with the same initial aspect ratio o
but different initial density ny will lead to identical behaviors

differing only by the time scaling factor 2y determined by the
initial number density ny. Equations (5) are more or less the
ODEs used by Lin et al. [29] and Grech et al. [30] except we
have scaled the time to be more general, so the model we have
presented so far does not significantly differ from those works.

B. Initial conditions

The behavior predicted by a specified system of nonchaotic
ODE:s is entirely determined by its initial conditions, and the
initial conditions we consider are

R(r=0)=1, (7a)
Z(t=0)=1, (7b)
ﬁ = —v', (7¢)
dt | '
d—Z = -], (7d)
dt =0 :

where v} is trivially proportional to the linear chirp. We call v}
the reduced longitudinal chirp, and its proportionality to the
linear chirp can be obtained by noting p.(z9) = m - (v} -
20) = mC, - zo where C, is the longitudinal linear chirp. Notice
that Egs. (7a) and (7b) represent the initial scaling of the
ellipsoid and are by definition set to one as these parameters
represent the scaling of the transverse and longitudinal dimen-
sions, respectively, from their initial values. On the other hand,
Egs. (7c) and (7d) represent the initial rate of change of the
scale functions R and Z, which can be roughly thought of
as the velocity of the expansion. Lin et al. and Grech et al.
set v = v’ = 0 to model gravitation collapse and Coulomb
explosion, respectively, where the bunch is assumed to start
from rest. The Coulomb explosion results were found to be in
good agreement with molecular dynamics (MD) simulations
for time-dependent energy distributions and particle-in-cell
(PIC) simulations for temporal ellipsoid radii evolution [30].
For our purposes, we assume v} = 0 and v} # 0 to model the
effect of a longitudinal lens, e.g., a RF cavity. Specifically,
notice that if the reduced longitudinal chirp is positive, i.e.,
%Imo is negative, Z will initially decrease, and the bunch
will be focused in the longitudinal direction. In summary, the
focusing process of a uniform charged ellipsoid is entirely
determined by its initial aspect ratio and its reduced longi-
tudinal chirp as the density of initial bunch determines only
the timescale of the evolution. We call this general form of the
model of Grech et al. the modified Coulomb explosion (MCE)
model.

In particular note that the reduced longitudinal chirp is
dimensionless while the longitudinal chirp has dimensions of
inverse time. This is because the reduced chirp is the actual
chirp scaled by €y, and this cancels the time dimension.
As €2 depends solely on density, the reduced chirp is more
general as the density determines the timescale, and therefore
the ODE represents the interplay between the geometry and
the electrostatic force. However, if the density is not important
in our discussion of some physical observation, we will often
drop the “reduced” when discussing the chirp as the statement
should apply to both the reduced chirp as well as the actual
chirp.
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FIG. 1. Longitudinal width evolution Z = Z(t) of prolate ellip-
soids with (g = 10/75) driven by different initial chirps in numeric
solutions of the MCE model ranging from below the critical chirp
(0.35v},) to well above (2.0} ). The subgraph shows the depen-
dence of minimum width on initial reduced chirp. The red dot
represents the critical value v} for the particular oy = 10/75, and
the bounce-back and crossover regimes are separated by the vertical,
dashed, red line at this point.

C. Critical reduced chirp

As the effect of aspect ratio on the evolution has been well
studied previously [30], we examine the effect of the reduced
longitudinal chirp on the bunch focusing on a prespecified
aspect ratio, ag = 10/75. Specifically, we are interested in
modeling the bunch reaching a minimum in longitudinal ex-
tent after r = 0, which occurs when —v} < 0. We define the
time to focus, 7y, as the dimensionless time at which the bunch
reaches its minimum longitudinal width. As can be seen in
Fig. 1,7, is a function of the reduced chirp, i.e., Ty = T7(V]).

Furthermore, define Z; to be the longitudinal scaling
parameter at the focal point, i.e., Zy = Z(ty) = min[Z(?)].
Moreover notice that Z(t) > 0, so Z; > 0; in fact, for suffi-
ciently large reduced chirps Z; = 0 as can be seen in Fig. 1.
This is because the evolution of the longitudinal scaling pa-
rameter, seen in Eq. (5b), is dependent only on 1/R? and
R > 1 in our model. This means that if v} is sufficiently
large, the initial longitudinal chirp overcomes the repulsion
of the electrostatic force and the bunch briefly collapses to a
two-dimensional object at the focal point. We call the smallest
magnitude of the reduced chirp for satisfying this condition
the critical chirp, v} .. Notice that t/(v}.) =00 and that

s
Z,¢

do >0, v <t . o
d—rﬁ{ < %¢ again as can be seen in Fig. 1.
vit< 0, vi>vl,

In other words, the behavior of the model can be partitioned
into two categories characterized by whether the initial lon-
gitudinal chirp is greater than or less than the critical chirp.
More specifically, as the magnitude of focusing chirp is in-
creased from zero, the minimum width of the bunch decreases

and the time to focus increases. This trend continues until the
critical chirp is reached where the corresponding time to the
focal point becomes infinitely large, i.e., Ty — 00 as v} —
v} .. Above the critical chirp, the bunch will overcome the
Coulomb repulsion and be compressed through a longitudinal
crossover as electrons starting from one side of the bunch
cross the center of mass and then begin to expand on the other
side. We refer to this as the “crossover” regime, and in this
regime further increasing the chirp has no effect on the zero
minimum width but decreases the time to focus. In contrast,
we call the regime below the critical chirp the “bounce-back”
regime as a particle within the bunch with such a chirp follows
a trajectory that reverse its initial direction.

The crossover event adds complexity to simulations of
the model. Specifically, the linearity of both the force and
the velocities of the particles in the model indicates that
all the crossover incidents happen simultaneously across the
bunch at t; within the crossover regime, creating a 2D two-
dimensional singularity in the EOM with Z — 0. Before the
crossover, the chirp is negative, while after the crossover the
chirp becomes positive. As the force in the z direction is
very small due to geometric considerations, the speed of the
particles does not change substantially, just the sign of the
linear relationship in phase space. This necessitates careful
treatment of the chirp through the crossover event. We accom-
plish this treatment by using a small time step to propagate
the EOM up until Z goes below zero. As Z is a scale, the
negative sign has no physical meaning and indicates that
crossover occurred within the previous time step. So we stop
the simulation and flip the value of both longitudinal position
scaling, Z, and longitudinal momentum, p,. After this, the
same EOM are used to integrate the parameters. In effect,
this skips the singularity by an infinitesimal step size in time.
In addition, this also implies that the crossover case, where
Z will pass through zero in this fashion, will have a sudden
change in longitudinal chirp as compared to the bounce-back
case where such Z does not pass through zero and the chirp
instead smoothly changes due to the effect of the repulsive
mean-field force.

Analogous to our longitudinal treatment, a radial chirp
can also be added by setting v’ in Eq. (7c) to a nonzero
value. Furthermore, this treatment may be combined with the
longitudinal chirp to model bunches focused in both degrees
of freedom simultaneously—a treatment that is outside of the
scope of this paper. However, in contrast to the longitudinal
dimension, this model predicts that there is no such critical
chirp or crossover in radial focusing. This occurs because of
d?R/dt o 1/R as can be seen in Eq. (5). This indicates that
the force in the transverse direction diverges as the bunch
focuses radially preventing the singularity in the longitudinal
scaling parameters seen when only the longitudinal direction
is focused.

