
PHYSICAL REVIEW E 103, 023106 (2021)

Theoretical analysis of quantum turbulence using the Onsager ideal turbulence theory
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We investigate three-dimensional quantum turbulence as described by the Gross-Pitaevskii model using the
analytical method exploited in the Onsager “ideal turbulence” theory. We derive the scale independence of the
scale-to-scale kinetic energy flux and establish a double-cascade scenario: At scales much larger than the mean
intervortex �i, the Richardson cascade becomes dominant, whereas at scales much smaller than �i, another type
of cascade is induced by quantum stress. We then evaluate the corresponding velocity power spectrum using a
phenomenological argument. The relation between this cascade, which we call quantum stress cascade, and the
Kelvin-wave cascade is also discussed.
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I. INTRODUCTION

The phenomenon of fully developed turbulence is well
described by Onsager’s theory of “ideal turbulence” [1–3].
According to this theory, in classical incompressible turbu-
lence, kinetic energy is continuously transferred from large
to small scales in the intermediate-length scales—inertial
range—without dissipation. This energy transfer is called
the energy cascade, or Richardson cascade, because the
mechanism of this phenomenon is intuitively explained by
Richardson’s depiction of a large vortex splitting into smaller
vortices [4]. For the Richardson cascade, the kinetic energy
spectrum E (k) follows the Kolmogorov spectrum E (k) ∝
k−5/3 [1,5–7]. Onsager’s theory is based on the empirical
fact, observed by Taylor [8], that the energy dissipation re-
mains significant even in the inviscid limit. The existence
of this anomalous dissipation means that as the viscosity
decreases, the inertial range extends to infinitely small scales,
i.e., the energy cascade continues endlessly. Onsager’s the-
ory provides a rigorous method that can describe such a
remarkable phenomenon in the absence of viscosity. This
theory has been applied to two-dimensional enstrophy cascade
[9,10], three-dimensional helicity cascade [11,12], and mag-
netohydrodynamic turbulence [13–15] and has recently been
extended to the cases of compressible turbulence [16–21],
collisionless plasma turbulence [22], and relativistic fluid tur-
bulence [23].

Note that although Onsager’s ideal turbulence cannot be
achieved exactly in a classical system, in which the effect of
viscosity cannot be ignored, completely inviscid flow is real-
ized in quantum fluids, such as superfluid helium or atomic
Bose-Einstein condensates (BECs). Such quantum fluids dif-
fer from classical fluids in that (i) they exhibit two-fluid
behavior at nonzero temperature, (ii) they flow without vis-
cosity, and (iii) their circulation is quantized, as proposed
independently by Onsager [1] and Feynman [24]. Turbulence
in quantum fluids is called quantum turbulence and has been

*tanogami.tomohiro.84c@st.kyoto-u.ac.jp

intensively investigated both theoretically and experimentally
in recent years [25–29].

Despite these differences between quantum and classi-
cal fluids, recent numerical and experimental results have
revealed that there are quantitative similarities between
quantum and classical turbulence. For example, quantum
turbulence exhibits both the Richardson cascade and the Kol-
mogorov spectrum, as in classical turbulence [30–33]. On the
basis of the fact that pure quantum turbulence, which consists
of quantized vortices and has zero viscosity, behaves like
classical turbulence, quantum turbulence has been described
as a prototype or “skeleton” of turbulence [32,34].

Although there are similarities between quantum and clas-
sical turbulence, there are, of course, striking differences.
First, quantum turbulence comprises three main characteristic
length scales: The characteristic length scale of injection of
kinetic energy by external stirring L, the mean intervortex
distance �i, and the vortex core radius ξ . Second, it is be-
lieved that, at scales smaller than �i, the Richardson cascade
is no longer dominant and the Kelvin-wave cascade excited
by vortex reconnections becomes dominant. The Kelvin-wave
cascade is an energy cascade believed to result from the inter-
action of Kelvin waves [35] of different wave numbers on a
single quantum vortex. It is conjectured that the energy spec-
trum corresponding to the Kelvin-wave cascade also shows
a power-law behavior, and several candidates for the expo-
nent have been theoretically predicted. For example, Kozik
and Svistunov, who provided the first theoretical analysis of
the Kelvin-wave cascade, obtained a value of −7/5 using
the wave turbulence theory of a six-wave scattering process
under the assumption of local interaction [36]. Later, L’vov
and Nazarenko criticized this assumption of locality and con-
cluded that the exponent becomes −5/3 [37]. In addition,
several works predict the spectral exponent −1 [38–40].

The spectral index values obtained from these previous
studies have formed the basis of many subsequent theoretical
analyses. However, because these studies are based on the
vortex filament model [41], the effects of compressibility, par-
ticularly the contribution of quantum stress, are not considered
[34]. This compressibility effect is particularly important in
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quantum turbulence in trapped atomic BECs, for which var-
ious experimental techniques have been developed in recent
years. Because superfluid density changes significantly in the
vicinity of quantum vortices, quantum stress may contribute
to the energy transfer across scales. Therefore, we conjecture
that an energy cascade induced by quantum stress will occur at
scales sufficiently smaller than the mean intervortex distance.
That is, we expect the following double-cascade scenario:

(1) The energy injected from the large-scale L is trans-
ferred to small-scale ��i by the Richardson cascade, induced
by a tangled structure of quantum vortices behaving like a
classical vortex.

