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Stability analysis of a thinning electrified jet under nonisothermal conditions
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The linear stability of a jet propagating under an electric field is analyzed under nonisothermal conditions.
The electrified jet of a Newtonian fluid is modeled as a slender filament, and the leaky dielectric model is used to
account for the Maxwell stresses within the fluid. The convective heat transfer from high-temperature jet to the
surroundings results in formation of thicker fibers owing to increased viscosity upon cooling. The jet exhibiting
substantial thinning under the action of tangential electric field is examined for stability toward axisymmetric
nonperiodic disturbances. This is in contrast to most prior studies which analyzed the stability of a cylindrical
jet of uniform radius without thinning under extensional flow by examining only periodic disturbances. Two
case studies of reference fluids differing in viscosity and electrical properties are examined. The spectrum of
discrete growth rates for axisymmetric disturbances reveal qualitatively distinct instabilities for the two fluids.
For a fluid with high electrical conductivity, the conducting mode driven by the coupling of surface charges and
an external electric field is found to be the dominant mode of instability. On the contrary, for low conductivity
materials, the surface-tension-driven capillary mode is found to be the most critical mode. Heat transfer from the
jet to the surroundings tends to stabilize both types of instability mode. Under sufficiently strong heat transfer, the
axisymmetric instability, which is believed to be responsible for producing nanofibers with diametric oscillations
in electrospinning process, is suppressed. The stabilization is attributed to the enhancement of viscous stress
in the thinning jet upon cooling. It is observed that the stabilization effect is relatively more pronounced in
a thinning jet compared to the cylindrical jet of uniform radius. The effects of various material and process
parameters on the stability behavior is also examined.
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I. INTRODUCTION

Nanofibers are increasingly gaining attention due to their
potential applications in nanofiltration, tissue engineering,
medical devices, fuel cell, chemical processes, and targeted
drug delivery [1]. The nanosized fibers are produced from
electrospinning technique in which the filament is drawn by
the application of an external electric field. The tangential
electric field acting on the charges present at the fluid-air
interface generates a very high elongational strain in the fluid
leading to fiber formation [2,3]. The electrified jet traveling
under axial electric field often encounters an axisymmetric in-
stability which manifests in the form of sustained oscillations
in fiber diameter. In electrospinning process, the nonuniform
fibers with thick-thin variations are undesirable. However, the
growing axisymmetric instability culminating in to capillary
jet break up is essential for electrospraying applications. The
comprehensive understanding of the stability behavior of an
electrified jet is, therefore, very useful to be able to control
the onset of the instability and eventual quality of the final
product.

While electrospinning technique is employed for poly-
meric fluids, there have been several theoretical studies
treating the fluid as Newtonian as a limiting case of fluid with
low elasticity [4,5]. Hohman et al. [4] and Gãńan Calvo [6]
developed an electrohydrodynamic formulation using leaky
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dielectric model [7] to describe the tangential electric stresses
generated by the combined effect of electric field and surface
charge density. Using this electrohydrodynamic model, Feng
[8,9] proposed a mathematical model to capture the dynamics
and axial profiles of jet parameters for both Newtonian and
viscoelastic fluids. The stability analysis of an electrified jet
under isothermal condition has also been extended to vis-
coelastic fluids in many recent studies [10–12]. Overall, an
electrified jet encounters two qualitatively distinct axisymmet-
ric instability modes, viz. the capillary mode (surface-tension-
driven Rayleigh-Plateau instability), and the conducting mode
(driven by the destabilizing effect of surface charge and axial
electric field). In addition, the electrospinning process exhibits
a nonaxisymmetric instability leading to the whipping motion
of fiber. While capillary mode is dominant for fluids with
low electrical conductivity subjected to weak electric field,
for highly conductive fluid under strong electric field, the
conducting mode becomes the leading mode [4,13,14]. The
axisymmetric instability is believed to be responsible for the
formation of undesirable beaded fibers. The instability as-
sociated with the electrospraying conditions in the presence
of a radial electric field has been analyzed for a perfectly
conducting fluid [15,16] and a leaky dielectric fluid [17].

A limited number of studies have also addressed the
nonlinear progression of axisymmetric instability of the elec-
trified jets of Newtonian fluid. Lopez-Herrera et al. [15]
developed a model to investigate the nonlinear deformation
and break-up of an electrically charged viscous liquid jet of
infinite conductivity. The nonlinear dynamics of a perfectly
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conducting jet under radial electric field has been examined
for both viscous and viscoelastic liquid [18,19] The analysis
predicts the onset of bead formation along the jet. For suffi-
ciently high magnitude of electric field, the beads-on-a-string
morphology transitions to structure with spikes [20,21].

In all prior studies, the stability is examined for a cylindri-
cal jet with uniform radius. Not only the thinning of jet radius
under electric field but also the variation in axial electric field
and surface charge density along the jet have been ignored
in the stability analysis of uniform cylinder. Recent studies
by Dharmansh and Chokshi [22] (for Newtonian fluid) and
Deshawar and Chokshi [23] (for viscoelastic fluid) considered
the jet as fiber thinning under realistic electrospinning condi-
tions. The thinning jet is found to be relatively more stable
compared to the uniform jet. The order of magnitude reduction
in disturbance growth rate vis-à-vis uniform jet is attributed to
taking in to account the deformation rate of the jet as well
as axial variation in surface charge density and electric field
within the jet. The stability of a thinning polymeric fiber in
a mechanical drawing process has also been examined in a
series of linear as well as weakly nonlinear stability analyses
[24–27].

