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Base flow decomposition for complex moving objects in linear hydrodynamics:
Application to helix-shaped flagellated microswimmers
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The motion of microswimmers in complex flows is ruled by the interplay between swimmer propulsion and
the dynamics induced by the fluid velocity field. Here we study the motion of a chiral microswimmer whose
propulsion is provided by the spinning of a helical tail with respect to its body in a simple shear flow. Thanks
to an efficient computational strategy that allowed us to simulate thousands of different trajectories, we show
that the tail shape dramatically affects the swimmer’s motion. In the shear dominated regime, the swimmers
carrying an elliptical helical tail show several different Jeffery-like (tumbling) trajectories depending on their
initial configuration. As the propulsion torque increases, a progressive regularization of the motion is observed
until, in the propulsion dominated regime, the swimmers converge to the same final trajectory independently on
the initial configuration. Overall, our results show that elliptical helix swimmer presents a much richer variety of
trajectories with respect to the usually studied circular helix tails.
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I. INTRODUCTION

Several micro-organisms move in liquids thanks to ro-
tating flagella. For instance, the bacterium Escherichia coli
has several flagella that form a rotating helical bundle [1],
whereas other bacteria, such as Pseudomonas aeruginosa,
exploit the same propulsion strategy but using a single helical
flagellum [2,3]. The high swimming speed and the relatively
simple geometry of such a kind of chiral microswimmer make
them suitable for various applications and, in the past decade,
artificial versions of flagellated microswimmers have been
proposed for micromanipulation [4] and drug delivery [5].

The interaction between the helical flagellated microswim-
mers and the environment presents a rich behavior that has
received extensive attention in the past decades [6,7]. Close
to interfaces, helical flagellated microswimmers follow cir-
cular trajectories that are clockwise for solid walls [8–10]
and counterclockwise for liquid-air interfaces [11–14]. Far
from the wall, the hydrodynamic of active micro-organisms
is highly affected by the local flow conditions. A relevant
phenomenon is rheotaxis, i.e., the movement resulting from
fluid velocity gradients. As shown by Fu et al. [15], the
rheotaxis of flagellated microswimmers with helical tails is
a purely physical phenomenon due to interplay between the
velocity gradients and the shape of chiral flagella. Indeed, for
a passive helix, the shear induces Jeffery-like tumbling motion
parallel to the shear plane [16]. Along the orbit, elongated
helices spend more time aligned with streamlines. Since this
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configuration is not symmetric with respect to the shear plane,
a chirality-dependent drift generally sets in. For an active
helical microswimmer, the passive chirality-induced drift is
often overwhelmed by the propulsion: The shear results in a
preferential orientation of the swimmers along which, thanks
to the self-propulsion, the swimmer moves [15,17]. Hence, the
swimming direction is ruled by the shear, likely preventing the
possibility of controlling the orientation of microswimmers in
an assigned flow [15].

A way to escape from the monotonous rheotaxis in shear
flow is to increase the number of degrees of freedom (DOF)
of the microswimmers, for instance, employing multiple tails
[18] or adaptively changing the angle between body and tail(s)
[19]. The existence of external flexibility, however, compli-
cates the control of microswimmers, particularly, in view
of possible technological applications. Another possibility to
escape from the rheotaxis is to break some symmetries of
the swimmer geometry. In this aspect, interestingly, it has
recently been shown that the change in the cross section of
the ellipsoids from circle to ellipse can lead to chaotic orbits
[20–22].

Inspired by this phenomenon, we numerically analyzed the
dynamics of a microswimmer made by an axisymmetric body
and by an elliptical helix, (i.e., a helix that lies on an elliptical
cylinder) in a shear flow. The possible presence of a large vari-
ety of different trajectories, requires a systematic exploration
of a large number of initial conditions. This, in turn, pushed
us to develop and apply an accurate and fast computational
approach based on a decomposition of dynamics in an active
and a passive motion that allowed to speed up the simula-
tions and to collect for each case thousands of trajectories.
Our results show that the elliptical helix swimmer presents a
much richer variety of possible trajectories with respect to the
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FIG. 1. Sketch of microswimmer locomotion in a shear flow. The
microswimmer body is a prolate ellipsoid of major axis rh1 and minor
axis rh2. In (a) model I, the tail is a circular helix, i.e., a helix built
on a circular cylinder of radius rt1, whereas in (b) model II, the tail
is an elliptical helix, i.e., a helix built on an elliptical cylinder of
radii rt1 and rt2 = 3rt1. (c) The shear flow is on the X1X3 plane of
the global coordinate frame OX1X2X3. A body coordinate frame
O′e1e2e3 moves with the swimmer body. The polar θ azimuthal φ

and rotation ψ angles are used to describe the orientation of the
body frame with respect to the global frame. Moreover, we also
define the angle between the swimmer axis p = e3 and X2 as η =
arccos(sin θ sin φ). The tail rotates with respect to the e3 so that each
point of the rigid tail describes a circle on plane e2e3 with ψt as the
corresponding rotation angle. The motion of the microswimmer body
is completely defined when the translational velocity U of the body
center, the body rotational velocity �, and the tail spinning ωt = ψ̇t

are given.

well studied circular helix tails. In particular, we found for
an elliptical helical tail a much higher spinning frequency is
needed to control the asymptotic swimming regime.