In the general situation, this difference between being able
to focus through a singularity longitudinally but not trans-
versely is a result of attempting to focus two dimensions, i.e.,
X and §, simultaneously. Focusing in more than one dimension
in this model is not possible even when all dimensions are
treated separately as the Coulomb repulsion in one dimension
is inversely dependent on the widths of the other two dimen-
sions. In other words, there is only the bounce-back regime
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FIG. 2. Dependence of critical reduced longitudinal chirp, v},
on the initial aspect ratio, «g. The green dashed line represents the
horizontal asymptote, n} .(cty — 00) = 2. The red dot represents the
aspect ratio of our MD simulation.

when more than one dimension is focused concurrently. We
will later (in Sec. III) discuss how emittance influences the
minimum width of the bunch, and this statistical measure rein-
troduces the ability of particles to cross over even when the
bunch is in the bounce-back regime. For the rest of this paper,
though, we will focus only on the longitudinal focusing where
both the crossover and bounce-back regimes are accessible in
the model.

One important feature of the critical reduced chirp, v}, is
its exclusive dependence on the initial aspect ratio «. This
fact stems from the governing EOM solely depending on the
aspect ratio. In Fig. 2 we present the reduced critical chirp
as a function of the initial aspect ratio. Specifically, note that
for large o often referred to as the “pancake” regime [22,24—
28], we always have o > 1, where the geometry coefficients
&, and &, can be approximated in closed forms, with

E (@ —> o0)~nm/QRa) — 0, (8a)
E(@ —> 00)~2 —mal(@®>— 1) ? 2. (8b)

Therefore, the longitudinal motion can be treated as the ele-
mentary constant acceleration kinematic equation:

Z(t)=Zy —vi T+ 3 £(c0)- 72 9)

with T, = v’ /& (00) and Z(zy) = 0. In essence, this equation
corresponds to the longitudinal crossover within the planar
model, which gives an analytic critical reduced chirp of two.
This value corresponds to the asymptote seen in Fig. 2. That
is, for sufficiently large aspect ratios, the envelope model may
be analyzed for small amounts of time using the planar model,
which should be unsurprising.

III. ENVELOPE EQUATIONS

In this section we present a brief derivation of the envelope
equations, and we compare this model to the Analytic Gaus-

sian (AG) formalism. Our derivation is essentially identical to
Sacherer’s derivation of the KV envelope equations [35].

A. Derivation

We first introduce the statistics of the bunch and their
dynamics. In each degree of freedom (x, y, z), we need three
quantities to describe the second-order statistics of the phase
space: s;, §p,, and s; ,,, with i = T, z for the transverse (T =
x, y) or longitudinal direction. The basic statistics are then

st =02 -7, (10a)
52 = pl — P, (10b)
Si.pi = E - iﬁia (IOC)

where the bar operator indicates the mean, e.g., Xp, =
j%zj;;lxjpx,j. As the number of particles is a constant,
derivatives commute with sums, and derivatives of products

can be determined by the chain rule, we have [%L_l = ‘;—‘t‘, and it
is straightforward to show
E%J,:S%’b—i—sa’%. (11
Thus the time derivatives of our phase-space statistics are
ds? 2
d_tl = ;si,p;s (128.)
dS,‘ pi 1 2
— = =855+ —5,, 12b
dt PR (12b)
dsii
? = 2spi,F,., (]ZC)

assuming nonrelativistic dynamics.

We have been calling this system of equations the
second-order statistical kinematics as they exactly specify the
evolution of the second-order statistics in the same way as
kinematics exactly describes the evolution of a single particle.
Notice that each dimension has three degrees of freedom:
these degrees of freedom describe the 2D covariance matrix
in (x, py) space, etc. Moreover, alternative choices of pa-
rameters, other than the covariance matrix elements above,
may be chosen. In fact, one such well-known choice of these
degrees of freedom are the Courant-Snyder parameters used
in accelerator physics; we provide context on why we chose
not to use the Courant-Snyder parameters for this paper and
how the statistical kinematics inform the evolution of the
Courant-Snyder parameters including the effect of adiabatic
damping in Appendix A. However, the statistical kinematics
apply generally and are important in the understanding of
nonequilibrium dynamics in any field; in this paper, we look
at parameters that are more in line with the existing literature
in the UEM community.

Specifically, we compare the second-order statistical kine-
matics to the three degrees of freedom represented in the
AG model. In Appendix B 1, we show that the AG model
can be simply derived from the statistical kinematics without
integration of the phase space. Specifically, a single assump-
tion reproduces Michalik and Sipe’s published model from
the statistical kinematics; namely, assume that the force on
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a particle in the AG model is linear and can be written as

N2

R = e o Tra?

—=—Li()i. 13)

Further details showing this explicitly can be found in Ap-
pendix B 1.

However, this linear force assumption has two somewhat
subtle, and related, problems. The first has to do with the de-
scription of the relationship between the position of a particle
in the distribution and the force it experiences on average.
The line of best fit has slope , S0 s; f, can be thought of as

the slope of the best fit line t1mes the spatial variance. While
the slope of the line for a Gaussian is essentially described
by the force in Michalik and Sipe’s AG model, we note that
the assumption that the distribution will remain Gaussian has
been found to be incorrect [22]. Specifically, the slope of
the best fit line is specific to the given distribution, and as
the Gaussian distribution evolves toward a ringed distribution,
the slope of this line changes partially just in response to this
change in distribution. This issue can be partially avoided
theoretically by assuming a uniform distribution that does
continue to be uniform as it evolves—at least in the con-
tinuum, mean-field, nonrelativistic, zero-emittance limit. For
this work, we assume F;(i) = (ma)[%() /2)&i(a)i, which leads
to the envelope equations we use as well as the equations
used by Sacherer [35]. The difference between the AG model
and these uniform envelope equations can be mathematically
shown to be nothing more than a difference in a dimensionless
constant relating the force used in the analysis of Michalik
and Sipe, the force we use. In Appendix B2, we calculate
this constant and find that it is only 1.05 indicating that these
models are essentially equivalent. Because these two models
differ by only about 5% in the force, either set of equations
can be used in most applications to experiment.

However, the linear assumption results in a more serious
issue. Specifically the force in a real bunch differs from the
linear approximation. This is even true for the uniform dis-
tribution although the more consistent nonlinearities of the
Gaussian distribution result in more significant deviations. So
while the s,  can be captured in many situations with the
mean-field force, it is important to understand these devia-

tions especially for the term relating the momentum and the

22d8

force, s_ﬁ L —

a T ¢ (S Spi,F; —
captured. As the Gau551an distribution results in significant
deviations between the linear force and the mean-field force,
the rms emittance has additional effects on the evolution of
the emittance growth than the uniform distribution’s purely
stochastic driven emittance changes. This second point has not
been examined in the literature to the best of our knowledge,
and we begin to evaluate the stochastic driven aspects of
emittance growth in this paper by investigating the emittance
change during simulation as compared to the uniform enve-
lope equation predictions. As the gold standard for simulating
realistic forces is N-particle simulation, we conduct N-particle
simulations in our exploration of these effects.