While stability behavior of thinning jet in the absence of
heat transfer and mass transfer (solvent evaporation) from
the fluid to the surrounding air is well-studied, the stability
analysis examining role of convective heat transfer and sol-
vent evaporation in growth of axisymmetric disturbance has
not gained sufficient attention. The nonisothermal condition is
mostly relevant for electrospinning of polymeric melt. Follow-
ing the earlier experimental study by Larrondo and Manley
[28] demonstrating the potential of melt electrospinning, there
have been a number of theoretical and experimental studies
of high-temperature electrospinning [1,29–35]. Melt electro-
spinning is best suited under circumstances in which solvent
removal and recovery need to be eliminated to render the pro-
cess environmentally and economically favorable. Recently,
the role of solvent evaporation in instability of an electri-
fied jet of polymeric solution under isothermal condition is
studied by Deshawar et al. [36]. Separate viscoelastic mod-
els for unentangled and entangled polymeric solution were
adopted for rheological description of the fluid. The rheolog-
ical modification upon solvent removal is found to suppress
the axisymmetric instability producing smooth nanofibers.

In present study, the axisymmetric instability in a Newto-
nian jet is analyzed under nonisothermal condition resulting
due to convective heat transfer from the jet to the surrounding
air. The spectrum of disturbance growth rates is constructed
for nonperiodic axisymmetric disturbances imposed on a
thinning jet under the action of an axial electric field. The
modification of fluid properties, importantly viscosity upon
cooling is believed to play an important role in controlling the
onset of instability leading to diametric oscillations along the
jet. The reference parameters are selected to represent realistic
electrospinning conditions for two different fluids—one with
high electrical conductivity and low viscosity and the other
with low electrical conductivity and high viscosity. Similar
systems have been previously examined for linear stability
under isothermal conditions by Dharmansh and Chokshi [22].
The present work extends this study to incorporate the heat
transfer phenomenon.

FIG. 1. Schematic of nonisothermal electrospinning process.

II. PROBLEM FORMULATION

A. Mathematical model of an electrified jet

The process of electrospinning comprises of a nozzle with
fluid and a collector plate across which a potential differ-
ence is applied. The imposed electric field drives fluid which
emanates from the nozzle in the form of a filament which
traverses toward the bottom collector plate as shown in Fig. 1.
The plate and the nozzle are maintained at opposite polarities
of the electric field to maintain the flow. As jet emerges, it
initially travels in a straight linear path and experiences sig-
nificant thinning due to the tangential electric stress resulting
from the surfaces charges under the action of electric field.
After some distance from the nozzle, the jet undergoes whip-
ping motion due to the bending instability. Finally, the fiber is
deposited on the collector plate. The emphasis of the present
study is restricted to the linear straight jet part of the motion.
The straight jet is modeled as one-dimensional slender-body
filament such that radial variations of the jet variables, like
velocity, electric field and temperature, are ignored and only
axial variations are considered. Under nonisothermal condi-
tions, the jet exchanges thermal energy with the environment
by convective heat transfer. Since the focus is on analyzing
axisymmetric instability during the straight jet motion respon-
sible for diametric oscillations, the whipping motion is not
considered. Moreover, the solvent evaporation which is more
prominent during the whipping motion is considered negligi-
ble during the short distance of linear motion. This allows the
present analysis to be equally valid for both molten material or
solutions. The weakly elastic molten polymer with very short
relaxation time can be modeled as a Newtonian fluid.

The cooling of the high-temperature jet as a result of heat
transfer to the surrounding affects the temperature sensitive
properties. Most importantly, the viscosity variation along the
jet plays an important role in jet dynamics as well as its
stability behavior. The surface tension and density of the fluid
are assumed unaffected by the extent of temperature change in
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jet from nozzle to the collector plate. The mathematical model
of jet dynamics is similar to the one employed in the earlier
studies of isothermal jet [8,22]. A leaky dielectric model given
by Melcher and Taylor [7] and Saville [37] is used to describe
the characteristics of the conductive fluid under an external
electric field. The jet variables are radius R, velocity v, surface
change density σ , temperature T and axial electric field within
the jet E . The governing equations of jet dynamics are

∂R2

∂t
+ ∂ (R2v)

∂z
= 0, (1)

ρ

(
∂v

∂t
+ v

∂v

∂z

)
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∂
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3η
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)]
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R
, (2)

∂ (2πRσ )
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∂z
(πR2KE + 2πRvσ ) = 0, (3)

ε0 (E∞ − E ) = ln

(
L
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)[
∂
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2

∂2

∂z2
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]
, (4)

ρCp

(
∂T

∂t
+ v

∂T

∂z

)
= −2h(T − T∞)

R
+ 3η

(
∂v

∂z

)2

. (5)

Here, Eqs. (1)–(5) are the conservation of mass, momentum,
charge, electric field, and thermal energy, respectively. R0 and
v0 are the jet radius and velocity, respectively, at the tip of
the nozzle and Q represents the fluid flow rate through the
nozzle. ρ, η, and γ are the local density, viscosity, and surface
tension of the fluid, respectively. The momentum conservation
represents the balance of the gravitational, surface tension,
viscous, inertial, and electric forces generated by the Maxwell
stresses using the jump conditions described by Dharmansh
and Chokshi [22]. In the charge conservation Eq. (3), K is
the electrical conductivity and I denote the electric current
passing through the jet. The surface charge density σ accounts
for both free and induced charges. Since electrical conduc-
tivity is generally not very high in nonisothermal spinning,
K is assumed to be temperature independent. The governing
equation for the electric field, Eq. (4), is nicely derived in
Hohman et al. [4] by assuming the charges within the jet as
localized along the jet axis with an effective linear charge den-
sity which is obtained using the Gauss’ law. The electrostatic
potential is then estimated with the help of Coulomb’s law
which, in turn, provides the slender-filament approximation
for the axial electric field. The equation estimates the distor-
tion in axial electric field within the jet with respect to the
uniform applied potential difference between the electrodes.
The thermal energy conservation Eq. (5) takes in to account
the change in thermal energy due to convective heat transfer
to the surrounding and viscous dissipation within the jet. Here,
Cp is the fluid heat capacity, h is the heat transfer coefficient,
and T∞ denotes the constant ambient temperature [27].