II. SETUP AND METHOD

Two kinds of microswimmers are compared in this paper:
One with a circular helical tail, i.e., a helix that lies on a
circular cylinder (model I) and one with an elliptical helical
tail, i.e., a helix that lies on a cylinder of the elliptical section
(model II), see Fig. 1. For both models, the body is a prolate
ellipsoid of radii rh1 and rh2, and the center of the body is
indicated as xc. A body coordinate frame O′e1e2e3 with the
origin at xc and e3 oriented as the major ellipsoid axis is
defined. Concerning the tail, its centerline follows the helix
equation in the body coordinate frame,

r = (rt1 cos(2πs), rt2 sin(2πs), λs − δbt ), (1)

where s ∈ [−n/2, n/2] with n as the number of periods of
the tail, δbt is the distance from xc to the tail center, λ is
the pitch of the helix, and rt1 and rt2 are the radii of the
elliptical cylinder on which the helix lies. For the circular
helix, rt1 = rt2, whereas for elliptical helix rt1 = 3rt2. The
flagellum section is a cylinder of radius ρt . All the details of
the swimmer geometry are reported in Appendix.

The microswimmer has seven DOFs: three transla-
tion DOFs xc = (xc1, xc2, xc3), three rotational DOFs θc =
(θ, φ,ψ ) plus the tail orientation φt with respect to the
body. The body orientation is defined by the unit vector p =
(sin θ cos φ, sin θ sin φ, cos θ ) here expressed as a func-

tion of the polar θ and the azimuthal φ angles. It is also
instrumental to define angle η = arccos(sin θ sin φ) between
p and X2, see Fig. 1. The value η = 0 (η = π ) corresponds
to a configuration where the microswimmer is perpendicular
to the shear plane and points toward positive (negative) X2,
whereas η = 0.5π corresponds to the microswimmer lying on
the shear plane. The swimmer body moves with translational
velocity U and rotational velocity � whereas the tail spins at
a constant speed and, consequently, ωt = ψ̇t .

The governing equations of fluid velocity u and pressure p
fields are the Stokes equations,

∇ · u = 0, (2)

μ∇2u = ∇p, (3)

with μ as the fluid viscosity. The no-slip boundary condition
is applied on the surfaces of the head,

u(x) = U + � × r, (4)

and of the tail of the microswimmer,

u(x) = U + (� + ωt p) × r, (5)

where in both equations r indicates the relative position of
the boundary point with respect to the center of the swimmer
head xc. Note that, in general, U and � are not parallel to the
swimmer orientation p. Thus, there exists no simple relation
between the active spin ωt and the velocities (U ,�).

The method for the solution of the swimming problem is
briefly sketched in the following whereas details are reported
in Appendix. The fundamental step is to get the swimmer
generalized velocity (U ,�) as a function of the swimmer
configuration and tail spinning velocity ωt . Once (U ,�) are
known, the standard rigid body kinematic equations can be
solved for the swimmer head. The swimming problem is
solved by decoupling the (U ,�) into two parts where the
active part (Ua,�a) corresponds to the movement of the
microswimmer in a bulk fluid at rest whereas the passive
part (U p,�p) corresponds to a passive swimmer (ωt = 0) im-
mersed in the external flow field ub. Thanks to the linearity, the
active part can be expressed as Ua = ωt RŨa, �a = ωt R�̃a

where R is the rotation matrix that transforms the expression
of a vector in the body reference frame into its expression in
the global reference frame and (Ũa, �̃a) are the velocities for
a microswimmer swimming with ωt = 1 in a configuration
where body and global frames coincide. Concerning the pas-
sive part, instead, we exploit the local decomposition of ub

in three components, a rigid translation at xc, a rigid rotation
ωS

p (associated with the antisymmetric part of the velocity
gradient Si j) and a deviatoric part (symmetric part of the
velocity gradient Ei j). The deviatoric part Ei j can be further
decomposed into five components. For each of them, we can
solve a swimming problem and get the contributions to the
swimmer translational U and angular � velocities. Combin-
ing all those contributions, the microswimmer velocity in an
external flow is obtained as

U = ωt RŨa + Ub
p + R

5∑
k=1

β̃kŨ
E
k , (6)
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FIG. 2. Microswimmer motion in a simple shear flow. For each case, from 103 to 104 simulations with different initial conditions were run.
Panel (a) reports the fraction of the circular helix swimmers that have a drift velocity oriented as X2 (U2 > 0). The bars in panel (a) indicate
the lateral velocity U2 for the different initial conditions whereas the bars in panel (b) refer to the normalized average angle 〈η/π〉 between
X2 and the microswimmer head orientation p. In the passive regime, all the trajectories converge to the same final state [I1, panel (e)] where
the swimmer is oriented as −X2 whereas its velocity is U2

∼= 10−4. In the active regime, the swimmer is again oriented as −X2, but U2 < 0,
see configuration (f) I2 and (g) I3. The dot-dashed line corresponds to the fraction of swimmers for which U2 > 0. Panels (c) and (d) refer
to velocity U2 and orientation 〈η/π〉 for the elliptical helix tail. Here, a new intermediate regime appears between the active and passive
regimes. In this intermediate regime, both positive and negative drift velocities U2 are possible. Panels (e)–(k) report examples of the swimmer
Jeffery-like tumbling motion (shear on the X1X3 plane). The solid lines on the spheres represent the direction of the swimmer axis p along
one period whereas the red and blue arrows refer to the direction of the average velocity along X2.

� = ωt R�̃a + �S
p + R

5∑
k=1

β̃k�̃
E
k , (7)

where the first term on the right hand side is the active con-
tribution, the second term is the uniform translation Ub

p and
rotation �S

p due to the external flow, and the last terms are
the five contributions due to the deviatoric part of the veloc-
ity gradient. The weights β̃k depend only on ub and on the
swimmer orientations, details are reported in Appendix. It is
worth noting that, as a first approximation, a more appropriate
model for the head-tail coupling is to fix the exchanged torque
[23,24]. However, in our case, the head-tail coupling enters
only in the active part of Eqs. (6) and (7). Since the active part
corresponds to the movement of the microswimmer in a bulk
fluid at rest, the tail spin ωt is proportional to the motor torque
and, hence, considering a fixed spin or a fixed torque only
amounts to a linear rescaling with no effect on the observed
phenomenology.