In terms of understanding the physics, it is convenient to
introduce a variable representing the average local variance in

Si,piSi,F;), cannot be likewise

the momentum,
i,pi
ni=,[s% — 5. (14)

Notice that ? has dimensions of momentum and 5- n? has
dimensions of energy. Furthermore, the emittance can be writ-
ten as €; ,, = 1;s; similar to Michalik and Sipe’s notation [31].
With this notation and an assumption of a linear force, F; =
Kri(@)-i = (ma)ﬁ /2)&i(a0)i, our system of ODEs becomes

ds? 2
& m (15
dsi : 1 stz
Pi_ _(_ﬂ + ,71) + Kri(a)s;, (15b)
dt m Sl
dn? 258; 12
i _ Si,pi1; . (150)

dr msi2

Although the above derivations have been performed for
the Coulomb interaction, we would like to stress that the same
conclusions can be drawn for any interaction that leads to
linear dependence between force and position. Additionally,
the generalization to any general ellipsoid is simple using
three degrees of freedom with i = X, Y, Z and corresponding
geometry coefficients (&, &, &;) as functions of the ratio be-
tween three axes.

B. Dynamics of the envelope equations

Notice that the noninteracting bunch model can be obtained
by setting Kr;(@) = 0 in Eq. (B2). Further, notice that the
MCE model gives identical predictions to the zero-emittance
limit of the envelope equations above, as can be seen in in

Fig. 3.
The bunch dynamics can be better understood analytically
by investigating the dynamics of the linear chirp, C; = Y;—;,
d mc*el, 1
—Ci =Kp — - 7, 16
- rle) + it = € (16)

that is, the chirp evolution is influenced by three factors. These
factors can be decomposed into an interacting effect, Krp; (),
and two expansion effects: (1) expansion due to velocity
L2 This
realization leads us to identify four ways to investigate the
physics of the bunch dynamics: (1) the noninteracting model
with zero emittance where the dynamics are entirely driven by
the chirp, (2) the noninteracting model with nonzero emittance
where the dynamics are driven by existing emittance and the
chirp, (3) the MCE model or equivalently the envelope equa-
tions with zero emittance whose bunch dynamics are driven
entirely by the internal Coulomb repulsion and existing chirp,
and (4) the full envelope equations where all three effects
and their interaction effects may be examined. We discuss
the effects of these contributions in the rest of this section by
isolating them.

Notice that in the case that all other terms except the chirp
term of Eq. (16) are zero, then we can obtain an analytic

i,pj

spread, '2)2 , and (2) expansion due to the chirp, —
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FIG. 3. Longitudinal width evolution, o, divided by the initial
longitudinal width, o o, of prolate ellipsoids with («g = 10/75) fo-
cused by different initial chirps: (a) 0.7v} ., (b) 1.0}, (c) 1.5V} .
In each figure, the red solid line represents the prediction from the
MCE model, and the dotted lines represent the envelope equations
with different emittance ranging from 0 to 10 nm. Notice that the
envelope equations with zero emittance and the MCE model are
in perfect agreement. Also notice that (1) increasing the emittance
makes the waist larger and moves it earlier and (2) the evolution of
the width statistic is more responsive to emittance when the chirp is
in the vicinity of the critical chirp.

solution for the chirp:

1
Ci=——Ciy, 17
C[,ot 1 i,0 ( )

where C; represents the initial chirp in the ith direction at
time 0. Notice that there is a singularity for this solution when
t = %0 Before this singularity, the bunch is moving in and
the chirp is becoming more negative. After this singularity,
the chirp is positive, the bunch is moving out, and the chirp
approaches zero.

Notice that the emittance term is always positive, that is
it is driving the chirp to increase in time. In isolation, this is

2.2

because local velocity spread, for which cj% is an estimate,
drives faster particles to move out more quic'kly thus resulting

in a higher correlation between the spatial and momentum

components. If emittance is conserved and present along with
the chirp term, the evolution of chirp will never pass through
the singularity as the velocity spread will increase inversely
proportionally to the inverse quartic power of the size of the
bunch and will eventually overwhelm the squared chirp con-
m?e &,

G
the chirp turns around and begins to either increase (if chirp
is negative) or decrease (when chirp is positive). It may be
argued that the region between the two points where the emit-
tance and chirp are equal can be thought of as the emittance
dominated portion of the dynamics.

The force term in isolation is generally understood. The
outward repulsion of the Coulomb force drives a chirp in-
crease. This repulsion decreases as the bunch expands and
thus has a similar interaction with the chirp as the emittance,
which is likewise strictly positive and decreases with expan-
sion; of course, the details of where this effect dominates
differ as the effect on the chirp falls roughly, with a geometric
effect, inversely to the cubic power of the size of the bunch.
Thus the emittance and the electric repulsion cooperate to in-
crease the chirp and expand the bunch. If we were to consider
gravitation instead, the sign of the force effect flips and the
emittance and force effect react antagonistically.

In Fig. 3 we vary the emittance in the envelope model to
specifically demonstrate its role on the dynamics. We can see
that the width trajectories largely follow one another before
the larger emittance predictions break off and reach their
minima at a short time later. This is due to the fact that the
emittance term increases rapidly with decreases in the bunch
size. While there is a small effect of this emittance effect on
the bunch width, to first order, it is primarily the shift in the
time to the focus that increases the size of the waist.

The kinetic energy can also be modeled through the en-
velope equations. The kinetic energy can be exactly written

as KE=)" 7 and can be decomposed into KE = KE, +

i 2m
KE, + KE; where KE; = %(p%COM + sii) and where p; con
is the momentum of a single particle at the center of mass of
the bunch in the ith direction. Assuming the center of mass
momentum does not change, the kinetic energy evolution
along the ith dimension can be written as

d N ds; N
EKEi =om dr ;Si,pi}CFi(a) (18)

in any linear model. That is, the kinetic energy can be trans-
ferred via the mean-field force into or out of the potential.
Furthermore, as the different components (x, y, and z) can
be independently controlled so that in effect energy is being
transferred into the potential by one component but out of
the potential by another, this mechanism can lead to kinetic
energy width transfers between the dimensions. The result
of this mechanism can be seen in Fig. 4 for a bunch in the
crossover regime.

Furthermore, notice that the effect of the emittance can also
be seen Fig. 4. Specifically, the transfer of kinetic energy be-
tween the components is reduced by increasing the emittance.
This occurs as the nonzero emittance results in the minimum
width being both larger and occurring earlier than the MCE
model. In turn, this larger size reduces the forces experienced
reducing this transfer. Moreover, the earlier focal time results

tribution. At the point where they are equal, i.e., Ci2 =
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FIG. 4. The longitudinal and transverse kinetic energy for the
crossover case [1.5v} . corresponding to Fig. 3(c)], with solid lines
for the MCE model and dotted lines for the envelope equations with
different emittance (circle for KE, and triangle for KE7). The sudden
change of direction for the slope of the MCE model prediction of
the longitudinal kinetic energy comes from the sign flip of the chirp
discussed in Sec. II.

in the transfer finishing earlier, and all of these effects are fac-
tors in determining the amount of energy transferred between
dimensions. We will provide more details of this aspect of the
model in future publications.

IV. N-PARTICLE SIMULATIONS

Now that details of the models are understood, we com-
pare the models to N-particle simulations. While the models
describe the evolution of the bunch under specific conditions,
i.e., conserved emittance for the envelope equations and zero
emittance for the MCE model, no such assumption is present
in the N-particle simulations. The only assumption that we
make in these simulations is that the bunch remains non-
relativistic, and thus electrostatics can be used to model the
interparticle interaction.