The temperature-dependent local viscosity is given by the
Arrhenius law,

η(T ) = η(T0)exp

[
Ea

Rig

(
1

T
− 1

T0

)]
= η(T0) f (T ). (6)

Here, Ea is the activation energy, Rig is the ideal gas constant,
and η(T0) is the fluid viscosity at the nozzle temperature T0.
This temperature dependence of viscosity is in accordance
with the kinetic theory [38], where the viscous force of liq-
uids is associated with overcoming of potential energy barrier
given by the activation energy. The heat transfer coefficient is
considered a function of the local radius and velocity of the
jet [39],

h(z) = 0.388kair

(
v

νairπR2

) 1
3
[

1 +
(

8Vair

v

)2] 1
6

, (7)

where h(z) is the heat transfer coefficient, which depends on
the axial position z. R, and v are the local radius and velocity
of the jet, respectively. Further, Vair is the air velocity, and kair

and νair are the thermal conductivity and kinematic viscosity
of the ambient cooling air, respectively. Thus, heat transfer
coefficient is proportional to the speed of surrounding air.

Next, the governing Eqs. (1)–(5) are made dimensionless
according to the following rules:

R∗ → R

R0
, v∗ → v

v0
, E∗ → E

E0
,

σ ∗ → σ

σ0
, T ∗ → T

T0
, Ea = E∗

a

RigT0
, (8)

where v0 = Q/(πR2
0), E0 = I/(πR2

0K ), and σ0 = ε̄E0. In
what follows, the superscript ∗ denoting dimensionless vari-
ables is omitted for brevity. The dimensionless governing
equations are expressed as

∂R2
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= 0, (9)
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+ ∂
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[
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R
.

(13)

The dimensionless governing Eqs. (9)–(13) feature several
dimensionless numbers as summarized in Table I. As case
studies, two sets of dimensionless parameters corresponding
to two different fluids are considered. Set I represents low
viscous solution with very high electrical conductivity [22]
and Set II represents weakly elastic molten polymeric fluid
with low electrical conductivity and high viscosity [31,35].
The strength of heat transfer is given by the Biot number Bi,
a dimensionless hear transfer coefficient. Note that the heat
transfer coefficient, and hence the Biot number, depends upon
the jet velocity and radius. The local Biot number obtained
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TABLE I. List of dimensionless numbers.

Parameter Dimensionless number Definition Set I Set II

Bo Bond number
ρgR2

0
η0v0

0.5 10−4

Bi Biot number h0R0
k 5 × 10−2 5 × 10−2

Ca Capillary number η0v0
γ

1 4

E∞ Imposed potential difference �V/L
E0

250 0.1

Ef Current strength
ε̄E2

0
ρv2

0
5 × 10−7 4

Na Nahme-Griffith number
v2

0η0

kT0
5 × 10−5 5 × 10−4

Pe Electric Péclet number 2 ε̄v0
KR0

10−6 2

PeT Thermal Péclet number ρCpR0v0
k 25 20

Re Reynolds number R0v0ρ

η0
5 × 10−32.5 × 10−4

β Relative permittivity ε

ε̄
− 1 50 2.1

χ Jet aspect ratio L
R0

200 200

from Eq. (14) is given as follows:

Biz = Bi

(
v

R2

) 1
3
[

1 +
(

8Vair

v

)2] 1
6

. (14)

Here, Bi = h0R0/k represents the Biot number at the nozzle
condition and Biz = hR0/k represents the dimensionless local
heat transfer coefficient, h(z), at any point along the jet. The
air velocity Vair is made nondimensional by v0. The Nahme-
Griffith number Na is a measure of the viscous dissipation.
The Bond number Bo is the ratio of the gravitational force
to the viscous force. The capillary number Ca represents
the ratio of the viscous force and the surface tensor force
acting across the fluid-air interface. Pe is the electric Péclet
number representing dimensionless electrical conductivity of
the fluid. PeT is the thermal Péclet number, which is the
ratio of the advective and diffusive transport rates for ther-
mal energy. The other nondimensional groups are E∞, E f ,
β, and χ , which represent the imposed potential difference,
current strength, relative permittivity, and jet aspect ratio,
respectively.

The above governing equations are supported by following
boundary conditions:

At nozzle: z = 0, R = 1, T = 1, (15)

At jet end: z = χ, E (χ ) = E∞. (16)

The fitting method of Feng [8,9] is employed to estimate E at
the nozzle (z = 0) from the evaluated surface charge density
profile. It is important to note that the initial surface charge
density strongly depends upon the geometry of the nozzle and
is estimated from the three-dimensional electrostatics around
the solid-liquid-air interface which is beyond the scope of
the present one-dimensional slender-filament model. In the
absence of rigorous calculation of surface charge density in
the vicinity of nozzle, an ad hoc treatment of estimating the
initial charge density based on the slope of the surface charge
density profile, σ (z), as suggested by Feng [8,9], is adopted.
It was shown that estimating the initial surface charge density

by a fitting method will not dramatically alter the jet profile,
except for a very short distance away from the nozzle.

The boundary condition for the jet radius at the lower end
(z = χ ) is not straightforward. For the thinning jet, an asymp-
totic boundary condition is assumed of the form R ∝ z−a. The
thinning exponent a is obtained by satisfying the balance of
the dominant forces in momentum conservation Eq. (10) in
the thinned jet at the lower end. The balance of dominant
forces and hence evaluation of a are carried out separately
for the two sets of fluid parameters summarized in Table I.
The first case (Set I) considers fluid with low viscosity and
high electrical conductivity. Thus for this fluid, the inertial
force dominates over the viscous force and it balances with
the electric force (high Re, low Pe). The balance between
two dominant forces, inertia and electric, is depicted in next
section [Fig. 2(a)]. Here, gravity and surface tension forces
are negligible compared to the electrical force generated by
coupling of the surface tension and external electric field.
Thus, satisfying the balance of inertial and electric forces in
the momentum balance equation gives

v
dv

dz
∼= E f

(
2Eσ

R

)
. (17)

The above balance yields the value of a = 1/4. The asymp-
totic boundary condition at the end of the straight jet (z = χ )
thus becomes [8,40]

R + 4 z
dR

dz
= 0. (18)

The second case (Set II) considers a highly viscous fluid
having low electrical conductivity (low Re, high Pe). In this
case, the viscous and electric forces are dominant over the
other terms in the momentum balance, as to be discussed in
the next section [Fig. 2(b)]. To calculate the exponent a in the
asymptotic relation R ∝ z−a, the following balance holds at
the end point:

d

dz

[
eEa ( 1

T −1) dv

dz

]
∼= E f

(
2Eσ

R

)
. (19)

This relation gives the value of a = −1. The asymptotic
boundary condition at the end of the straight jet (z = χ ) thus
becomes

R + z
dR

dz
= 0. (20)

The steady-state solution of the governing equations is ob-
tained by the ordinary differential equation solver package in
COMSOL Multiphysics 4.4 using the finite element numerical
scheme.