The main advantage of the proposed method is that only
six solutions of the swimming problem are needed; one for
(Ũa, �̃a) and five for (ũE

k , �̃
E
k ). These swimming problems

can be solved with any Stokes solver. Here we use the method
of fundamental solution (MFS) [25] that is summarized in Ap-
pendix. Once these solutions are known, one can integrate the

rigid body kinematics to get the swimmer trajectory. Here, this
integration step is performed using a quaternion formulation
and a fourth order Runge-Kutta method.

III. RESULTS

In this paper, the microswimmer is immersed in an un-
bounded shear flow,

ub = (x3τs, 0, 0). (8)

Without loss of generality, we select as the time unit 1/τs

and as the length unit of length rh1 the larger axis of the
ellipse. Due to the linearity of the problem, spin ωt is the
only crucial parameter for a given microswimmer. For both
the circular (model I) and the elliptical (model II) helical
tail microswimmers, we studied the motions at different tail
spinning velocities ωt . For each ωt , we simulated from 103

to 104 trajectories starting from different initial conditions
with random orientation. The center of the head is initially
placed in the origin at t = 0. In all the cases, after a transient,
the swimmer orientation converges to periodic trajectories.
Concerning the swimmer translation, different scenarios are
possible depending on the swimmer tail geometry, its spin-
ning velocity ωt , and its initial condition. A summary of the
different possibilities is reported in Fig. 2 and discussed in the
following sections.
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A. Circular helix

For the circular helix swimmer, in the passive case (tail
spinning velocity ωt = 0) after a transient, the swimmer is
always oriented along −X2, i.e., normally to the shear plane
X1X3, and it moves along X2, i.e., U2 > 0. In Fig. 2(a), those
information are condensed in panel (a) where the fraction of
the trajectories that result in final drift U2 > 0 can be read
on the left axes whereas the colored bars indicate the actual
value of U2. For instance, the orange bar at ωt = 0 means
that all the 103 initial conditions result in a slightly positive
terminal velocity U2

∼= 1.01 × 10−4 whereas the blue bar at
ωt = 0.015 indicates that almost all the swimmers reach a
final velocity of U2

∼= −3.00 × 10−6. Figure 2(b), instead,
reports the orientation η averaged on a period. For the pure
passive case ωt = 0, we always get 〈η〉 ∼= π , i.e., the swimmer
is oriented perpendicularly to the shear plane. This passive
swimmer regime is indicated as I1 and a sketch of its periodic
orbits is reported in Fig. 2(e) and in the Supplemental Ma-
terial Video SM1 [26]. This result is in agreement with the
shear-induced separation of pure circular helix discussed in
Ref. [15] where it was shown that microswimmers point per-
pendicularly to the shear plane in the direction here indicated
as −X2. A similar behavior is also observed for low spinning
velocity ωt < 0.015.

A further increase in the tail spinning results in a first
change in the dynamics. The average orientation of the swim-
mer is the same 〈η〉 ∼= π , but now the drift velocity is positive
U2 > 0, I2 Fig. 2(f). This is expected, indeed, as ωt increases,
the swimmer propulsion becomes more relevant until, finally,
it dominates over the passive drift induced by the shear. Inter-
estingly, in some intervals of the spinning speed, an additional
kinematics appears, I3 Fig. 2(g). The swimmer undergoes
a Jeffery-like motion with 〈η〉 ∈ [0.8, 0.9]π . This motion is
characterized by a slightly smaller value of the average veloc-
ity U2. Depending on the initial condition, some trajectories
converge to a motion of the I2 kind and others to I3. Overall,
those data indicate that the shear always orients the swimmer
along −X2. For small tail spinning (passive case) the shear
dominates the dynamics and the swimmer moves in the X2

direction whereas, for large tail spinning (active case), the
self-propulsion dominates, and the swimmer moves in the
−X2 direction.

B. Elliptical helix

A much richer scenario occurs for swimmers with an el-
liptical helix tail, model II, Fig. 2(c). In the passive case,
we observed three main different periodic trajectories. The
overall drift is positive U2 > 0 in this region as for model
I. The average orientation 〈η/π〉, however, is significantly
different. The first kind of trajectory II1 orientates along −X2

as for model I. The other two kinds of trajectories, II2 and
II3, present Jeffery-like tumbling behaviors that differ from
II1, see Figs. 2(h)–2(j) and Videos SM2–SM4 of the Supple-
mental Material [26]. In particular, for II3 we observe that
the tumbling occurs almost on the shear plane. Similar to the
shear-induced separation of pure helix [16], such a kind of
tumbling (Jeffery-like) motion on the shear plane is associated
with a lateral velocity (U2) of the microswimmer that, in our
case, is larger than the one corresponding to II1, see Fig. 2(c).

FIG. 3. Elliptical helix tail microswimmer. (a) Lateral velocity
U2, (b) normalized average angle 〈η/π〉, and (c) the absolute tail
spin ψ̇ ′ = ψ̇ + ψ̇t as functions of ωt . Results refer to 450 trajectories
for each ωt . The green color scale indicates the probability that one
initial condition converges to the corresponding value on the vertical
axis, for instance, in the passive case, almost 75% of the swimmers
converge to the trajectory II2 that corresponds to 〈η〉 ∼= 0.7π (dark
green). The black solid line in panel (a) is the velocity of the same
microswimmer in a fluid at rest. Panels (d) and (e) report a detailed
view of the regions enclosed by the violet dotted boxes. The freezing
tail phenomenon discussed in the text is sketched in panels (f) and
(g) whereas the corresponding average ψ ′ is reported as a solid blue
line between 0.8 < ωt < 3.2 in panel (c).