The simulations were conducted using in-house code. This
code has been validated through comparison to other in-
house code implementing the PIC algorithm from Warp [22].
This code employs the nonrelativistic equations of mo-
tion for every electron using velocity Verlet integration
where we used the Fast Multipole Method (FMM) from the
fmmlib3d library [39] to calculate the field. As emittance
increases initially due to disorder-induced heating (DIH) [40],
the bunch needs to equilibrate before the focusing sim-
ulation. We first place electrons inside a simulation box
with periodic boundaries at the target density, which is
10000 electrons for a prolate ellipsoid with the semiaxes of
(10 pem, 10 pwm, 75 wm). The starting position of the elec-
trons is randomly drawn from a uniform distribution, and the
starting momentum is zero. Then the electrons are thermal-

ized using Particle-Particle-Particle-Mesh (PPPM) methods
in LAMMPS [41,42] for more than 10 plasma oscillation
periods. At the end of thermalization, we select electrons
inside the desired prolate ellipsoidal region to construct one
sample of initial conditions. To mitigate the stochastic effects
in this procedure, we prepare 90 such samples. This process
results in 90 ellipsoids of particles with nonzero emittance that
experience only minor additional DIH at the beginning of the
focusing simulation. We call these initial conditions “warm”
due to the nonzero emittance.

A. Longitudinal width and Kinetic energy evolution

Simulations were performed with three representative ini-
tial chirps: (1) 0.7 v} . in the bounce-back regime, (2) 1.0 v},
at the critical chirp, and (3) 1.5 v; . within the crossover
regime. N-particle simulations were conducted by first ther-
malizing the bunch without chirp and with periodic boundary
conditions before allowing the bunch to evolve with the appro-
priate chirp. The average initial phase-space statistics of the
bunch postthermalization were used to initialize the envelope
equations.

The envelope model prediction is largely in agreement
with the N-particle simulation except for the simulation at
the critical chirp as can be seen in Fig. 5, and this prediction
deviates most significantly at the focal point. Similar results
can be seen with the kinetic energy evolution except for some
noticeable deviation in the prediction for the bounce-back
regime (0.7 v} ). These discrepancies arise from momentum
spread as supported by reexamining the envelope equations
using the average emittance from the N-particle simulation at
every time step (dotted lines).

Further as shown in Fig. 5, the envelope equation predic-
tions deviate from the N-particle simulations in three aspects:
(1) a slightly larger minimum width occurring at (2) an earlier
ty with (3) a faster expansion after the focal point. These
deviations are most significant at the critical chirp, where the
bunch evolution is most sensitive to changes in velocity spread
measured by emittance as we discussed in a previous section.
We previously saw similar trends in the minimum width, the
time to the minimum width, and the postfocus expansion rate
as we increased the emittance in the envelope equations as
can be seen in Fig. 3. This suggests that the model used to
predict the evolution of the width statistic likewise uses a
larger longitudinal emittance than is seen in the N-particle
simulation at crossover. As the envelope equations use the
longitudinal emittance of the initial warm distribution that is
used in the N-particle simulations, this suggests that the lon-
gitudinal emittance is in fact decreasing during the N-particle
simulations. Tracking the rms emittance of the N-particle
simulations, as seen in Fig. 6(b), confirms that the longitudinal
emittance decreases prior to the focal point.

As discussed previously, the conservation of emittance in

. . 2.2 de?
the envelope equations is a result of the term 5= —* =

S7Sp, F. — Si,p;Si.F; being zero in Eq. (B2c¢); conversely, the non-
conservation of emittance suggests that this term is nonzero.
Currently, there is no theory to predict the value of these
terms, but we can use the change in emittance seen in sim-
ulations in this term within the envelope equations to better
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FIG. 5. Comparison of spatial width evolution and average ki-
2

netic energy in the longitudinal direction, +KE, = ;- (n? + =) =

18‘2

3m 57> Of the bunch focused by three different initial chirps, 0.7 Vi
1vf

¥ and 1.5v7 . The line style of the plot indicates the simulations
type: solid = mean of 90 N-particle simulations with the region
shaded within 1 standard deviation of the mean (sim), dashed =
envelope equation with conserved emittance (env), and dotted =
envelope equation with emittance provided from simulation (env
Ag).

capture the evolution. Specifically, we replace Eq. (15¢) by

dn; _ d 812_1” _ v + i_dg"z”’f (19)
dt dt al.z mcri2 O’l-z dt

2
in our envelope equations with dzi't”i taken from the simulation
results. We note that this procedure was originally examined
by Sacherer [35]. The spatial width and longitudinal kinetic
energy evolution using these envelope equations with the sim-
ulation change in the emittance squared term can be seen
as the dotted lines in Fig. 5. Excellent agreement between
these modified envelope equations suggests that varying emit-
tance is the main factor causing the discrepancy between the
longitudinal spatial variance and longitudinal kinetic energy
evolution of the constant-emittance envelope equations and
N-particle simulations. This suggests that if the physics of
the covariance terms s, r and s; r can be understood and
modeled, that we should be able to obtain envelope equations

&z,p,(NM)

Transverse

Longitudinal
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t(ps)

sim(0.7v} )

— sim(1.5v} )

— sim(1.0v},)

FIG. 6. (rms) Emittance evolution in (a) longitudinal ¢, and
(b) transverse ¢, , directions for the three different initial chirps,
0.7v;,. (orange), 1v;. (blue), and 1.5v} (magenta). All results
were obtained from N-particle simulations. Notice the initial bump
in the longitudinal emittance within the first 100 ps; this is driven
by disorder-induced heating that is not completely resolved by the
protocol we used to thermalize the bunches. Further notice that
the longitudinal emittance decreases while transverse emittance in-
creases after this point and before the focal point. Also notice that
the longitudinal emittance continues to decrease after the focal point
for the chirps that are at or below the critical chirp; however, the
longitudinal emittance increases at and after the focal point in the
crossover regime. This occurs while the transverse emittance con-
tinues to increase, so the standard theoretical explanation of heat
transfer between the dimensions does not describe this behavior, and
an alternative theory is required to understand what is going on. This
is discussed further in the text.

that capture the expected behavior of electron bunches to a
high degree of accuracy.

V. DISCUSSION

To provide context for the models examined in this paper,
we consider an ensemble of N electrons. A full N-particle
simulation would find and apply the electric, and if ap-
preciable, the magnetic field at every location. Using the
Fast Multipole method [39], this field calculation has a
computational order of O(N InN). One computation-saving
approximation that can be made is to replace this field calcu-
lation by the mean field although doing such an approximation
requires an understanding of the distribution at time ¢. If we
make the further assumption that the distribution is always
uniform, this field becomes exceedingly simple and can be
parameterized by the standard deviations of the ensemble.
Applying this field to the real distribution has a computation
order of O(NV) as the field needs to be applied to the N particles

023202-9



X. XIANG, P. M. DUXBURY, AND B. ZERBE

PHYSICAL REVIEW E 103, 023202 (2021)

10—1 i
0 100 200
time (ps)

FIG. 7. Plot showing the equivalence between the prediction of
the longitudinal standard deviation from the envelope model and
the longitudinal standard deviation seen in an N-particle simulation
where the force experienced by the particles is assumed to corre-
spond to the uniform mean-field force of an ellipsoid, abbreviated
as UMFRDS in the text. The solid lines represent envelope model
predictions for four different initial parameter choices, and the circles
correspond to the standard deviation from the UMFRDS.

at every step. We call this simulation the uniform mean-field
real distribution simulation UMFRDS.