B. Linear stability analysis

The linear stability analysis is generally carried out by
imposing infinitesimally small amplitude disturbances on a
base-state profile of the jet followed by linearizing the gov-
erning equations to the linear order of disturbance amplitude
and estimating the growth/decay rate of these axisymmetric
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FIG. 2. Magnitude of various dimensionless forces acting on the jet along z direction. (a) Set I: Inertial and electric forces are dominant
toward the end of the jet; (b) Set II: Viscous and electric forces are dominant.

disturbances. In most previous studies, the base-state profile
is often assumed a cylindrical jet of uniform radius with uni-
form distribution of surface charges and electric field. This
simplification ignores the fact that the electrified straight jet
stretches and thins during flow because of the applied tangen-
tial electric force. Thus, the analysis of a uniform jet fails to
take in to account the deformation rate of the jet as well as
nonuniform distribution of surface charges and electric field
along the jet. In contrast to most prior studies, the present anal-
ysis considers as base-state the thinning jet profile obtained
steady-state solution of the governing equations of jet dynam-
ics. Similar stability analysis of a thinning jet of Newtonian
and polymeric fluids under isothermal conditions have been
carried out in recent studies [22,23]. The generic jet variable
is expanded as superposition of the steady-state (referred to as

base-state) profile and nonperiodic axisymmetric disturbances
of infinitesimally small amplitude, as follows:

φ(z, t ) = φ̄(z) + ε φ̃(z) eω t , (21)

where a generic variable φ represents the jet variables R,
v, E , σ , and T . φ̄(z) denotes the steady-state profiles,
R̄(z), v̄(z), Ē (z), σ̄ (z) and T̄ (z). φ̃(z) represents the distur-
bance profile, where ε denotes the order of amplitude of the
imposed disturbance. ω is the complex-valued linear growth
rate of the disturbance given by ω = ωr + iωi. Here, the real
part ωr is the growth/decay rate and the imaginary-part ωi rep-
resents the disturbance frequency. The disturbance governing
equations linearized to O(ε) are of the form

2R̄′v̄R̃ + 2R̄v̄′R̃ + 2R̄R̄′ṽ + 2R̄v̄R̃′ + R̄2ṽ′ = −2 ωR̄R̃, (22)

Re(v̄′ṽ − v̄ṽ′) + 6 exp[Ea(1/T̄ − 1)]

R̄

[
− v̄′R̄′R̃

R̄
+ v̄′R̃′ + R̄′ṽ′ + R̄ṽ′′

2
− EaR̄′v̄′T̃

T̄ 2

+ EaT̃ T̄ ′v̄′

T̄ 3

(
Ea

2T̄
+ 1

)
− Ea

2T̄ 2
(v̄′T̃ ′ + T̄ ′ṽ′ + T̃ v̄′′)

]
+ 1

Ca

(−2R̄′R̃
R̄3

+ R̃′

R̄2
+ R̃′′′

)

+ E f

[
β(Ē ′Ẽ + Ē Ẽ ′) + σ̄ σ̃ ′ + σ̄ ′σ̃ + 2

R̄

(
σ̄ Ẽ − Ē σ̄ R̃

R̄
+ Ē σ̃

)]
= ωṽ, (23)

Ẽ − ln χ

[
σ̄ ′R̃ + R̄′σ̃ + σ̄ R̃′ + R̄σ̃ ′ − β

(
R̄′2Ẽ + R̄R̄′′Ẽ + Ē ′′R̄R̃ + 2Ē ′R̄′R̃

+ Ē R̄′′R̃ + 2R̄R̄′Ẽ ′ + 2Ē ′R̄R̃′ + 2Ē R̄′R̃′ + R̄2Ẽ ′′

2
+ Ē R̄R̃′′

)]
= 0, (24)

R̃(2Ē ′R̄ + 2Ē R̄′) + 2Ē R̄R̃′ + R̄(2R̄′Ẽ + R̄Ẽ ′) + Pe[R̃(σ̄ ′v̄ + σ̄ v̄′)

+ σ̃ (R̄′v̄ + v̄′R̄) + ṽ(R̄′ + σ̄ ) + v̄(σ̄ R̃′ + R̄σ̃ ′)] = −Pe ω(R̄σ̃ + σ̄ R̃), (25)

Bi

(
v̄

R̄2

) 1
3
(

1 + 64V 2
air

v̄2

)−5/6[10R̃(T̄ − T∞)

3R̄2
− 2(T̄ − T∞)ṽ

3R̄v̄
− 128Vair

2T̃

R̄v̄2
+ 640(T̄ − T∞)Vair

2R̃

3R̄2v̄2
− 2T̃

R̄

]

−PeT (ṽT̄ ′ + v̄T̃ ′ + ωT̃ ) + 6 Na exp[Ea(1/T̄ − 1)]v̄′ṽ′ = 0. (26)
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FIG. 3. Steady-state profile of dimensionless radius along the jet direction: (a) Set I; (b) Set II.