No simple rules are found to associate the final microswim-
mer trajectory to its initial orientation, see the Supplemental
Material Sec. S1 [26] where examples of the time evolution
of the orientation p are reported together with a diagram
representing the domains in the orientation space that led to
II1–II3 trajectories.

As spinning speed ωt increases, the system undergoes a
gradual regularization. We still observe three different kinds
of trajectory, but the values of the average orientation 〈η/π〉
of II1–II3 get closer, until they merge. In this intermediate
regime, trajectory II1 switches from positive to negative U2

and, for this reason, we renamed it as II4, Fig. 2(l). Further
increases in ωt brings the system to a fully active regime
where only the II4 trajectory is observed: The swimmer is
oriented along −X2 with U2 < 0. This regime is analogous to
the active regime for the circular helical tail, the I2 trajectory.

To better characterize the elliptical helical tail microswim-
mer, we performed additional simulations that allowed us
to observe further details of the swimmer motion. Results
are reported in Fig. 3(a) for the lateral velocity U2 and in
Fig. 3(b) for the normalized average angle 〈η/π〉. For each ωt
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we performed 450 simulations with random initial orientation.
The green color scale corresponds to the probability that the
swimmers reach a steady state with the corresponding value
of U2 and 〈η/π〉. For instance, at low ωt (passive regime),
four kinds of stable trajectories exist. Three of them, II1–II3,
were already discussed in Fig. 2. The last one, indicated as
II1b, corresponding to 〈η〉 ∼ 0.95π , is quite rare [light green
in Fig. 3(b)] and very similar to II1. As already discussed in
Fig. 2, the trajectories oriented perpendicularly to the shear
plane (II1 and II1b for which 〈η〉 ∈ [0.9, 1]π ) have almost
no lateral motion (U2

∼= 0). In contrast, the other two kinds
of trajectories, characterized by Jeffery-like tumbling close
to the shear plane (II2 and II3), show a significant lateral
motion, U2 > 0, see also Figs. 2(i) and 2(j). Moreover, Fig. 3
also better evidences how, through increasing in tail spin ωt ,
the tumbling trajectories II2 and II3 progressively converge
towards the −X2 axes as apparent from the increase in 〈η/π〉.
Finally, in the active regime, all the trajectories merge into a
single kind where the swimmer is oriented normal to the shear
plane 〈η〉 ∼= π .

C. Freezing spin

Nevertheless, some islands of complexity persist in this
active region. For instance, the microswimmer is frozen by
the shear flow for spinning 0.8 < ωt < 3.2. The tail of the
microswimmer, when seen from the global reference frame,
does not spin along the swimmer axis p. This is apparent in
Fig. 3(c) where the time derivative of angle ψ ′ is reported.
In essence, the tail rotates with respect to the head (ψ̇t =
ωt is imposed in our model) but the rotation of the head
with respect to the global reference frame exactly counter
balances the spinning (ψ ′ = ψ + ψt , ψ̇ ′ = ψ̇ + ψ̇t , hence,
ψ̇ ′ = 0 ⇒ ψ̇ = −ψ̇t ), see the Supplemental Material video
SM5 [26]. This is a peculiar behavior that occurs only for
the elliptical helical tail and not for the circular one and
it represents a further indication that slight changes in the
swimmer geometry may lead to new phenomena. In fact, the
tail of the microswimmer experiences a propulsion torque due
to propulsion as well as a shear torque due to local velocity
gradient. The balance between the two torques on the tail leads
to the freezing. For the lowest spinning velocity for which the
freezing occurs, i.e., ωt = 0.81, the propulsion torque is small.
Thus, the mayor axis of the tail section is almost parallel
to the shear velocity direction and, consequently, the torque
induced by the shear on the tail is small as in Fig. 3(f). As
the tail spinning ωt increases, the propulsion torque increases,
and the new balance is found for larger values of ψ ′. The
maximum shear torque is achieved when the mayor axis of the
tail section is vertical and, indeed, the last value of ωt = 3.24
for which this tail’s freezing occurs corresponds to ψ ′ ≈ π ,
see Fig. 3(g).

Another unexpected behavior occurs for ωt ∈ (3, 4.5)
where we observe that, again, the swimmer may converge
towards multiple different trajectories, see Figs. 3(d) and 3(e).
All these trajectories have a negative U2 and their oscillation
around the X2 axis is limited 〈η/π〉 > 0.7. For these reasons
they can be overall classified as II4. Only after this last region
of complexity, the motion gets finally regularized. In this fully
active regime, the final swimmer speed is linear in the tail

spinning U2 = βωt with β = −4.02 × 10−3. This is expected,
indeed, when the tail spin is large, the final swimmer speed
is dominated by the propulsion. Indeed, the value of β we
observed is the same as we got in a simulation of the active
swimmer moving in a fluid at rest represented as a black
solid line in Fig. 3(a). In essence, in the active regime, the
shear selects the swimmer orientation, and the final speed is
controlled by the tail spin. In the active regime, the swimmer
dynamics is predictable and controllable: Any initial condition
results in the same final trajectory.