As can be seen in Fig. 7, the envelope model exactly re-
produces the dynamics of the statistics seen in the UMFRDS
despite the computation order of the envelope model having
no dependence on N. This is not to say that the UMFRDS and
the envelope equations are the same. It is true that the envelope
model is able to capture the local velocity spread information
that is present in the real distribution through the application
of what the accelerator physics field terms normalized rms
emittance, and this is the reason for the similarity between the
simulation and the model. On the other hand, the UMFRDS
has information about the position of the N particles that
is lacking in the envelope model. Such particle distribution
information is important in explaining the shock that occurs
in Coulomb explosion [43], the similar shock that arises in a
dense Gaussian distribution of electrons within the electron
gun [22], or dark matter halos in galaxy formation [44,45]
among other distribution effects. Nonetheless, if such distri-
bution information is not being utilized by the researcher and
all that is being examined is some statistic such as the width
or kinetic energy spread in some dimension, the elimination
of any dependence of the algorithm on the number of particles
through the use of the envelope model allows us to investigate
ensembles of different N with no additional computational
cost.

However, this is not the only benefit of the sample per-
spective we have used here. The statistical kinematics we
have used here can be used to show that the evolution of the
second-order statistics of N particles under a full N-particle
simulation can be exactly captured by nine degrees of freedom
assuming there is no force, like a magnetic force, mixing
the dimensions. The envelope equation already represents
six of these degrees of freedom (two degrees for each of

three dimensions); the other three degrees of freedom can be
captured by the evolution of the emittance along the three
dimensions. Indeed, this is the mathematical foundation un-
derlying Sacherer’s observation that a priori knowledge of
the emittance evolution results in an exact prediction of the
statistics evolution [35].

In our work we are interested in the evolution of these
statistics, and we have presented the envelope equation which
assumes conserved emittance. The comparison we have done
between the MCE model and the envelope equations can be
interpreted as the effect that local velocity spread has on
the dynamics of the statistics; however, the envelope model
does not currently include stochastic effects. Nonetheless, N-
particle simulation has forces that differ from the mean-field
assumption implicit in the envelope model and are therefore
able to capture such effects. Here we examined stochastic
effects of on the additional three degrees of freedom (two by
cylindrical-symmetric assumption) by examining the evolu-
tion of the emittance seen in N-particle simulations. Ideally,
if we could understand and model the emittance change dy-
namics, we should eventually be able to exactly (on average)
capture the full dynamics of the statistics. Indeed, we find that
modeling a distribution that passes through a controlled lon-
gitudinal crossover represents an ideal, as well as practically
applicable, process where the growth of stochastic effects and
hence emittance can be large with a sudden onset of growth at
close to the crossover event.

The emittance evolution in Fig. 6, especially within the
crossover regime where the emittance in both the longitudi-
nal and transverse directions increase simultaneously, cannot
be explained by the standard heat transfer mechanism em-
ployed in the literature. We provide some insight into these
dynamics here. As can be seen in Fig 6, the longitudinal
emittance rapidly increases at the beginning of the simulation
followed by a gradual decrease. For the simulations within
the crossover regime, there is another rapid increase in the
longitudinal emittance close to the focal point. In contrast, the
transverse emittance has a rapid increase at the beginning of
the simulation followed by a more gradual increase. Notice
that there is again a rapid increase in the transverse emittance
around the focal point. We emphasize that the rapid increase
in the emittance of both directions is almost coincidental—an
observation not currently predicted from theory to the best of
our knowledge.

Within the literature, there seem to be two macroscopic
ideas for the mechanisms involved in this process:

(1) Emittance transfer between degrees of freedom (heat
transfer): As emittance can be thought to be proportional to
the square root of the heat times the spatial extent, this heat
transfer results in emittance transfer between the degrees of
freedom.

(2) Disorder-induced heating (DIH): DIH in the plasma
community describes the heating process during the transition
from a disordered state to one which is structured by Coulomb
forces.

We point out that these two ideas have previously been
described in the literature. Specifically, Reiser’s standard book
in accelerator physics describes the heat transfer [23], and
DIH has phenomenologically been described by Gericke et al.
and Maxson et al. [40,46]. Further, Struckmeier discussed
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these two ideas in his work on modeling envelope equations
with additional Fokker-Planck-style random terms [47-49]
with slightly different language and a more mathematical
presentation; however, it is not clear to us if these effects
are truly stochastic in the manner that should be modeled
by Fokker-Planck statistics as Struckmeier has presented. We
also point out that these ideas are mechanisms in the language
of thermodynamics but do not describe mechanisms in the
statistical physics sense as their definition does not lead to any
inherent timescale.

Nonetheless, using these two ideas and our own notation,
we can phenomenologically explain the emittance evolution
seen in Fig. 5. First, we define the linear heat along i by ﬁn?,
which can be viewed as the kinetic energy contained in the
random fluctuations (from linearity), and we use this measure
as a proxy for the heat of the distribution. Recall that the emit-
tance can be written as ¢; , = is,vn,-, which can be thought
as being proportional to the product of the spatial width and
the local momentum width or equivalently the square root of
the linear heat. At the beginning of the simulation after the
confinement is suddenly removed, potential energy is released
through DIH into 7 and 5, while sy and s, do not change
much. This results in a sudden increase in both ¢, , and ¢, ,,
that continues even as sy and s, begin to significantly change.

Next, the longitudinal emittance begins to decrease as the
transverse emittance continues to increase. To understand
this phenomenologically, we first consider how the linear
heat would change under emittance-conserving conditions. As
n, = ES—’, a decrease in s, would result in an increase in 7,
under the assumption of 2D conserved emittance. Likewise,
Ny = '“1—’, and an increase in s, would result in a decrease in
Ny In other words if the 2D emittance were conserved, we
would expect the linear heat in the longitudinal direction, i.e.,
ﬁn?, to increase, and we would expect the linear heat in the
transverse direction, i.e., ﬁ nf, to decrease. Notice that a strict
definition of temperature is not appropriate for our highly
nonequilibrium situation, but that this definition of linear heat
is still appropriate. As the initial thermalization leads to these
two heats being roughly the same, the difference in the heat
that develops as the longitudinal dimension contract and the
transverse dimension expands would lead to the development
of a thermal gradient between the longitudinal and transverse
dimensions.

Now in the nonemittance-conserving condition, heat can be
transferred between the dimensions. So as the bunch focuses,
we would expect a heat transfer from the hotter longitudi-
nal to the cooler transverse direction, that is, the evolution
of simulated n, would be expected to be smaller than the
n, we would obtain from the emittance-preserving envelope
equations; conversely, we would expect the simulated 7, to
be larger than the theory n,. This is precisely what is seen
in Fig. 8. This in turn results in the longitudinal emittance
decreasing while the transverse emittance increases, which is
precisely what happens in the bounce-back regime.