Here, ′ represents differentiation with respect to z. The perturbation form of the boundary conditions to supplement the governing
Eqs. (22)–(26) are

At z = 0 : R̃(0) = 0, ṽ(0) = 0, Ẽ (0) = 0, σ̃ (0) = 0, T̃ (0) = 0. (27)

At z = χ : 4χ R̃′ + R̃ = 0, Ẽ (χ ) = 0, for Set I fluid, and

χ R̃′ + R̃ = 0, Ẽ (χ ) = 0, for Set II fluid. (28)

The governing equations for the perturbation Eqs. (22)–
(26) are numerically solved using the Chebyshev collocation
technique. Here, the spatial domain z = [0, χ ] is discretized
in to N collocation points whose co-ordinates are given by
the roots of the Chebyshev-Gauss-Lobatto polynomials. The
discretized equations result in to a generalized eigenvalue
problem of the form

MA φ̃ = ω MB φ̃, (29)

where φ̃ is an array of size 5N × 1, and MA and MB are
the coefficient matrices of size 5N × 5N . Here, integer prefix
5 represents the number of jet variables, R̃, ṽ, Ẽ , σ̃ , and T̃
at each of the N collocation points. The eigenvalue prob-
lem is solved using numerical library package (DGEEV in
LAPACK) to obtain a spectrum of complex eigenvalues ω,
plotted in ωr − ωi plane. By varying number of collocation
points N , the spurious modes (nonoverlapping modes) are
eliminated and physical eigenmode are identified. The modes
with positive value of real part ωr represent the axisymmetric
instability modes, indicating unstable jet, leading to diametric
oscillations and potential bead formation.

III. RESULTS AND DISCUSSION

A. Steady-state solution

The first step in performing linear stability analysis is to
obtain the steady-state (the base-state) profile of the electrified
jet. The dimensionless Eqs. (9)–(13) governing the jet dy-
namics are numerically solved under steady-state conditions
using COMSOL Multiphysics 4.4. The steady-state profiles
are obtained using the reference parameters for Set I and
Set II fluids listed in Table I. Figure 2 plots the magnitude

of various forces acting on the jet along the z direction for
Sets I and II fluids. In both the fluids, the surface tension and
gravity force (not plotted) are weakest forces and have a little
influence on the jet profile. For Set I which describes a low
viscosity fluid with high electrical conductivity, the dominant
forces are found to be the inertial and electric forces which
counter-balance to give a steady jet profile. The viscous force
affects the profile only close to the nozzle exit and becomes
insignificant toward the end as jet thinning becomes weak.
Thus, the force balance Eq. (17) has been confirmed by the
numerical estimation of the forces. However, for Set II, which
describes a highly viscous liquid with low electrical conduc-
tivity, the inertial force is very weak and the electrical force
is balanced by the viscous force, as seen in Fig. 2(b). Thus,
the force balance condition Eq. (19) adopted to derive the
asymptotic condition at the lower end has been confirmed by
the force profiles.

Figure 3 plots the steady-state radius of the thinning jet
for the two reference fluids. For Set I fluid, the presence
of a strong tangential electric force results into very strong
thinning of jet radius, with a dramatic reduction in radius near
the nozzle exit as shown in Fig. 3(a). However, for weakly
conducting Set II fluid, the thinning is found to be moderate
with a gradual reduction in radius as jet travels as shown in
Fig. 3(b).

The difference in radius profiles of the two fluids can be
explained with the help of profile depicting the distribution
of surface charge density along the jet axis for the two cases
as shown in Fig. 4. The surface charge density profile, σ (z),
for the highly conductive fluid (Set I) is shown in Fig. 4(a).
At z = 0, the surface charge density is zero as charges reside
in the bulk. Due to high electrical conductivity, the charges
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FIG. 4. Steady-state profile of dimensionless surface charge density along the jet axis: (a) Set I; (b) Set II.

migrate from bulk to the fluid-air interface leading to build
up of surface charge density at short distance from the noz-
zle. The external electrical field acting on the surface charge
build up generates strong electrical stresses which causes a
substantial thinning of the jet indicated by a steep decrease
in jet radius [refer to Fig. 3(a)]. Afterwards, as jet thins grad-
ually, the surface charge density slowly drops due to charge
repulsion. Fig. 4(b) plots the surface charge density profile,
σ (z), for the low conductivity fluid (Set II). Here, the peak
value of surface charge density is orders of magnitude smaller
compared to that for the high conductivity Set I fluid. The
weakly conductive fluid is characterized by the absence of
charge migration from bulk toward the surface and the ax-
ial charge distribution is primarily dominated by the charge
convection as jet propagates. The smaller amount of surface
charge density generates weak electrical stresses which in
turn results in to weaker thinning of the jet producing thicker
fibers. Moreover, the viscous forces hinder the fiber thinning,
as inertia is smaller in magnitude, which also contributes to
the formation of thicker fibers. Further, the gradual decrease
in surface charge density correlates to the gradual thinning
of the jet [refer to Fig. 3(b)]. The steady-state jet profiles,
especially the surface charge density and electric field profiles,
are qualitatively similar to the profiles reported in several
earlier studies for Newtonian as well as polymeric fluids
[8,9,11].

The role of heat transfer in fiber profile is examined next.
The strength of convective heat transfer from fiber to the
surrounding is given by Biot number Bi, the dimensionless
heat transfer coefficient. Figure 5 shows effect of heat transfer
on radius and temperature profiles of the jet for Set II pa-
rameters. The line for Bi = 0 (heat transfer coefficient being
zero) represents the jet under nearly isothermal condition. A
small increase in temperature is due to the viscous dissipation
effect. Increasing convective heat transfer to the environment
(increasing Bi) results in to drop in jet temperature. A small
increase in Biot number leads to around 20% drop in jet tem-
perature at the collector with respect to its value at the nozzle
[31]. The enhancement in fluid viscosity due to cooling gives
rise to thicker fibers. The terminal radius increases appreciable
upon increasing the extent of heat transfer. The increase in

fiber radius on cooling is also observed for Set I fluid, though
not shown for brevity.