IV. CONCLUSION

In this paper, we proposed an efficient computational
method for the analysis of microswimmer motion in external
flows. We applied our method for the analysis of microswim-
mers whose propulsion is due to the spinning of a flagellum
(E.coli-like swimmers). Once the swimmer geometry is se-
lected, the entire range of spinning speed of the tail can be
explored by solving only six swimming problems. This al-
lowed us to simulate thousands of different trajectories. We
compared the motions of two different swimmers, one carry-
ing a circular helical tail, i.e., a helix that lies on a circular
cylinder, that is, the typical geometry studied in previous the-
oretical and computational works, and another one carrying
an elliptical helical tail. The alteration of the tail shape from
circular helix to elliptical helix gives rise to a much richer sce-
nario where different tumbling (Jeffery-like) trajectories can
be observed under the same external flow condition and for the
same tail spinning speed. As the propulsion torque increases,
a progressive regularization of the motion is observed until,
in the propulsion dominated regime, the swimmers converge
to the same final trajectory for all the initial configurations.
These results may have some implications on the biology
of micro-organisms that exploit this propulsion mechanism.
Indeed, the complex Jeffery-like tumbling we observed in
the shear dominated regime may provide an alternative way
to increase the capability of a microswimmer to explore the
space that may cooperate with the well known run and tumble
motion [27]. On the other hand, the high sensitivity to the
shape of the tail implies that the micro-organism must reach
a larger spinning frequency in order to have a full control of
its asymptotic swimming direction. As a result, the presence
of more than one steady state also has to be carefully taken
into account when designing artificial microswimmers whose
motion in external flows needs to be controlled.
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APPENDIX: DETAILS ON THE METHODS

In this Appendix, we discuss the approach we employed
for the solution of the swimming problem for an active mi-
croswimmer with a single intrinsic DOF swimming in an
external flow. The DOF is the spin of the tail with respect to
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the microswimmer body. This model can be easily extended
to multiple DOFs. Our method is a combination of known
approaches for the solution of the Stokes equation that, for
completeness, are reported in the following sections. The
crucial idea is to decompose the rate of strain in five base com-
ponents. This allows to reduce the solution of the swimming
problem to six solutions of the Stokes equation, one for the
active propulsion and five for the passive one. These swim-
ming problems can be solved with any Stokes solver. Here we
employed the MFS [25] Before entering in the details of our
formulation, we briefly mention some alternative approaches
for the swimming problem.

Modeling the motion of a microswimmer using multi-
ple rigid bodies is a relatively common approach (see, e.g.,
Refs. [10,12]). A key to calculate the trajectory of a mi-
croswimmer is to compute the generalized velocity (U ,�),
that can be calculated solving the Stokes equations plus
the force- and torque-free conditions [7]. The boundary ele-
ment method is commonly used for Stokes equations [10,28],
although the solving method can be replaced by other formu-
lations, such as the method of regularized Stokeslets [29–31],
the boundary integral method [32], and the spectral boundary
element method [33]. Since usually it is computationally ex-
pensive to calculate the generalized velocity (U ,�) directly
using full solution of the Stokes equation, several approxi-
mate theories were developed for rigid body motion in Stokes
flows. Following the work of Fu et al. and Marcos et al.
[15,16], Mathijssen et al. [34] developed an approximate for-
mulation of an ideal chiral object using the resistive force
theory that allowed to study bacteria rheotaxis close to a
surface. Another alternative approach is to calculate the gen-
eralized mobility matrix of the system [35]. For a three sphere
swimmer model [36], a quadrupole order accurate multipole
expansion was recently employed to study the swimmer kine-
matics close to a wall under a shear flow [37]. The possibility
to extend this promising approach to more complex swimmer
geometries is, however, an open issue.

1. Fundamental solution of the Stokes equation

Here, we briefly summarize the MFS [25]. In the creeping
flow limit, the governing equation for the fluid velocity u
and pressure p due to a point force singularity of strength f
applied to the point x f is the Stokes equations,

∇ · u = 0, (A1)

μ∇2u = ∇p − f (x f )δ(x − x f ), (A2)

where μ is the fluid viscosity, and δ is the Dirac δ function.
The solution of (A1) and (A2) (also known as the Stokeslet)
reads

u(x) = S(x f , x) f (x f ), (A3)

with

S(x f , x) = 1

8πμ

(
I
r

+ (x f − x)(x f − x)

r3

)
, (A4)

where I is the unit matrix and r = ‖x f − x‖. The tensor
S(x f , x) is commonly indicated as the Oseen tensor.

The MFS [25] was already successfully employed in mi-
crofluidics, see, e.g., Refs. [38,39]. In brief, as shown in

(e) (f) (g)

(a) (b)

(c) (d)

ℎ

FIG. 4. Sketch of the method of fundamental solutions. (a) A
solid body (domain 
1) moves in a bulk fluid (domain 
2). The
solid blue line ∂
1 is the boundary of the solid body. Boundary
points xv

i (blue circles) are selected on ∂
1 whereas source points
x f

i (red squares) are placed inside the solid body. Panel (c) shows the
discretization used for a quarter of an ellipse whereas the swimmer
head is in panel (d). Panel (e) reports the tail centerline whereas panel
(f) refers to the discretization of the swimmer tail. Each section of
the tail is modeled as a circle where, again, red squares correspond
to force sources and blue circles to the boundary. In panel (g) a short
section of the swimmer tail is shown.