(2) At scales smaller than the mean intervortex distance �i,
the Richardson cascade is no longer dominant, and the effect
of the quantum stress becomes significant. As a result, another
type of cascade, which we call quantum stress cascade, is
induced by the quantum stress.

Because both the quantum stress cascade and Kelvin-wave
cascade occur at scales sufficiently smaller than the mean
intervortex distance and Kelvin waves are accompanied by
rapid density changes, we expect that the quantum stress
cascade is related to the Kelvin-wave cascade. It is important,
however, to note that the existence of Kelvin waves may not be
a necessary condition for the quantum stress cascade to exist.

We validate our conjecture by studying the Gross-
Pitaevskii (GP) model [42,43], which can describe quantum
turbulence in atomic BECs. Because there are no viscous
effects in quantum turbulence as described by the GP model,
the cascade can extend to infinitely small scales although it
may be cut off at the vortex core radius ξ . Such a situa-
tion may be appropriately described using the Onsager ideal
turbulence theory. Therefore, to establish the validity of the
above double-cascade scenario, we take a phenomenological
approach based on the Onsager theory. In other words, we
investigate the dynamics of quantum vortices as described
by the quantum Euler equations, which is a hydrodynamic
form of the GP model, using the Onsager theory. Because
the quantum Euler equations have a form similar to that of
the ordinary compressible Euler equations, we can exploit
recent developments that extend Onsager’s theory to classical
compressible turbulence [16–21].

This paper is organized as follows. In the next section,
we introduce the quantum Euler equations and derive the
local energy balance equations. Subsequently, we introduce a
coarse-graining approach that can resolve the turbulent fields
both in scale and in space. Next, in Sec. III, we explain the
main assumptions used in our analysis. The main claims of
this paper are presented in Sec. IV. In Sec. V, we derive and
explain the main claims. Concluding remarks are provided in
Sec. VI.

II. PRELIMINARIES

A. Setup

We consider quantum turbulence as described by the GP
model:

ih̄
∂

∂t
�(x, t ) =

[
− h̄2

2m
∇2 + Vext + g|�|2 − μ

]
�(x, t ). (1)

Here, �(x, t ) denotes the condensate’s complex wave func-
tion, m is the boson mass, μ is the chemical potential, g is a
positive constant that represents the strength of the interaction
between bosons, and Vext (x, t ) expresses both the trapping
potential and external stirring, e.g., rotation along distinct axes
[44]. Note that our analysis can be applied for both decaying
and forced turbulence. To avoid questions regarding bound-
aries, we assume periodic boundary conditions with periodic
box � = [0,L]d . Although we focus on the case in which
the spatial dimension d = 3, the calculations in Secs. V A
and V B are formally valid in arbitrary space dimensions.
By introducing the Madelung transformation � = √

n exp(iθ )
[45,46], which relates � to the superfluid mass density ρ =
mn and velocity v = (h̄/m)∇θ , we can obtain a hydrodynamic
description of the system:

∂tρ + ∇ · (ρv) = 0, (2)

∂t (ρv) + ∇ · (ρvv + pI − �) = f, (3)

where p := gρ2/(2m2), f denotes the external force due to
Vext, and � is the quantum stress:

� := h̄2

4m2
	ρI − h̄2

m2
∇√

ρ∇√
ρ, (4)

where I denotes the unit tensor. The quantum Euler equations
(2) and (3) become identical to the ordinary compressible
Euler equations by taking the classical limit h̄ → 0. The im-
portant point here is that the quantum stress ∇ · � becomes
relevant in the vicinity of quantum vortices because it contains
higher order spatial derivatives. Note that because the density
changes are significant even outside the vortex cores [47–49],
we cannot ignore the quantum stress even in that region in
general.

The crossover length scale at which the quantum stress
becomes comparable to the momentum flux, ρvv, can be
estimated as follows. Let v0 be a typical velocity, such as the
critical velocity [50], and ρ0 be the volume averaged density.
Then, using an estimation that ρvv ∼ ρ0v

2
0 and � ∼ κ2ρ0/�

2,
where � is a length scale and κ := h/m is the quantum circu-
lation, one obtains

ρvv ∼ �,

ρ0v
2
0 ∼ κ2ρ0/�

2, (5)

� ∼ κ/v0.

This is on the order of the mean intervortex distance �i [50].
This fact already suggests the existence of a double-cascade
process consisting of the Richardson cascade, induced by the
momentum flux, and the quantum stress cascade, induced by
the quantum stress.