However, once the bunch is in the crossover regime, there
is actually an increase in the longitudinal emittance in Fig 6.
This phenomenon could be explained from this perspective
by postulating that a second period of DIH occurs near the
focal point when the bunch is within the crossover regime.
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FIG. 8. Comparison of the evolution of the parameter 1 between
the envelope equations (dashed lines) and the N-particle simulations
(solid lines). The line and shaded area around the N-particle simu-
lation lines represent the mean (solid line) £ the standard deviation
of 90 simulations. The vertical dotted line indicates the focal point.
Notice that the emittance-conserving model overpredicts 7, and un-
derpredicts 7,. This is partially due to the heat being transferred
between the dimensional modes, a mechanism that is not captured
by the emittance-conserving envelope equations.

That is, if the particles cross over, they are forced into a highly
nonequilibrium state that rapidly relaxes releasing heat into
the bunch thus increasing the emittance.

VI. CONCLUSIONS

In this work, we have examined the longitudinal crossover
of electron bunches with uniform ellipsoidal profiles focused
by a linear chirp as is typical of the propagation of a probing
electron bunch in an ultrafast electron diffraction or micro-
scope system. We employed several analytic techniques to
model the space charge dynamics of the bunch, the first of
which is an extension of the mean-field theory of Grech
et al. which utilizes ordinary differential equations for the
ellipsoid transverse and longitudinal sizes to describe the
bunch evolution. Analysis of this mean-field model leads to
the identification of a longitudinal critical chirp. This crit-
ical chirp separates two regimes for particle trajectories in
this model: bounce-back, where the particles reverse their
direction at the bunch waist, and crossover, where the bunch
experiences a singularity with a width of zero. This singularity
is seen only in the zero emittance case and is analogous to
the unphysical caustics seen in gravitation analysis [44,45];
while such effects are unphysical as zero emittance for any
ensemble is unphysical, this classification is nonetheless use-
ful. We showed that time can be scaled by the initial plasma
frequency, and by defining a dimensionless critical chirp the
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zero-emittance model behavior depends only on the initial
aspect ratio. The evolution of bunches with the same initial
geometry then differ only by the timescale determined by the
bunch’s plasma frequency.

We examined the problem through the statistical formula-
tion of envelope equations by building on Sacherer’s statistical
analysis of the cylindrical KV-envelope equations that are well
known in the accelerator physics community. We argue that
our model is widely applicable to the evolution of statistics
of any ensemble far beyond the application we examined
here.We showed that the statistical envelope equations for
three-dimensional (3D) systems are identical to, up to a con-
stant we determine in Appendix B 2, the AG formalism that
is well known in the ultrafast electron microscopy commu-
nity; the envelope equations from this sample perspective are
more general and have a more straightforward derivation than
Michalik and Sipe’s integral approach. Again, we note that
this derivation is not limited to accelerator applications but
can be applied to any statistical analysis.

It should also be noted that the majority of analyses of
envelope equations in the accelerator physics community is
in cylindrical coordinates due to the predominance of accel-
erators with continuous beams or which have bunches with
very large prolate aspect ratios. In contrast in the UEM field,
the bunch near the source and at the longitudinal focal point
is a highly oblate ellipsoid, or pancake, and a fully 3D de-
scription is required. The advantage of our analysis is that the
envelope model captures such 3D effects, and one of the clear
results is that the zero emittance envelope equation clearly
reveals the critical chirp phenomenon separating the bounce
back and crossover regimes at the bunch focal point described
above.

However, our envelope model assumes linear forces that
conserve the statistical measure of emittance. Fortunately,
investigating the evolution of emittance in N-particle simu-
lations should provide insight into the effects of emittance
changes. To be specific, we provided a qualitative descrip-
tion of the emittance growth and transfer observed in Fig. 6
by elucidating three mechanisms: (1) disorder-induced heat-
ing, or relaxation from a highly nonequilibrium state, which
converts potential energy into kinetic energy and naturally
leads to a rapid growth in emittance—his effect occurs
at the start of our simulations and near the focal point;
(2) transfer of “heat,” which is equal to kinetic energy fluc-
tuations, from the hotter direction to the colder direction;
(3) the fact that the kinetic energy fluctuations increase along
a direction that is compressed and decrease along a direction
that is expanding. This last mechanism allows for one direc-
tion to become hotter than the other colder, e.g., when the
longitudinal direction is being compressed it becomes hotter
while the transverse direction cools down as it expands. The
system then tries to equilibrate by transferring heat from the
hot direction to the cold direction. We note that the longi-
tudinal emittance, the longitudinal momentum fluctuations,
and the longitudinal bunch size are related by €, , = 5.7, and
that the longitudinal nonequilibrium heat is given by nzz /2m.
Therefore dynamics of the heat, or momentum fluctuations,
and the dynamics of the emittance may be different due to the
s, factor as is evident when comparing Figs. 6 and 8. Further
model development and characterization of the randomness

inherent in such consistent effects is an exciting avenue for
future insight into particle-particle, finite-size effects.
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APPENDIX A: A STATISTICAL PERSPECTIVE ON
ACCELERATOR PHYSICS

The following Appendix is primarily aimed toward accel-
erator physicists and may not be of interest to students and
experts outside of that discipline. In the accelerator field, the
Courant-Snyder parameters, which are related to the covari-
ance parameters we use in the main text [50], are often used
to describe bunch motion. In this Appendix, we do two things:
(1) discuss why our problem cannot use the Courant-Snyder
parameters and (2) show the statistical kinematics equations
in terms of Courant-Snyder parameters.

1. Trace space and longitudinal normalized rms emittance

In order to explain why we think Courant-Snyder param-
eters are not appropriate for this problem and to introduce
our notation, we first discuss the paraxial assumption. The
paraxial assumption is necessary for the use of trace space,
and this assumption actually has two embedded assumptions
that we describe now. Consider N particles indexed by j. The
velocity of the jth particle,

ﬁj = Ux,jje + Uy,j)/} + vz,ji, (Al)

is assumed to be primarily in the z direction, i.e., v, ; >

70w
Ux,js Uy, j. As atesult, f; = ¥—— ~ =L, A second assump-

tion is then made: all particles are assumed to have the same
B, ie., Bj = B for all j. As a result, the velocity of the jth

particle can be approximated as
. Vo
LR+ L9+ 2).
cp

. v
”"Mﬂ<cﬁ

Moreover, the coordinate system that accelerator physicists
use when doing analyses has some subtle innovations; namely,
the coordinate system can be thought of as moving with the
center of mass of the ensemble of particles so that the z
direction is always along the direction with the largest velocity
even when the trajectory of the particles is bent. In more
strict mathematical language, the expected path of the bunch
is parameterized by a curvilinear parameter, s by convention,
and the coordinate system is a tangent space associated with
the center of mass’s location.

(A2)
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: ds __ ~
As v, 13 alwagls along s, we have %' = v, ~cB. No-
i 4y dNds / e indi
tice vy ; = 7+ = 79 = ¢fx; where the prime indicates the
L A _ . , .
derivative with respect to s. Likewise, vy ; = ¢fy. Subbing

this into Eq. (A3) we get
U & cfX+Y9+2), (A3)

and accelerator physicists call the coordinates (x,x’) and
(»,y") 2D trace spaces analogous (and related to) the standard
(x, px) and (y, py) 2D phase spaces.