Figs. 4(a) and 4(b) for problems where the velocity is assigned
on the boundary of a solid domain 
1 and the velocity field
needs to determined in the external domain 
2, the key of the
MFS is to find an approximation field u′ that is defined in the
domain 
1 ∪ 
2 and that fulfills the boundary condition at the
frontier of 
1. The fluid velocity field u′ is a smooth field that
is defined in both domains 
1 and 
2. A set of n boundary
points xv

i located at the boundary ∂
1 are selected. For each
one of them, we know its corresponding velocity u(xv

i ) from
boundary conditions. A set of n point forces is placed inside
domain 
1 close to the boundary points, the location of the
point forces being indicated as x f

i . Hence, the velocity u(xv
i )

can be expressed as

⎡
⎣u

(
xv

1

)
. . .

u
(
xv

n

)
⎤
⎦ =

⎡
⎢⎣

S
(
x f

1 , xv
1

)
. . . S

(
x f

n , xv
n

)
. . .

S
(
x f

1 , xv
1

)
. . . S

(
x f

n , xv
n

)
⎤
⎥⎦

⎡
⎣ f

(
x f

1

)
. . .

f
(
x f

n
)
⎤
⎦ .

(A5)
This system has 3n unknowns and 3n equations. Once (A5) is
solved for f , the approximated velocity u′ in a generic point
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x of the domain 
1 ∪ 
2 can be calculated as

u′(x) =
n∑

i=1

S
(
x f

i , x
)

f
(
x f

i

)
. (A6)

In the following, to simplify the notation, we will use the same
symbol u for the approximated velocity and the true solutions
of the Stokes problem.

2. The discretization of the microswimmer

A technical issue in MFS concerns the location x f
i of the

point sources. Our swimmer is composed by a spheroidal head
and a helical tail. Concerning the head, we first placed the
boundary point on a two-dimensional ellipse with semiaxes
rh1 and rh2 lying on the e3e1 plane, approximately at the same
distance dh [40,41], see Fig. 4(c). The ellipsoid is a body of
revolution. Hence, we rotated each point around the major
axis e3 of the ellipsoid obtaining a circle perpendicular to e1.
This circle is divided into boundary points with equal distance
dh. In this paper, we select dh/rh1

∼= 0.047 for a total of 1653
boundary points lying on the swimmer head and indicated
as xvh

i .
For each boundary point xvh

i , a point force is located inside
the ellipsoid on the lines that connect xvh

i with the ellipsoid
center xc. The distance r f h

i between xc and x f h
i is given by

r f h
i = δhrvh

i , δh = 1 + 2εh〈dh〉
(rh1 + rh2)

, (A7)

where rvh
i is the distance between the ellipse center xvh

i , 〈dh〉
is the average distance of the neighbor boundary points and
εh is a control parameter. In this paper, we used εh = −1. We
also verified that results do not change for εh ∈ (−0.5,−1).
Figure 4(d) shows an example of the ellipsoid after discretiza-
tion.

Concerning the tail, we first defined its centerline in a
reference system with the origin in the swimmer head center
xc as

rt (s) = [rt1 cos(2πs), rt2 sin(2πs), λs − δbt ], (A8)

where s ∈ [−n/2, n/2] with n as the number of periods of the
tail, λ is the pitch of the helix, δbt is the distance from xc to the
tail center, here set to δbt = rh1 + nλ/2 + rh1/2, and rt1 and rt2

are the radii of the elliptical cylinder on which the helix lies.
We also performed a set of simulations analogous to the ones
discussed in Fig. 3 but with δbt = rh1 + nλ/2 + rh1/5. Beside
minor quantitative differences, the results fairly agree with the
one discussed in the paper. We discretize s into m + 1 values
si = −n/2 + in/m, i ∈ (0, m) as shown in Fig. 4(e). Then,
for each of them, we put a circle of radius ρt perpendicular to
the centerline of the helix. This circle is divided into boundary
points with equal distance dt The associated point forces are
placed on the concentric circle that are perpendicular to the
helix centerline as shown in Fig. 4(b). The radius of this
concentric circle is ρt − εt dt with εt = −1. In this paper, we

select dt =
√

λ2 + C2
el pn/m ∼= 0.019, where Cel p indicates the

perimeter of the ellipse with radii rt1 and rt2. The two ends of
the helix are closed using semispheres. The generation method
of the discretized semisphere is the same as one used for the
ellipsoidal head of the microswimmer where, now, we used

rh1 = rh2 = ρt whereas dt is the distance among the boundary
points of the hemisphere.

Setting as the unit of length the larger axis of the ellipse,
the circular helical tail microswimmers has the following ge-
ometrical parameters rh1 = 1/2, rh2 = 1/6, rt1 = 0.1, rt2 =
0.1, ρt = 0.03, n = 3, λ = 2/3. The number of point forces
is 1653 for the head and 1534 for the tail. For the elliptical
helical tail all the parameters are the same as for the circular
tail swimmer with the exception of rt1 = 0.3. The number of
point forces on elliptical helix tail is 2464.

3. Swimmer kinematics and boundary conditions

The microswimmer has seven DOFs, six DOFs represent
the rigid motion of the head whereas the other the spinning
of the tail. Without loss of generality, for the translational
DOFs we selected the center xc of the ellipsoid that constitutes
the swimmer head, whereas for the orientational DOFs, we
selected the angles φ, θ , and φ reported in Fig. 1. The asso-
ciated translational and rotational velocities are here indicated
as U and �. The tail rotates around the swimmer axis p ≡ e3

at a spinning rate ωt with respect to the head. The no-slip
boundary condition is applied on the surfaces of the head and
the tail of the microswimmer, hence, the fluid velocity at the
swimmer boundary point is

u
(
xvh

i

) = U + � × rvh
i (A9)

for the head boundary points xvh
i and

ut (xvt
i ) = U + (� + ωt p) × rvt

i , (A10)