The total energy of the system can be written
as comprising three components, the kinetic energy∫

dd xρ|v|2/2, interaction energy
∫

dd xp, and quantum
energy

∫
dd xh̄2|∇√

ρ|2/2m2 [30,31]:

E =
∫

�

dd x
[

1

2
ρ|v|2 + p + h̄2

2m2
|∇√

ρ|2
]
. (6)
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For smooth solutions of (2) and (3), one can immediately obtain the balance equations for the energy densities. The local energy
balance equation is given by

∂t

(
1

2
ρ|v|2 + p + h̄2

2m2
|∇√

ρ|2
)

+ ∇ ·
{[(

1

2
ρ|v|2 + p + h̄2

2m2
|∇√

ρ|2
)

I + pI − �

]
· v + h̄2

4m2
(∇ρ)∇ · v

}
= v · f . (7)

The evolution equation for the kinetic energy density is given by

∂t
(

1
2ρ|v|2) + ∇ · [(

1
2ρ|v|2 + p

)
v − � · v

] = p∇ · v − � : ∇v + v · f . (8)

Using (7) and (8), one can also derive the evolution equation for the sum of the interaction and quantum energy densities as
follows:

∂t

(
p + h̄2

2m2
|∇√

ρ|2
)

+ ∇ ·
[(

p + h̄2

2m2
|∇√

ρ|2
)

v + h̄2

4m2
(∇ρ)∇ · v

]
= −p∇ · v + � : ∇v. (9)

Note that, even with no external force, the total kinetic energy
is not conserved because of the effect of the first two terms on
the right-hand side of (8). The first term −p∇ · v is known
as the pressure dilatation, which represents the conversion
of kinetic energy into interaction or quantum energy and
vice versa. As shown through numerical calculation [51], the
pressure-dilatation is considered to convert kinetic energy into
interaction or quantum energy on average. The existence of
the second term � : ∇v is specific to quantum turbulence.
As the form of this term is similar to that of pressure dilatation,
we refer to it as quantum stress strain. It also represents
the conversion of kinetic energy into interaction or quantum
energy and vice versa. We note that the additional energy flux
in (7) and (9), h̄2(∇ρ)∇ · v/4m2, does not exist in ordinary
hydrodynamics. This term corresponds to interstitial working
in the Navier-Stokes-Korteweg equations [52,53].

B. Coarse graining

Hereafter, we use the theoretical framework and notation
given in Refs. [19,20]. Additionally, to simplify the notation,
we often suppress argument t . We study properties of kinetic
energy transfer across scales by a coarse-graining approach
that can resolve turbulent fields both in scale and in space
[54,55]. For any locally integrable function a(x), we define
a coarse-grained field at length scale � as

ā�(x) :=
∫

�

dd rG�(r)a(x + r), (10)

where G(r) is the Friedrichs mollifier; i.e., G : � → [0,∞) is
a smooth symmetric function supported in the open unit ball
and with

∫
�

G = 1, and G�(r) := �−d G(r/�) is the rescaling
defined for each � > 0. We also define a residual field as

a′
�(x) := a(x) − ā�(x). (11)

As a direct consequence of the Riemann-Lebesgue lemma,
the coarse-graining procedure (10) substantially reduces the
amplitude of high-frequency Fourier components in space.
Hence, it is reasonable to describe ā� as the large-scale com-
ponent of a and a′

� as the small-scale field. Here, we note that

(ā�)� 	= ā�, (12)

(a′
�)

�
	= 0, (13)

in general.

Because the coarse-graining operation commutes with
space and time derivatives, coarse graining of (2) and (3) gives

∂t ρ̄� + ∇ · (ρv)� = 0, (14)

∂t (ρv)� + ∇ · (ρvv)� = −∇ p̄� + ∇ · �̄� + f̄�. (15)

Note that to express (14) and (15) in terms of large-scale quan-
tities ρ̄� and v̄�, we must introduce several cumulants, such as
τ̄�(ρ, v) := (ρv)� − ρ̄�v̄�. We introduce the density-weighted
Favre average to reduce the number of additional cumulant
terms and obtain a simple physical interpretation [56]:

ã� := (ρa)�
ρ̄�

. (16)

Subsequently, we rewrite (14) and (15) using the Favre aver-
age:

∂t ρ̄� + ∇ · (ρ̄�ṽ�) = 0, (17)

ρ̄�(∂t + ṽ� · ∇)ṽ� + ∇ · (ρ̄�τ̃�(v, v)) = −∇ p̄� + ∇ · �̄� + f̄�,
(18)

where τ̃�(v, v) := (̃vv)� − ṽ�ṽ�.
Note that the coarse-grained equations (17) and (18) are

not closed in terms of large-scale fields ρ̄�, ṽ�, p̄�, and �̄�

because of the appearance of the additional cumulant term,
i.e., τ̃�(v, v). This cumulant term depends on the small-scale
(<�) velocity field and can be regarded as the source of the
energy cascade, as demonstrated below.

III. MAIN ASSUMPTIONS

A. Assumption 1: Regularity of velocity and density fields

We assume that the velocity field is Hölder continuous, i.e.,

δv(r; x) = O(|r|h) as |r|/L → 0, (19)

with h ∈ (0, 1], where L is the characteristic energy injection
scale and δa(r; x) := a(x + r) − a(x) for any field a(x). Note
that the local Hölder condition (19) is not in contradiction with
the blow-up of the velocity field as 1/r with distance r from
a quantum vortex. From the perspective of the multifractal
hypothesis [57,58], there is a spectrum of Hölder singulari-
ties [hmin, hmax]. Imposing the assumption (19) implies that
we are considering a point x ∈ � with h > 0, just to permit
a simplified analysis. This does not contradict the fact that
there might be other points with h < 0. To correctly examine
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negative local Hölder singularities, we must perform a more
sophisticated space-global analysis using Besov spaces (see
Appendix B 1). We remark that the Hölder-type condition for
the velocity field was first conjectured by Onsager [1,3] and is
well established empirically in classical turbulence.