In the trace treatment, 8; and hence the Lorentz factor y;
are assumed to be approximately the same for all particles j,
that is, accelerator physicists treat these parameters as statis-
tical scalars. Defining y = y;, this allows us to pull both /3
and y out of the statistics. As py,; = mcy;B;x; ~ mcy px}, i
follows s, , ~ mcy Bsy v and s, ~ m czyzﬂzsx v, at least
to first order, which is typically a very good approximation in
the standard situation examined by accelerator physicists. As
a consequence, £, = —(sish —s7, ) = y?p%el,, where

6)%,\’ =S )Zc s)%,x’ (A4)
represents the statistical area occupied by the distribution in
(x, x') trace space and is known as the rms emittance. Analo-
gous expressions can be found in y.

However, the z statistics need to be treated with care
as the standard approximation leads to an unphysical zero
normalized rms emittance in the longitudinal rms emittance,
which we denote by ¢.. Treating p, ; = p, results in s, , =
0 and s, = 0. Therefore, the longitudinal normalized rms

1 sfsl% 52 .- defined in Reiser [23], is

likewise zero to ﬁrst order. This is unphysical, so first order
is not sufficient to describe the longitudinal normalized rms
emittance.

Instead, accelerator physicists treat the longitudinal emit-
tance to second order. Treating p, ; = p, + §; where §; is the
small deviation from p, for the jth particle with § = 0 and
uncorrelated with momentum, i.e., s, s = 0, we get

emittance, &; , =

Szz = S?, (AS5a)
Sz,p. = 82,85 (A5Db)
Sp.p. = sg. (A5c¢)

Further assuming s, 5 = 0, the longitudinal normalized rms
emittance becomes ¢, , = iszs,;. Normalizing the longitu-
dinal normalized rms emittance by the same factor that the
transverse normalized rms emitttances are normalized by to
give the transverse rms emittances, i.e., y 8, we get the longi-
tudinal rms emittance

1
= Sz8
ymﬂc z96

(A6)

The above equation is not directly used by accelerator
physicists; instead they measure the longitudinal emittance in
terms of the energy spread and the duration of the pulse. Note,
though, that such an expression is obtainable from Eq. (A6).
Notice that the duration of the pulse, A, is proportional to
At X é Further, notice that the total kinetic energy of the

pulse is given by

=) (B P +mc)

N
j=1
N
2 2.2
X c E ij-i-m c)

j=l1
=N92 c ~|—Np2c2—|—Nm
~ N2+ E2,. (A7)

where EgoM ~ N[_)gc2 + Nm?c* is the energy associated with
the center-of-mass motion that can be shown to be approxi-
mately true unless £= s 1. Further approximating (AE ) =

5% A +(E? — Econ) we obtain ss = AE. As a result we have

g. < AtAE (A8)

under these approximations giving a statistical motivation for
the standard accelerator physics approximation.

The problem with analyzing longitudinal focusing within
the standard framework is that s, , = s, s needs to be nonzero
in order for the bunch to focus—a central premise of the
main text. There are a couple of problems with generalizing
the approximations made by the accelerator community when
such a covariance is present. First, s, s becomes important in
the determination of the kinetic energy therefore invalidating
the relation &, « AtAE as AE becomes an overestimate of
ss. Even if this problem can be handled, the treatment of the
second-order effect in the z direction needs to be properly
propagated throughout the derivation. This includes the def-
inition of the rms emittance as the approximation for the z
velocity of the jth particle becomes v, ; ~ v, + }%m AS—”ZZ and
the definition of the trace variable will thus depend on z and
trace space cannot be used.

We do not see a solution to this problem and therefore have
considered nonrelativistic phase space where the mathematics
is much simpler and generally applicable. As the Courant-
Snyder parameters are defined in trace space, they cannot be
used to describe our problem.

2. The statistical kinematics reformulated
in Courant-Snyder parameters

If the longitudinal dynamics can be ignored, we can re-
formulate the statistical kinematic equations in terms of trace
space parameters. This is known in the accelerator field
as Wangler’s theorem and is essentially derived from these
considerations [51]; however, we have not seen these consid-
erations derived in terms of Courant-Snyder parameters. We
use the Courant-Snyder derivation in this section.

We first point out that the relation between the second-
order statistics of the trace parameters and the Courant-Snyder
parameters is well known [50]:

N S2

B=— (A9a)
Ex,x/

o Sx,x'

& =— , (A9b)

Ex,x’
A Sx/ x'
y = P (A9c)
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From this and Eq. (A4), we have the relation

1 =By —a’. (A9d)
The rms emittance parameter is often used instead of one
of the three Courant-Snyder parameters. The constraint in
Eq. (A9d) might make it appear as if there are only two
degrees of freedom, but we point out that the Courant-Snyder
parameters are dependent on the rms emittance. Therefore,
Egs. (A9a)-(A9c) actually have four degrees of freedom, and
the constraint brings the degrees of freedom back to three. De-
spite having only three degrees of freedom, we will write the
following equations in all four parameters, B, &, y,and €, v,
as is standard to keep the notation from becoming unwieldy.
Moreover, the choice of three parameters is no accident.
The number of parameters for the kth-order statistical kine-

matics can be counted using combinatorics, i.e., the degrees

of freedom are given by (le) = k + 1, which is three for

second-order statistical kinematics. If these three parameters
are given, the evolution of these parameters are exactly known
if the details of the force are exactly known as implied by
Sacherer [35]. Namely, taking the derivative of Egs. (A9a)—
(A9d) we obtain

dﬁ B dex X
— = 24 — -, A10
ds * €y ds ( %)
d& Sy x" & dex X’
—_— =y - — — -~ A10b
ds v €y Exy dS ( )
dj} Sx! x" )7 de X’
LA P A S L A10
ds €xy €y ds ( ©)
dp ~dy da
0= —yp — — 20—
as’ TP ds
~AIx X" x,x" 2 d x,x'
Y R ) o e SN ) )
€x,x' ex,x’ ex,x’ ds
where
u — ixl
ds
d 1
ds\ yBmec"™"
Yy, B, 1 14d
=——X =X 4+ ————
y B yBme 4 dt P
2n/
Y B, 1
= — F, All
B X + yﬂzmc2 x ( )

and F, is the x component of the force measured in the lab-
oratory frame. Solving Eq. (A10d) for the rms emittance, we
get

de,y

. (A12)

= ﬂsx’,x” + &Sx,xu,
We note that Eq. (A12) has been in the accelerator literature
for some time [S1]. We emphasize that only three of the
derivatives are needed to describe the system, but ‘2—7; is given
above to show the derivation of the derivative of the rms

emittance. Subbing Eq. (A11) into the formula for covariance
we get

2/
y°B 1
Sxx’ = — Sy + Sx
* B yBme "
2 QA
yoBbe, 1
= e (Al3a)
2/
_ 7 B, 1
SX/,x” = — ﬂ Sx/ + yﬁzmc2 sx/,l‘}
208
Y B Verx
S S (A13b)

Plugging these expression into Egs. (Al0Oa), (A10b),
and (A12), we get

d,\ B d x,x'

db _ 5y P dew (Al4a)

ds €y ds

da | yp . 1 ser & dey

—=v+ a— - )

ds B yBimc? €.y € ds
(A14b)

dex,x’ A yzﬂ/i)ex,x’ 1
i (I e

+

& VZﬁ,&ex,x’ + 1 s
3 y Brmc2 "

/
_ »B 1 . N
=[G g s + )|

(Al4c)

In the cases when the functional form of the x force can
be exactly provided for all time, the statistical kinematics
predict the evolution of the Courant-Snyder parameters as
long as the paraxial assumption is valid. Alternatively, models
employ assumed forces that can be developed under certain
conditions similar to the fluid and envelope models presented
in Ref. [23]. Such prediction can even be done for normalized
rms and rms emittance, which we are preparing for publica-
tion.