The sensitivity of viscosity to temperature is parametrized
by activation energy, Ea. Figure 6(a) illustrates the effect of
activation energy on the jet radius profile for Set II fluid.
The corresponding local value of fluid elongational viscosity
(normalized by viscosity at nozzle temperature, η0) along the
jet, ηe/η0 is depicted in Fig. 6(b). The thermal and inertial
energy must be higher than the activation energy of material
to allow translational motion of the molecules. Thus, higher
activation energy, implying greater enhancement of viscosity
for a given change in temperature, leads to a stronger increase
in viscosity of the jet as it travels the straight path as shown
in Fig. 6(b). The increase in viscosity for higher activation
energy results in to thicker fibers as shown in Fig. 6(a).

B. Stability analysis

For linear stability analysis, the steady-state profile of thin-
ning jet is treated as the base-state upon which nonperiodic
axisymmetric disturbances are superimposed. The discrete set
of growth rate of these disturbances is obtained as eigen-
values of the disturbance problem symbolically represented
in Eq. (29). Numerical technique estimates a spectrum of
the complex-valued growth rates ω = ωr + i ωi as eigenval-
ues and the corresponding φ̃(z) as eigenfunction. Figures 7
and 8 present the spectra of eigenvalues in ωr-ωi plane for
the two reference fluids Set I and Set II, respectively. In both
cases, eigenspectra are constructed for the isothermal condi-
tion (obtained by setting Bi = 0 and keeping other parameters
unchanged) as well as the corresponding nonisothermal con-
dition (Bi �= 0) in parts (a) and (b), respectively. To identity
the physical eigenmodes and to eliminate the spurious modes,
different numbers of collocation points N are considered. It
is important to note only the leading mode, the one with the
largest value of real part ωr , is of interest and is dominant
mode as it is the fastest growing (or slowest decaying) mode.
As seen, the leading eigenvalue is fully converged upon vary-
ing the collocation points N .

For a high conductivity and low viscosity fluid (Set I),
Fig. 7(a) shows that, for the isothermal conditions, a part of
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FIG. 5. Dimensionless steady-state profile of thinning jet for various Biot numbers: (a) radius; (b) temperature. Parameters: Set II.

the eigenspectrum lies on the positive side of ωr . Therefore,
the the leading growth rate is positive indicating an unstable
jet. However, when the Biot number is made nonzero, keep-
ing other parameters unchanged, the spectrum shifts toward
the negative side of ωr such that the maximum growth rate
becomes negative. Thus, heat transfer renders the jet stable
to axisymmetric disturbances. Similar stabilization of eigen-
modes is also observed for the low conductivity and high
viscosity fluid (Set II), as shown in Fig. 8. Hence, for both
the reference fluids, while the isothermal jet is unstable, the
nonisothermal jet is found to be stable under similar elec-
trospinning conditions. The jet stabilization is attributed to
modification in fluid viscosity upon cooling. The enhanced

viscous stresses tend to render the jet stable. Thus, the axisym-
metric instability in the form of diametric oscillations can be
suppressed and smooth fibers are obtained by inducing heat
transfer from the jet.

In the present analysis, the only mechanism of heat trans-
fer from the fiber to the surrounding air is convective heat
transfer, as solvent evaporation is neglected. Convective heat
transfer is controlled by two factors, the heat transfer coeffi-
cient h and the temperature difference [T (z) − T∞]. The heat
transfer coefficient is characterized by the dimensionless Biot
number. As heat transfer coefficient depends upon the local
velocity of the jet v as well as the ambient air velocity Vair,
the Biot number varies along the jet according to Eq. (14),
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FIG. 6. Steady-state profile of thinning jet for different values of activation energies. (a) Dimensionless radius; (b) dimensionless
elongational viscosity. Parameters: Set II.
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thinning jet with superimposed nonperiodic perturbations. (a) Bi = 0.0; (b) Bi = 0.05. Parameters: Set I.

where Bi is the Biot number at the nozzle (z = 0). The local
Biot number Biz is found to be higher and increases as jet
propagates and accelerates toward the bottom plate. Thus, heat
transfer is much faster from the thinned jet (at high velocity)
compared to the jet emanating from the nozzle (at relatively
lower velocity). Figure 9 plots the variation in leading growth
rate with Biot number, Bi (defined at the nozzle condition)
for both the fluids. The leading growth rate is positive in the
absence of heat transfer (Bi = 0) for both the fluids. Upon
increasing heat transfer, the growth rate decreases and be-
yond a certain value of Biot number, it changes its sign from
positive to negative. Thus, the axisymmetric instability can
be suppressed by cooling of the jet. The temperature drop
stabilizes the electrospun jet irrespective of the fluid conduc-
tivity. While for Set I fluid the stabilization role of cooling is
observed for the entire range of Biot number examined, the
stabilization effect of increasing Biot number appears to be
arrested for the Set II fluid after the jet has stabilized. This may
be due to a limit to which the viscous stresses developed upon
cooling could stabilize the jet of fluid which is already highly
viscous.

The effect of activation energy, which captures the degree
of enhancement of viscosity upon cooling, on the the leading
growth rate is shown in Fig. 10. For both types of fluids, the
increase in activation energy tends to decrease the real part of
the leading growth rate. For Set II fluid (high viscosity fluids),
the stabilizing effect of activation energy is strong enough to
shift the growth rate from unstable region (ωr > 0) to stable
region (ωr < 0), as shown in Fig. 10(b). The fluid with higher
activation energy generates greater viscous stresses upon cool-
ing which are responsible for stabilization of the jet. As
discussed earlier, the stabilization limit is attained for the high
viscosity Set II fluid such that while growth rate decreases
with initial increase in activation energy, it remains largely
unchanged upon further increase in the value of activation
energy.