In addition, we assume that the density field satisfies

δρ(r; x) = O(|r|) as |r|/L → 0, (20)

1/ρ̄� � M < ∞ for � � ξ, (21)

where ξ := h̄/
√

2mgρ0 is the vortex core radius. Require-
ment (20) is reasonable because the energy density of the
system (6) contains the density gradient term ∝ |∇ρ|2. In
the last condition (21), M can be defined, for instance, as
M := sup��ξ,x∈� 1/ρ̄�. Note that this requirement is not strong
enough to prohibit the existence of vacuum regions, {x ∈
�|ρ(x) = 0}, where the quantized vortices are located. In
the following, we always assume that � � ξ because we are
interested only in the intermediate scales � ξ .

B. Assumption 2: Existence of steady state

We assume that the system eventually reaches a steady
state in which the mean kinetic energy is constant. The fol-
lowing two facts support the validity of this assumption.
First, although there are no viscous effects in pure quantum
turbulence, in which no normal fluid component remains,
experimental and numerical calculations imply that at least the
incompressible component of kinetic energy can be dissipated
[31,59,60]. This is attributed to the emission of compress-
ible excitations from vortex reconnections [61,62] and Kelvin
waves [38,63]. Second, the Onsager-type regularity condition
for weak solutions (solutions in the sense of distribution) of
the Euler-Korteweg equations, including the quantum Euler
equations as its special case, was recently formulated [64].
This result implies that weak solutions that satisfy the condi-
tion may dissipate energy because of their singularity even in
the absence of viscosity.

There are two remarks regarding this assumption. First, to
make this assumption more plausible, it might be beneficial to
introduce an energy dissipation term that eliminates the small-
scale kinetic energy as in previous studies [32,65,66]. Such
a phenomenological dissipation term is considered to model
the dissipation caused by the presence of thermal particles
[29]. Even in that case, if the dissipation works on a scale
sufficiently smaller than the mean intervortex distance �i, the
inertial range can be properly defined, and the result of the
present analysis does not change. Second, instead of a steady
state, it is also possible to assume a quasisteady state with
the total energy of the system increasing (forced turbulence)
or conserved (decaying turbulence). Such quasisteady states
have been well investigated through numerical simulations
[47,67]. We note that our analysis is also applicable to this
case.

C. Assumption 3: Scale independence of pressure
dilatation at small scales

We impose an additional assumption concerning the
cospectrum of pressure dilatation. The pressure-dilatation

cospectrum is defined as

E (p)(k) := − 1

	k

∑
k−	k/2<|k|<k+	k/2

p̂(k)̂∇ · v(−k), (22)

where 	k := 2π/L, and the symbol f̂ denotes the Fourier
coefficient of f . The requirement of the pressure-dilatation
cospectrum is that it decays sufficiently quickly at large k:

E (p)(k) = O(k−α ), α > 1. (23)

Note that the condition (23) does not require a power-law
behavior. This assumption is based on the decorrelation ef-
fects, namely cancellations between p̄�, which acts at large
scales ≈L, and ∇ · v̄�, which varies rapidly in space [19,20].
This condition is the same as that imposed by Aluie [19,20],
and its validity is confirmed numerically for the classical case
[51,68].

IV. MAIN CLAIMS

A. Three types of energy flux

In quantum turbulence, three types of scale-to-scale kinetic
energy flux are capable of directly transferring kinetic energy
across scales. Two of these fluxes contribute to the energy
cascade.

1. Deformation work

The first type is deformation work [69],

�� := −ρ̄�∇ṽ� : τ̃�(v, v), (24)

which corresponds to the energy flux of the Richardson
cascade in classical turbulence. In particular, in classical
homogeneous (ρ = const) incompressible turbulence, defor-
mation work is the only scale-to-scale energy flux that
transfers kinetic energy across scales. Deformation work rep-
resents work done by the large-scale (>�) strain ∇ṽ� against
the small-scale (<�) stress ρ̄�τ̃�(v, v). Here, we refer to
ρ̄�τ̃�(v, v) as “small-scale stress” because it is the residual
field obtained by subtracting the contribution of large-scale
stress ρ̄�ṽ�ṽ� from ρ̄� (̃vv)�.