Notice that if F, = 0 but the beam is accelerated so 8’ > 0,
then Eq. (Al4c) gives d;‘;' < 0. This phenomenon is well
known and is called adiabatic damping [23]. In general,
though, forces can be incorporated into these equations via
the term dependent on &sy r, + 3sx/, F,» which we will call A
below for the sake of brevity. Typically, F, is parameterized as
some function of x. For instance, if the x force is linear in x,
i.e., F, = kx where k is not a function of x or x’ (but can be a
function of ¢), then this term becomes

A= &Sx,kx + Bsx’.kx
= kasy,, + kBsy
= k(@B — Ba)erx
=0, (A15)

which is a another well-known result [23]. Alternatively, when
the x force has nonlinear components, the A term contributes
to the rms emittance change. These two facts provided the
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motivation for Wangler to express the emittance growth of a
nonuniform bunch in relation to the difference between the
energy of the initial nonuniform and the final uniform-like
state [51].

APPENDIX B: RELATION BETWEEN AG MODEL
AND ENVELOPE EQUATIONS

1. Equivalence of notation

We denote the parameters used in the AG model with
the superscript AG. Further, we identify that the AG model’s
parameters are related to the covariance parameters we use in
this paper by

ol =7, (Bla)
¥ = sips (BIb)
52
L, i
r}?G = s,z,l_ —; (Blc)

Subbing these parameters into our ODE we obtain

daf'¢ _ % AG

P it (B2a)
dyA¢ 1(v
= VAG +m %)+ si (B2b)
d”I,AG 2VAG AG )
= o T ic g — = (08% 5 — v/%sir). (B20)

dt mo;

This system of equations differs from Michalik and
Sipe’s published system of ODEs in two ways: (1)
in Eq. (B2b) we have s;p instead of Michalik and

Sipe’s 47116 6fa L( ) where L( ) is an integral we
examine in detail 1n the next sectlon and (2) we in-

dm?c?e?
G 1 i.p; 2
SpFi = Vi :

Soip) = T where €, =
m2c2 (s D —s2 )— UAan‘G in Eq. (B2c), which Michalik
and Sipe treat as zero. As noted by our notation, the latter
additional term represents the effect of the change of emit-
tance on the bunch evolution. We believe that that Michalik
and Sipe’s assumption of self-similar evolution leads to this
term vanishing and hence emittance being conserved. This
assumption is not strictly true as we have recently shown that
the Gaussian distribution does not evolve self-similarly under
the Coulomb force [22]; nonetheless, self-similarity may be a
reasonable assumption in order to approximate spatial statis-
tics.

However, we can obtain the published AG model un-
der the assumption that the force can be written as F; =

ki where k = Ac%/z l( ) This results in s, r =

clude % (aA

47reo 6\/“3
kiJ/,-AG and s;p = k; sA reducmg the emittance change term
dmzcze-2
. 1 i AG AGy, _AGY _
to zero, ie., —Fg— = Ac (07 kiy™ = v kio”) = 0.

Moreover, Eq. (B2b) becomes

dyAS 1 {2
d_ltzm IAG +771 +kioiAG

:l ﬁ+n{‘c 4 ! N—ezL. 5z
i\ o 1) s vzt )
(B3)

This is the published form of the AG model [31].

2. AG model and the uniform assumption

In the main text we argue that conservation of emittance
leads to an assumed linear force on the ensemble particles.
Here we show that the evolution of the AG model is equivalent
to the envelope equations assuming a uniform distribution up
to a constant. Specifically, we show that the force portion
of Eq. (B2b) obtained by Michalik and Sipe by integration
techniques is the same up to a constant to the analogous term
obtained by using the mean-field force within a uniform ellip-
soid. Knowing that s; z,; = k,-si2 we infer slopes of the force for

Michalik and Sipe to
2
ZMSZLN_eLi 5 ; (B4)
47'[60 6ﬁS? ST
where
2
a
L(a) = —— 1 [aL(a) — 1], (B5a)
I a’L(a) —
r(a) = L( e [ (BSb)
arcsinx/lfaz, 0<ax<1
La={ Y (B5¢)
In(a++/1—a?) 1<a
m ) X

On the other hand, the slopes of the force for a uniform
ellipsoid with s, = s, can be written as

. 1 3Né .
M = —eﬂ<1, S—) (B6a)
4eg 104/553 S
. 1 3Née? Sy S
kunlf — ot (_x’ _X>’ (B6b)
¢ 4mey ]oﬁs;'g s, 8,
where
o 1
B(a, b) =/ du. (B7)
o (1+uP?Ja?+uvb*+u

The comparison between these two models comes down to a
comparison of Egs. (B5) and (B7). Specifically, letting a = :—
as it is in Eq. (B5), we need to evaluate §(1, a) and ,3(%, 5)
and then compare the two slopes.
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We start the evaluation of the transverse relevant integral:

&0 1
Lay=| — 4
0= [ v
_cos’l(a)—a«/l—a2

(1 _ a2)3/2

in (V=) —a/T—a?
sin”( (11—22))3/?\/1 @ 0<a<l
= P 2_ _ —a2
iln (a+x/({17a21))3/2a\/1 a a1
sin~! (v1—a?)
. e e 0sasl
- In (a+s/ a’— l)
veta—e e 421
. L(a)—a
T 1—a?
2
a‘L(a) —a
=La)+ ——
(@) — a2
2
= gLT(a)~ (BY)

Thus, our uniform integrals in the transverse direction differs
by a factor of % from the AG model’s Gaussian integrals in the
transverse direction.

Next we evaluate the longitudinally relevant integral:

-
aa) J (14 u)¥?(% +u)

_ 2 ZSec’l(L—ll)

CEEy”

_ 2a% |:1 B acosl(a):|
(1—a? V1 —a?

Al 1] 0<as
G e I
(aga—zl)[aSin:l/(l—ilazaZ) B 1]’ isast
) (aga—zl)[am(ﬁazizl_l) —1] ozl
= %Lz(a). (B9)

3

Again we see that the same factor is present between the
integrals in the longitudinal direction, which is reassuring.
Putting this factor of % into the comparison of the slopes,
we see that the slopes are related by

KM 55
kit = 6w

1.05. (B10)

So we see that these two models differ in their forces only by
roughly 5%. This small difference in the linear force should
result in either model adequately capturing the dynamics
of either uniform or Gaussian evolution if the changes in
emittance, which should be more prevalent in the Gaussian
model, are ignored. Furthermore, even this difference may
be absorbed by the assumed number of particles when fitting
parameters. That is, in both modes N needs to be set. As the
only term that depends on N is the force, setting the N in the
uniform envelope equations 5% larger than the N in the AG
model will result in the same exact solution. So in essence the
AG model is identical to the uniform envelope equation but
with a slightly adjusted number of particles.
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