for the tail boundary points xvt
i , where in both equations ri in-

dicates the relative position of the boundary point with respect
to the center of the swimmer head xc. In our problem, the tail
spin ωt is given, and the other six DOFs are unknown. Thus,
applying and (A10) into (A5), we get a system of 3n variables
in 3n + 6 unknowns. To complete this problem, we needed
additional six equations that are the force- and torque-free
conditions of the microswimmer,

nh∑
i=1

f
(
x f h

i

) +
nt∑

i=1

f
(
x f t

i

) = 0, (A11)

nh∑
i=1

r f h
i × f

(
x f h

i

) +
nt∑

i=1

r f t
i × f

(
x f t

i

) = 0, (A12)

obtaining a system of 3n + 6 variables in 3n + 6 unknowns.
The system was solved using the generalized minimal

residual method [42] implemented in the portable, extensible
toolkit for scientific computation (PETSc) [43,44]. The solu-
tion provides the the rigid body translational U and rotational
� velocities of the microswimmer head and the 3n compo-
nents of the point force from which using (A6) the entire
velocity field can be built.

Once the swimmer head generalized velocity (U ,�) is
obtained, the swimmer configuration is updated using the
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following kinematic equations,

dxc

dt
= U , (A13)

dei

dt
= � × ei, i = 1–3, (A14)

dψt

dt
= ωt . (A15)

As commonly performed in microswimmer problems [10,45],
in our code, we replaced (A14) with the quaternion formula-
tion [46,47], to keep a higher numerical accuracy. Equations
(A13)–(A15) were solved using a fourth order Runge-Kutta
method [48] implemented in PETSc [44,49].

4. The method of base flow

In principle, the swimming problem presented in the pre-
vious section needs to be solved at any time step of the
Runge-Kutta integrator used to update the swimmer config-
uration. This will require a large amount of computational
resources. Here we present an approach to largely speed up
the simulation. This approach is based on the decomposi-
tion of the swimmer motion into two parts, an active part
and a passive part. The idea of motion decomposition in the
creep limit has a long history. For example, the motion of a
particle in Stokes flow can be decoupled into the translation
and the rotation parts [35,50]. Using this approach, Chwang
and Wu [51] derived several exact solutions of the motion
of a spheroid in a Stokes flow. Subramanian and Koch and
Banerjee and Subramanian extended their work and discussed
the orientation of a passive spheroid in the simple shear flow
[52,53] and planar linear flow [54]. Analytical solutions of
the microswimmer motion with arbitrary geometry in the five
basis flows, however, is difficult. Hence, after decomposing
the motion, we employed the numerical method of the fun-
damental solution (described in the previous section) to solve
the Stokes problems.

More specifically, we decouple the swimmer kinematics
as it follows: (i) the active part (Ua,�a) corresponding to
the microswimmer self-propelling in a bulk fluid at rest, and
(ii) the passive part (U p,�p) corresponding to a passive mi-
croswimmer (i.e., no tail spinning, ωt = 0) in an external flow
ub. In formulas,

U (xc, θc, ψt ) = Ua(θc, ψt ) + U p(xc, θc, ψt ), (A16)

�(xc, θc, ψt ) = �a(θc, ψt ) + �p(xc, θc, ψt ). (A17)

where we collectively indicated with θc the three angles θ, φ,
and ψ , see Fig. 1 defining the swimmer orientation.

Active motion. For the active part, we first numerically
calculated the unit-spin motion (Ũa, �̃a) of a microswim-
mer swimming with ωt = 1 pointed toward the X3 direction
with (θ = 0, φ = 0, ψ = 0, ψt = 0). Thanks to the rota-
tional symmetry of the ellipsoidal head, the last two rotational
DOFs can be reduced to single DOF ψ ′ = ψ + ψt . Indeed, if
we take a given conformation on the swimmer and we applied
a rotation of the entire swimmer of an angle ψ = α and then
a rotation of the tail with respect to the head of and angle
ψt = −α the initial and the final conformations are the same.
Therefore, we can easily transform the motion (Ua,�a) of an
active swimmer whose tail spins at a rate ωt from the body
coordinate frame O′e1e2e3 to the global coordinate frame
OX1X2X3,

Ua(θc, ψt ) = ωt R(θc, ψt )Ũa, (A18)

�a(θc, ψt ) = ωt R(θc, ψt )�̃a, (A19)

where the rotation matrix R (that transforms the expression of
a vector in the body reference frame into its expression in the
global reference frame) is a function of θ, φ, and ψ ′,

R =

⎡
⎢⎣

CφCψ ′Cθ − SφSψ ′ −Cψ ′Sφ − CφCθSψ ′ CφSθ

Cψ ′CθSφ + CφSψ ′ CφCψ ′ − CθSφSψ ′ SφSθ

−Cψ ′Sθ Sψ ′Sθ Cθ

⎤
⎥⎦, (A20)

where Sθ stands for sin (θ ) and Cθ stands for cos (θ ), and
so on.

Passive motion. Now, we discuss the passive part (U p,�p)
induced by the external flow ub. This is a quite classical prob-
lem that we briefly revise for completeness [35,50]. Taylor
expansion allows to locally decompose the generic flow field
ub into three parts,

ub
i (xc + δxc) = ub

i (xc) + Ei j (xc)δxc
j + Si j (xc)δxc

j , (A21)

Ei j (xc) = 1
2

[
ub

i, j (xc) + ub
j,i(xc)

]
, (A22)

Si j (xc) = 1
2

[
ub

i, j (xc) − ub
j,i(xc)