2. Baropycnal work

The second type is baropycnal work [19,21,70], which
arises owing to compressibility:

�
(p)
� := 1

ρ̄�

∇ p̄� · τ̄�(ρ, v). (25)

Baropycnal work represents work done by the large-scale
(>�) pressure gradient force −(1/ρ̄�)∇ p̄� against the small-
scale (<�) mass flux τ̄�(ρ, v). Here, we refer to τ̄�(ρ, v) as
“small-scale mass flux” because it is the residual field ob-
tained by subtracting the contribution of large-scale mass flux
ρ̄�v̄� from (ρv)�. The presence of baropycnal work is peculiar
to compressible fluids and it does not exist in homogeneous
incompressible fluids. In classical compressible turbulence,
not only deformation work but also baropycnal work con-
tributes to the transfer of kinetic energy across scales. The
physical mechanism of baropycnal work is studied in detail
in Refs. [21,70].
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Under Assumption 1, we can prove that

�
(p)
� = O(�h+1). (26)

Therefore, the baropycnal work vanishes at least at O(�h+1)
for � → 0. Thus, in quantum turbulence, baropycnal work
does not contribute to the transfer of kinetic energy across
scales.

3. Quantum baropycnal work

The third type is the energy flux that is specific to quantum
turbulence,

�
(�)
� := − 1

ρ̄�

∇ · �̄� · τ̄�(ρ, v), (27)

which represents the energy transfer due to quantum stress.
We call �

(�)
� quantum baropycnal work because its form

is similar to that of baropycnal work. Quantum baropycnal
work represents work done by the large-scale (>�) force due
to quantum stress (1/ρ̄�)∇ · �̄� against the small-scale (<�)
mass flux τ̄�(ρ, v). Note that at small scales near a vortex core,
this energy flux is expected to be greater than deformation
work because it contains higher order spatial derivatives. This
implies the existence of a double-cascade process, as stated in
Sec. IV C.

B. “Kolmogorov’s 4/5 law” for quantum turbulence

Under Assumptions 2 and 3, we can derive the relation that
is analogous to the Kolmogorov 4/5 law [7,58]:〈

Qflux
�

〉 ≈ εeff for �small 
 � 
 �large, (28)

where the symbol 〈·〉 denotes a volume average
∫
�

·dd x/Ld .
Here, 〈Qflux

� 〉 := 〈��〉 + 〈�(p)
� 〉 + 〈�(�)

� 〉 denotes the total
mean scale-to-scale kinetic energy flux and εeff := 〈p∇ ·
v〉 + 〈εin

L 〉, where εin
L ≈ εin

� := ṽ� · f̄�, denotes the effective
mean energy injection rate. The intermediate asymptotic limit
�small 
 � 
 �large can be interpreted as the “inertial range”
for quantum turbulence. The �large is defined using pressure-
dilatation cospectrum E (p)(k):

�large :=
∑

k k−1E (p)(k)∑
k E (p)(k)

, (29)

and �small is defined using quantum stress strain cospectrum
E (�)(k):

�small :=
∑

k k−1E (�)(k)∑
k E (�)(k)

, (30)

where E (�)(k) is defined as

E (�)(k) := 1

	k

∑
k−	k/2<|k|<k+	k/2

�̂(k) : ∇̂v(−k). (31)

Because 〈Qflux
� 〉 can be expressed in terms of field increments

δv(r; x) and δρ(r; x), the relation (28) plays the same role as
the 4/5 law.

FIG. 1. Velocity power spectrum E v (k) in the inertial range
�−1

large 
 k 
 �−1
small.

C. Existence of a double-cascade process

Under Assumptions 1–3, we can show that〈
�

(�)
�

〉 
 〈��〉 = O(1) for �i 
 � 
 �large, (32)

〈��〉 
 〈
�

(�)
�

〉 = O(1) for �small 
 � 
 �i. (33)

Thus, a double cascade occurs in quantum turbulence: One in
the scale range much larger than the mean intervortex distance
�i, �i 
 � 
 �large, and the other in �small 
 � 
 �i. The for-
mer is induced by deformation work and is thus the same
as in classical turbulence, i.e., the Richardson cascade. The
latter is induced by quantum baropycnal work and is referred
to as the quantum stress cascade instead of the Kelvin-wave
cascade because the existence of Kelvin waves may not be a
prerequisite for the existence of this cascade.

As a consequence of this double-cascade process, we ex-
pect that the velocity power spectrum E v (k) exhibits the
following asymptotic behavior (see Fig. 1):

E v (k) ∼
{

Clargek−5/3 for �−1
large 
 k 
 �−1

i ,

Csmallk−3 for �−1
i 
 k 
 �−1

small,
(34)

where Clarge and Csmall are positive constants. For the power
spectrum of the density-weighted velocity field

√
ρv, the

same asymptotic behavior is expected (see Appendix B 4).
Here, we note that there is a possibility that the spectrum
k−3 in �−1

i 
 k 
 �−1
small becomes shallower because of the

depletion of nonlinearity or regularity of the density gradient
field (see Sec. VI B 4).

The detailed scenario of the energy transport in quantum
turbulence implied by our results is as follows:

(1) Kinetic energy is injected from the large scale (∼L)
through external stirring.

(2) In the scale range larger than �large, the injected kinetic
energy is gradually transferred to a smaller scale because of
the effect of deformation work, and part of the energy is
converted to other forms through pressure dilatation.

(3) In the inertial range �small 
 � 
 �large, the following
double-cascade process occurs:

(a) In the scale range �i 
 � 
 �large, the Richard-
son cascade, induced by deformation work, is dominant.
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Intuitively, this is because quantum vortices form a tangled
structure that effectively behaves like a classical vortex.