The local heat transfer coefficient can be enhanced by
subjecting the jet to a thermally cooled environment with
a cross-current flow of surrounding gas, as described by
Eq. (14). The air flow dramatically increases the local heat
transfer coefficient throughout the jet, including near the noz-
zle where jet velocity is much lower. The jet velocity increases
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FIG. 8. Eigenspectrum for isothermal and nonisothermal cases: Real part of growth rate, ωr , vs imaginary part of growth rate, ωi, for a
thinning jet with superimposed with nonperiodic perturbations. (a) Bi = 0.0; (b) Bi = 0.07. Parameters: Set II.
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FIG. 9. Effect of heat transfer coefficient, Bi, on real part of the leading growth rate, ωr , for thinning jet: (a) Set I; (b) Set II.

by an order of magnitude as the jet proceeds toward the
collector. A lower end of the jet where v 	 Vair, effect of air
velocity on the local Biot number becomes insignificant, as
per Eq. (14). An overall increase in the local heat transfer
coefficient owing to air flow is generally expected to affect
the stability of the jet. Figure 11 plots the variation in the
leading growth rate with air velocity for Set II fluid. The
value of growth rate decreases marginally with increasing air
velocity. The cooling effect of air flow, however, is not suffi-
cient enough to entirely suppress the instability. The air flow
increases the heat transfer coefficient only in the upper part
of the jet, whereas the heat transfer in the middle and lower
ends of the jet is entirely controlled by the jet momentum and
is unaffected by the air velocity. Thus, the role of cooling

air flow in suppressing the axisymmetric instability of the
electrified jet is found to be limited.

The above discussion presented the role of various param-
eters on the stability behavior. Next, we attempt to understand
the mechanism of instability modes for both the reference
fluids. Hohman et al. [4] suggested that there exits two types
of axisymmetric instability modes in an electrified jet. The
first one is the surface-tension-driven capillary mode, which
is the classical Rayleigh-Plateau instability modified in the
presence of an electric field. Here, the surface tension which
tends to prevent jet breakup is a stabilizing force where as the
axial electric field tends to overcome the effect of surface ten-
sion and provides a destabilizing effect. The leading growth
rate for the capillary mode decreases upon increasing the
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FIG. 10. Effect of activation energy on real part of the leading growth rate, ωr , for thinning jet: (a) Set I; (b) Set II.
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strength of external electric field strength. The second mode
is the conducting mode of instability in which the instability
is excited by the electric force generated by the coupling of
surface charges and the electric field. Unlike capillary mode,
the leading growth rate increases upon increasing the strength
of external electric field for the conducting mode. As trend
of leading growth rate upon varying electric field strength is
opposite in both the modes, the electric field parameter can
be used to identify the nature of instability mode for the two
fluids being studied.

Figure 12 depicts the variation in leading growth rate with
the strength of external electric field, E∞ for both the fluids.
For the high conductivity Set I fluid, increasing the electric
field strength tends to increase the leading growth rate as
shown in Fig. 12(a). For a strong enough electric field, the
jet transitions from stable (ωr < 0) to unstable (ωr > 0) re-
gion. The destabilizing role of electric field implies that the
dominant instability mode is conducting mode for Set I fluid

[4,13,14]. However, for highly viscous Set II fluid, increasing
electric field tends to reduce the growth rate indicating stabi-
lizing role. Hence, for a weakly conductive jet subjected to
low electric field, the capillary mode dominates, whereas for
a highly charged jet in a strong electric field, the instability is
driven by the conducting mode [4]. Interestingly, both of these
modes are stabilized by cooling of the jet.

Similar to electric field strength, the electrical conductivity
of the fluid is another parameter that can distinguish between
the two qualitatively different modes of instability. While
capillary mode remains unaffected by electrical conductivity
of the fluid, the conducting mode driven by the coupling of
surface charges and electric field is primarily excited by the
electrical conductivity of the fluid [4]. The effect of electrical
conductivity on the leading growth rate ωr is, therefore, ex-
amined next. The electrical conductivity, K , is captured by
the dimensionless electric Péclet number. At the same, the
conductivity also influences the dimensionless electric field
at the nozzle, E0, which in turn affects dimensionless field
parameters, E f and E∞ (refer to Table I). Thus, varying K
leads to simultaneous changes in Pe, E f and E∞ as per their
dependence on conductivity, K . Figure 13 plots the variation
in leading growth rate with electric Péclet number for both the
sets. It should be noted that varying Péclet number captures
variation in K and hence is accompanied by varying E f and
∞ as per their definitions. Here, increasing electrical conduc-
tivity is represented by decreasing Péclet number. For Set I
fluid, increasing conductivity (decreasing Pe) transitions the
jet from stable to unstable region. Increasing electrical con-
ductivity leads to a strong build up of surface charges which
tends to destabilize the jet. The destabilizing role of electrical
conductivity further confirms the nature of the leading mode
for Set I fluid to be the conducting mode. This instability
is qualitatively different from the classical Rayleigh-Plateau
mode driven by the surface tension. For Set II fluid, as shown
in Fig. 13(b), the variation in conductivity does not influ-
ence the leading growth rate significantly which confirms
the instability mode to be the surface-tension-driven capillary
mode.

Finally, the role of surface tension in stability behavior
is examined by varying the capillary number. As shown in
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FIG. 12. Effect of external electric field, E∞, on real part of the leading growth rate, ωr , for thinning jet: (a) Set I: Conducting mode; (b) Set
II: Capillary mode.
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FIG. 13. Effect of conductivity given by electric Péclet number on real part of the leading growth rate, ωr , for thinning jet: (a) Set I:
Conducting mode; (b) Set II: Capillary mode.

Fig. 14, increasing surface tension (by decreasing capillary
number) results in to increase in growth rate for both the
reference fluids. The destabilizing effect of surface tension is
more pronounced in Set II fluid for which the leading mode is
the capillary mode.