]
, (A23)

where Ei j and Si j are the symmetric and asymmetric parts of
the velocity gradient ui, j = ∂ui/∂x j . The first term on the right

hand side of (A21) gives a pure rigid body translation Ub
p(xc)

of the microswimmer without rotation, see Fig. 5(b). Instead,
the effect of the last term induced a pure rigid body rotation
�S

p = 1
2∇ × ub where the ∇ × ub is the bulk fluid vorticity,

see Fig. 5(d). The contribution of the symmetric part of the
gradient to the motion, Fig. 5(c), however, is more complex.
Ei j has nine components, but since it is symmetric, i.e., Ei j =
Eji, and the fluid is incompressible, i.e., tr(Ei j ) = Eii = 0,
only five of them are independent. Our approach is first to
express the strain rate Ei j in the body reference frame,

Ẽi j = RT Ei jR, (A24)

where R is the rotation matrix (A20). Then, we decompose it
in five basic modes due to the linearity of the Stokes equations
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FIG. 5. Sketch of the kinetic decoupling of the microswimmer in
an external flow. (a) Active microswimmer motion (Ũ a, �̃a ) in bulk
fluid at rest. (b) Passive microswimmer translation ub in the external
flow. (c) Passive microswimmer motion (Ũ

E
, �̃

E
) in the symmetric

(deviatoric) part of the external flow. (d) Passive microswimmer
rotation �S

p in the antisymmetric part of the external flow.

[50,51],

Ẽi j =
5∑

k=1

β̃kẼ k
i j . (A25)

Indeed, any Ẽ k
i j can be expressed as

Ẽi j =

⎡
⎢⎣

β1 β3 β4

β3 −β1 − β2 β5

β4 β5 β2

⎤
⎥⎦, (A26)

by using the five components reported in Table I. Given this
decomposition, we numerically solve the swimming kine-
matics (Ũ

E
k , �̃

E
k ) of the passive microswimmer for the five

components and sum them with proper weights β̃k ,

Ũ
E
p (x, θc, ψt ) =

5∑
k=1

β̃k (x, θc, ψt )Ũ
E
k , (A27)

�̃
E
p (x, θc, ψt ) =

5∑
k=1

β̃k (x, θc, ψt )�̃
E
k . (A28)

Finally, we express Ũ
E
p and �̃

E
p in the global reference frame,

UE
p (x, θc, ψt ) = R(θc, ψt )Ũ

E
k (x, θc, ψt ), (A29)

�E
p (x, θc, ψt ) = R(θc, ψt )�̃

E
k (x, θc, ψt ). (A30)

It is worth noting that the weights β̃k, k = 1 · · · 5 are func-
tions of external flow ub and swimmer configuration (θc, ψt ),
and they do not vary with the geometric details of the mi-
croswimmer. Similar strategies for calculating the passive
motion of the microswimmer can be found in Refs. [52,54].

TABLE I. Base flow associated with the decomposition of the
symmetric component of the velocity gradient, see (A25).

k Strain rate base Ẽ k
i j Associated flow ũEk

i

1

⎡
⎣1 0 0

0 −1 0
0 0 0

⎤
⎦ (x1, −x2, 0)

2

⎡
⎣0 0 0

0 −1 0
0 0 1

⎤
⎦ (0,−x2, x3)

3

⎡
⎣0 1 0

1 0 0
0 0 0

⎤
⎦ (x2, x1, 0)

4

⎡
⎣0 0 1

0 0 0
1 0 0

⎤
⎦ (x3, 0, x1)

5

⎡
⎣0 0 0

0 0 1
0 1 0

⎤
⎦ (0, x3, x2)

To summarize, the microswimmer generalized velocity in
an external flow is obtained as

U = ωt RŨa + Ub
p + R

5∑
k=1

β̃kŨ
E
k , (A31)

� = ωt R�̃a + �S
p + R

5∑
k=1

β̃k�̃
E
k . (A32)

A sketch of the proposed decoupling is reported in Fig. 5. The
main advantage of this method is that, for a given geometry of

FIG. 6. Validation of the numerical method: Jeffery orbits.
(a) Sketch of an ellipse orbit in a shear flow. The shear flow is on
the X1X3 plane of the global coordinate frame OX1X2X3. The polar
θ and azimuthal φ angles are used to describe the orientation of
the body frame with respect to the global frame. The unit vector p
denotes the orientation of the ellipsoid. (b) and (c) Time evolution of
angles θ and φ for an ellipse with aspect ratio rh1/rh2 = 3 moving in
a shear flow. The initial orientation of the ellipse is (θ = 0.21π, φ =
0.23π ). Orange points represent our numerical solution whereas the
analytical solution [35] are reported as blue lines.
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the microswimmer, regardless the tail spin rate ωt , only six
simulations are necessary; one for getting (Ũa, �̃a) and five
for (ũE

k , �̃
E
k ), k = 1 · · · 5. Thus, one can obtain these quanti-

ties accurately previously, and then solve the microswimmer
kinematics (A13)–(A15).

For the microswimmer motion in the shear flow ub =
(X3, 0, 0), we have

Ei j = 1

2

⎡
⎢⎣

0 0 1

0 0 0

1 0 0

⎤
⎥⎦, (A33)

that, using (A24) and (A25), gives

β̃1 = Cψ ′(SφSψ ′ − CφCψ ′Cθ )Sθ, (A34)

β̃2 = CφCθSθ, (A35)

β̃3 = 1
4 [2C(2ψ ′)SφSθ + CφS(2ψ ′)S(2θ )], (A36)

β̃4 = 1
2 [CφCψ ′C(2θ ) − CθSφSψ ′], (A37)

β̃5 = 1
2 [−Cψ ′CθSφ − CφC(2θ )Sψ ′]. (A38)

To test our approach, we reproduced the Jeffery orbit [55]
for a rh1/rh2 = 3 ellipse in a shear flow, see Fig 6.
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