(b) At scales smaller than the mean intervortex distance
�i, the effect of the quantum stress due to quantum vortices
becomes significant. Therefore, the Richardson cascade
is no longer dominant, and the quantum stress cascade,
induced by quantum baropycnal work, develops.
(4) In the scale range smaller than �small, the kinetic energy

transferred by the double cascade is further transferred to a
smaller scale through quantum baropycnal work, and part of
the energy is converted to other forms through quantum stress
strain.

V. DERIVATION AND EXPLANATION

In this section, we present the derivation and explanation of
the assertion discussed in the previous section. First, we prove
that three types of scale-to-scale kinetic energy flux exist that
can contribute to energy transfer across scales and describe the
scale dependence of these fluxes. Next, we define the inertial
range for quantum turbulence and derive “Kolmogorov’s 4/5
law” for quantum turbulence. Finally, we prove the existence
of the double-cascade process using the scale dependence of
the energy fluxes and the definition of the inertial range. For
more sophisticated derivation and explanation using the Lp

norm; see Appendix B.

A. Proof that three types of scale-to-scale kinetic
energy flux exist

We show that three types of scale-to-scale kinetic energy
flux exist in quantum turbulence by deriving the large-scale
kinetic energy budget equation. Here, the large-scale kinetic
energy density is defined as ρ̄�|ṽ�|2/2 and satisfies the in-
equality [17]∫

�

dd x
1

2
ρ̄�|ṽ�|2 �

∫
�

dd x
1

2
ρ|v|2. (35)

Using the coarse-grained equations (17) and (18), we can
obtain the large-scale kinetic energy budget equation,

∂t
(

1
2 ρ̄�|ṽ�|2

) + ∇ · J� = p̄�∇ · v̄� − �̄� : ∇v̄� − Qflux
� + εin

� ,

(36)
where the various terms are defined as follows:

J� :=
(

1

2
ρ̄�|ṽ�|2 + p̄�

)
ṽ� + ρ̄�ṽ� · τ̃�(v, v) − p̄�

ρ̄�

τ̄�(ρ, v)

−�̄� · ṽ� + �̄�

ρ̄�

· τ̄�(ρ, v), (37)

εin
� := ṽ� · f̄�, (38)

Qflux
� := �� + �

(p)
� + �

(�)
� , (39)

�� := −ρ̄�∇ṽ� : τ̃�(v, v), (40)

�
(p)
� := 1

ρ̄�

∇ p̄� · τ̄�(ρ, v), (41)

�
(�)
� := − 1

ρ̄�

∇ · �̄� · τ̄�(ρ, v). (42)

Here, J� represents the spatial transport of large-scale kinetic
energy, which does not contribute to the transfer of kinetic
energy across scales, and εin

� denotes the energy injection
rate due to external stirring at scale �. The first two terms
on the right-hand side of (36), −p̄�∇ · v̄� and �̄� : ∇v̄�, are
the large-scale pressure dilatation and quantum stress strain,
respectively. Note that these two terms contain no modes at
small scales <�. Therefore, they only contribute to the con-
version of the large-scale kinetic energy into other forms of
energy, i.e., interaction and quantum energies, and vice versa.

The third term on the right-hand side of (36), Qflux
� , consists

of three components: Deformation work �� [69], baropycnal
work �

(p)
� [19,21,70], and quantum baropycnal work �

(�)
� .

Note that each of the three components has the form large-
scale (>�) quantity × small-scale (<�) quantity, while other
terms on the right-hand side of (36) do not. Therefore, only
these three terms are capable of directly transferring kinetic
energy across scales, as stated in Sec. IV A, and Qflux

� repre-
sents the total scale-to-scale kinetic energy flux.

We note that these three terms are all Galilean invari-
ant. Another possible definition is ṽ j∂i(ρ̄τ̃�(vi, v j )), where
i ∈ {1, 2, . . . , d} and a summation convention for equal in-
dices is adopted. This definition differs from ours by the
total gradient ∂ j (ρ̄�ṽiτ̃�(vi, v j )). However, this quantity is not
Galilean invariant, so the amount of energy transferred from
large to small scales at point x in the flow would depend on the
velocity of the observer. As observed by Eyink [71], Galilean
invariance is necessary for the scale locality of the energy
cascade. Note that non-Galilean-invariant terms in (36) do not
contribute to the energy transfer across scales.

B. Scale dependence of the energy fluxes

In this subsection, we explain the scale dependence of the
three energy fluxes, deformation work, baropycnal work, and
quantum baropycnal work, using arguments similar to those
used in the Onsager ideal turbulence theory.

1. Deformation work

We now examine the scale � dependence of the defor-
mation work �� = −ρ̄�∇ṽ� : τ̃�(v, v). Expressing the energy
flux in terms of increments, δa(r; x), is a crucial aspect of
Onsager’s theory. Using the Cauchy-Schwarz inequality and
the fact that ρ̄� � supx∈� ρ(x), we obtain

|��| = |ρ̄�∇ṽ� : τ̃�(v, v)|
�

(
sup
x∈�

ρ(x)
)|∇ṽ�||τ̃�(v, v)|, (43)

where |A| for matrix A = (ai j ) denotes the Frobenius norm,

i.e., |∇ṽ�| :=
√∑d

i=1

∑d
j=1 |∂i (̃v j )�(x)|2 and |τ̃�(v, v)| :=√∑d

i=1

∑d
j=1 |τ̃�(vi, v j )|2.