An important feature of the present analysis is that the
disturbances are imposed on a jet with thinning profile (with
nonuniform distribution of jet variables). This is in contrast
to most prior stability analyses in which the axisymmetric
disturbances are imposed on a cylindrical jet of uniform
radius and other jet variables [10–12]. The present analy-
sis being more rigorous, therefore, accurately estimates the
disturbance growth rate under realistic electrospinning condi-
tions. It would be interesting to compare the growth rate for
a thinning jet with that obtained by assuming uniform jet as
the base-state. For the later case, the uniform jet variables,
including radius, are taken as their terminal values, i.e. at the
lower end of the jet. Figure 15 compares the leading growth
rate values for two different base-states, the thinning jet and
the uniform radius jet. The comparisons are plotted for both
the reference fluid under varying heat transfer conditions. For

both sets, the growth rate is found to be smaller in magnitude
for the thinning jet as compared to the uniform jet. Impor-
tantly, for Set I fluid, the growth rate for thinning jet is found
to be an order of magnitude smaller than that for the uniform
jet. The differences are not just in magnitude but also the sign
of growth rate, thus altering the key conclusion of the stability
analysis. At large Biot number, while the cylindrical jet of
radius equal to the terminal radius of the thinned jet is pre-
dicted to be unstable, the more rigorous analysis of thinning
jet profile finds the jet to be stable. The reduction in the real
part of the growth rate of the thinning jet results from inclu-
sion of the deformation strain in thinning base-state profile
of the electrified jet. The simplified uniform cylinder profile
disregards the gradients of all jet variables, most importantly
the velocity gradient responsible for the stabilizing viscous
forces is ignored. Moreover, the nonuniform distribution of
surface charge density as well as axial electric field, ignored in
the uniform jet analysis, play an important role in the stability
behavior. Thus, the entire profile of the thinning jet is essen-
tial in accurate estimation of the disturbance eigenspectrum.
It should, however, be noted that for both the analyses of
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FIG. 14. Effect of capillary number, Ca, on real part of the leading growth rate, ωr , for thinning jet: (a) Set I: Conducting mode; (b) Set II:
Capillary mode.
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FIG. 15. Maximum growth rate of disturbance corresponding to thinning jet and uniform jet. Parameters for various heat transfer
coefficients, Bi: (a) Set I; (b) Set II.

thinning jet and uniform radius jet, the role of heat transfer is
found to be stabilizing as leading growth rate decreases upon
increasing the Biot number.

In the electrospinning process, the nonsmooth beaded
fibers are produced in a certain range of operating and material
parameters. The present analysis provides useful means to
optimize the electrospinning parameters such that the unde-
sirable axisymmetric instability is suppressed and defect-free
smooth fibers are produced. Finally, it is important to note that
while solvent evaporation is ignored in the present analysis,
the recent study examines the role of solvent evaporation
in stability of an electrified jet [36]. For electrospinning of
polymeric solutions, the evaporation of solvent during the
straight jet path tends to weaken or completely suppress
the axisymmetric instability. The stabilization attributed to
the enhancement in fluid viscosity and elasticity upon solvent
removal results in to production of smooth fibers without bead
formation.

IV. CONCLUSION

An electrified jet of Newtonian fluid under nonisothermal
condition is analyzed to estimate the onset of an axisymmetric
instability which manifests in the form of growing oscillations
in fiber diameter. The study addresses the conditions leading
to the formation of electrospun nanofibers with thick-thin
variations, a precursor for beaded fibers. The eigenspectrum
of growth rates of axisymmetric disturbances is constructed
using the linear stability theory. Unlike most prior studies
which treat the jet as uniform radius cylinder, the present
analysis examines the stability behavior of a jet with thinning
profile under the action of tangential electric field. The study is
relevant to high-temperature electrospinning of weakly elas-
tic materials (either melt or solutions), treated as Newtonian

fluids. The role of convective heat transfer from fiber to the
ambient air, in the absence of any mass transfer, in stability
behavior is examined.

The enhancement in fluid viscosity, due to transfer of ther-
mal energy from fiber to the surrounding, results in to thicker
fibers. The stability analysis reveals that the conducting mode
of instability is dominant for high conductivity (and low vis-
cosity) fluid. In this case, increase in magnitude of imposed
electric field and fluid conductivity tend to increase the growth
rate of leading disturbance suggesting destabilizing role of
tangential electric stress, indicating conducting mode of insta-
bility. However, for the low conductivity (and high viscosity)
fluid, the stabilizing role of electric field is observed. Thus,
in this case, the leading mode is classical Rayleigh-Plateau
mode driven by surface tension which is known to be sta-
bilized by tangential electric field. For both fluids, the heat
transfer from fiber to the surrounding is found to stabilize the
axisymmetric instability. The growth rate decreases upon heat
transfer and it changes its sign from positive (unstable jet)
to negative (stable jet) for certain high enough heat transfer
coefficient. The stabilizing role of heat transfer is attributed
mainly to the increase in fluid viscosity upon cooling leading
to enhanced magnitude of stabilizing viscous stresses. Thus,
the axisymmetric instability potentially leading to undesirable
bead formation along the fiber can be entirely suppressed by
inducing heat transfer from the fiber.

Further, it is observed that the thinning jet is relatively more
stable compared to cylindrical jet of uniform radius. The anal-
ysis, thus, more accurately estimates the stability behavior of
a jet experiencing thinning as well as nonuniform distribution
of surface charge density and axial electric field under realistic
electrospinning conditions. The analysis offers guidelines for
designing a nonisothermal electrospinning process to produce
smooth bead-free fibers.

023107-13



DHARMANSH DESHAWAR AND PARESH CHOKSHI PHYSICAL REVIEW E 103, 023107 (2021)

[1] L. H. Zhang, X. P. Duan, X. Yan, M. Yu, X. Ning, Y. Zhao, and
Y. Z. Long, Recent advances in melt electrospinning, RSC Adv.
6, 53400 (2016).

[2] K. Garg and G. L. Bowlin, Electrospinning jets and nanofibrous
structures, Biomicrofluidics 5, 013403 (2011).

[3] T. D. Brown, P. D. Dalton, and D. W. Hutmacher, Melt elec-
trospinning today: An opportune time for an emerging polymer
process, Prog. Polym. Sci. 56, 116 (2016).

[4] M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner,
Electrospinning and electrically forced jets I: Stability theory,
Phys. Fluids 13, 2201 (2001).
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