For the large-scale strain ∇ṽ�, using the relation

ṽ� = v̄� + τ̄�(ρ, v)

ρ̄�

, (44)

one obtains

∇ṽ� = ∇v̄� + 1

ρ̄�

∇τ̄�(ρ, v) + τ̄�(ρ, v)

ρ̄2
�

∇ρ̄�. (45)
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For the first term of (45), as
∫

dd r∇G(r) = 0, for any locally
integrable function a(x),

∇ā�(x) = −1

�

∫
�

dd r(∇G)�(r)δa(r; x). (46)

Therefore,

|∇ā�| =
∣∣∣∣1

�

∫
�

dd r(∇G)�(r)δa(r; x)

∣∣∣∣
� 1

�

∫
�

dd r|(∇G)�(r)||δa(r; x)|

� (const)

�
sup
|r|<�

|δa(r; x)|, (47)

and hence

∇v̄� = O

(
δv(�; x)

�

)
, (48)

where δa(�; x) := sup|r|<� |δa(r; x)|. For the second and third
terms of (45), using the assumption (21) and Propositions 1
and 2 in Appendix A, we obtain

1

ρ̄�

∇τ̄�(ρ, v) = O

(
Mδρ(�; x)δv(�; x)

�

)
, (49)

τ̄�(ρ, v)

ρ̄2
�

∇ρ̄� = O

(
M2(δρ(�; x))2δv(�; x)

�

)
. (50)

Thus, combining the results (48), (49), and (50), we obtain

∇ṽ� = O(δv(�; x))
�

× [1 + O(Mδρ(�; x)) + O(M2(δρ(�; x))2)]

= O

(
δv(�; x)

�

)
. (51)

For the small-scale stress τ̃�(v, v), using the relation

τ̃�(v, v) = τ̄�(v, v) + 1

ρ̄�

τ̄�(ρ, v, v) − 1

ρ̄2
�

τ̄�(ρ, v)τ̄�(ρ, v),

(52)

where τ̄�(ρ, v, v) is defined by

τ̄�(ρ, v, v) := (ρvv)� − ρ̄�(vv)� − 2v̄�(ρv)� − ρ̄�v̄�v̄�, (53)

and the assumption (21) and Proposition 1 in Appendix A, one
obtains

τ̃�(v, v) = O((δv(�; x))2)

× [1 + O(Mδρ(�; x)) + O(M2(δρ(�; x))2)]

= O((δv(�; x))2). (54)

Thus, from (43), (51), (54), and the assumption (19), we
finally obtain

�� = −ρ̄�∇ṽ� : τ̃�(v, v)

= O

(
(δv(�; x))3

�

)
= O(�3h−1), (55)

as a rigorous upper bound. This implies that the deformation
work vanishes at least at O(�3h−1) for � → 0 if h > 1/3.
The scale-independent upper bound is obtained in the case of
h = 1/3.

2. Baropycnal work

We now explain the scale � dependence of the baropy-
cnal work �

(p)
� = (1/ρ̄�)∇ p̄� · τ̄�(ρ, v). Using the Cauchy-

Schwarz inequality, we obtain∣∣�(p)
�

∣∣ = |(1/ρ̄�)∇ p̄� · τ̄�(ρ, v)|
(56)

� |(1/ρ̄�)∇ p̄�||τ̄�(ρ, v)|.
For the large-scale pressure gradient force −(1/ρ̄�)∇ p̄�,

from the assumption (21) and the inequality (47), we obtain∣∣∣∣ 1

ρ̄�

∇ p̄�

∣∣∣∣ � M
(const)

�
δp(�; x)

= O

(
δρ(�; x)

�

)
, (57)

where we have used the fact that

δp(�; x) = O(δρ(�; x)), (58)

which follows from the definition of p ∝ ρ2 and the mean
value theorem.

For the small-scale mass flux τ̄�(ρ, v), using Proposition 1
in Appendix A, we obtain

τ̄�(ρ, v) = O(δρ(�; x)δv(�; x)). (59)

Thus, from (56), (57), (59), and the assumptions (19) and
(20), we obtain

�
(p)
� = (1/ρ̄�)∇ p̄� · τ̄�(ρ, v)

= O

(
(δρ(�; x))2δv(�; x)

�

)
= O(�h+1). (60)

This implies that the baropycnal work vanishes at least at
O(�h+1) for � → 0. Therefore, unlike in the case of classical
compressible turbulence, baropycnal work does not contribute
to the transfer of kinetic energy across scales. This result is a
consequence of the functional form of p = gρ2/(2m2) and the
assumption (20).

3. Quantum baropycnal work

Next, we investigate the scale � dependence of the quantum
baropycnal work �

(�)
� = −(1/ρ̄�)∇ · �̄� · τ̄�(ρ, v). Using the

Cauchy-Schwarz inequality, we obtain

|�(�)
� | = |(1/ρ̄�)∇ · �̄� · τ̄�(ρ, v)|

� |(1/ρ̄�)∇ · �̄�||τ̄�(ρ, v)|. (61)

For the large-scale force due to quantum stress (1/ρ̄�)∇ ·
�̄�, using the assumption (21) and the inequality (47), one
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obtains∣∣∣∣ 1

ρ̄�

∇ · �̄�

∣∣∣∣ �
∣∣∣∣M h̄2

4m2
∇	ρ̄�

∣∣∣∣ +
∣∣∣∣M h̄2

m2
∇ · (∇√

ρ∇√
ρ )�

∣∣∣∣
� M

h̄2

4m2�3

∫
�

dd r|(∇	G)�(r)||δρ(r; x)|

+ M
h̄2

4m2�

∫
�

dd r|(∇G)�(r)|

×
∣∣∣∣δ( 1

ρ

)
(r; x)

∣∣∣∣(sup
x∈�

|∇ρ|
)2

� M
(const)

�3
δρ(�; x) + M

(const)

�
δρ(�; x). (62)

Therefore, from (61), (59), (62), and the assumptions (19)
and (20), we obtain

�
(�)
� = −(1/ρ̄�)∇ · �̄� · τ̄�(ρ, v)

= O

(
1

�3
(δρ(�; x))2δv(�; x)

)
+ O

(
1

�
(δρ(�; x))2δv(�; x)

)
= O(�h−1). (63)

Note that, for any h ∈ (0, 1], we cannot conclude that the
quantum baropycnal work vanishes for � → 0. In other words,
unlike deformation work, quantum baropycnal work can con-
tribute to the transfer of kinetic energy across scales regardless
of the regularity of the velocity field. The scale-independent
upper bound is obtained in the case of h = 1.

C. Derivation of “Kolmogorov’s 4/5 law” for quantum
turbulence

Suppose that the external stirring force f varies at scales
(∼L) much larger than the mean intervortex distance �i and
that the steady state in which the total mean kinetic energy is
constant is realized. Then, in the steady state, spatial averaging
of (36) gives〈

Qflux
�

〉 = 〈p̄�∇ · v̄�〉 − 〈�̄� : ∇v̄�〉 + 〈
εin

L

〉
, (64)

where 〈εin
L 〉 denotes the large-scale energy injection rate due

to external stirring. Here, we have used the approximation
〈εin

� 〉 ≈ 〈εin
L 〉 [21]. Below, following the definition of the iner-

tial range for classical compressible turbulence suggested by
Aluie [19,20], we aim to define the inertial range for quantum
turbulence �small 
 � 
 �large, in which the total mean scale-
to-scale kinetic energy flux becomes scale independent, i.e.,
〈Qflux

� 〉 = O(1).
To this end, we determine the scale range in which the pres-

sure dilatation and quantum stress strain, which appear on the
right-hand side of (64), become scale independent. To ensure
that the mean pressure dilatation 〈p̄�∇ · v̄�〉 becomes scale
independent at small scales, we impose the assumption on
the pressure dilatation stated in Sec. III C. From this assump-
tion, it follows that the mean pressure dilatation 〈p̄�∇ · v̄�〉
converges to the finite constant 〈p∇ · v〉 and becomes inde-

pendent of � at sufficiently small scales:

lim
�→0

〈p̄�∇ · v̄�〉 = − lim
K→∞

∑
0�k<K

E (p)(k) = 〈p∇ · v〉. (65)

Let �large be a characteristic length scale of the pressure dilata-
tion. It may be defined, for instance, as

�large :=
∑

k k−1E (p)(k)∑
k E (p)(k)

. (66)

Then, it follows that

〈p̄�∇ · v̄�〉 ≈ 〈p∇ · v〉 for � 
 �large. (67)

For the mean quantum stress strain 〈�̄� : ∇v̄�〉, through
evaluations similar to (62), one obtains

|�̄� : ∇v̄�| �
(

h̄2

4m2
|	ρ̄�| + h̄2

m2

∣∣(∇√
ρ∇√

ρ )�
∣∣)|∇v̄�|

�
(

(const)

�2
δρ(�; x) + (const)δρ(�; x)

)
× (const)

�
δv(�; x)

= O(�h−2). (68)

Therefore, there is a characteristic length scale of the quantum
stress strain, which may be defined, for instance, as

�small :=
∑

k k−1E (�)(k)∑
k E (�)(k)

, (69)

where E (�)(k) is the quantum stress strain cospectrum
defined by

E (�)(k) := 1

	k

∑
k−	k/2<|k|<k+	k/2

�̂(k) : ∇̂v(−k). (70)

Then, it follows that

〈�̄� : ∇v̄�〉 ≈ 0 for � � �small. (71)

Note that, unlike the pressure dilatation, there are no expected
decorrelation effects between �̄� and ∇ · v� because quantum
stress � changes rapidly in space.

We now consider the intermediate asymptotic limit
�small 
 � 
 �large. In this scale range, the steady-state mean
kinetic energy budget (64) becomes〈

Qflux
�

〉 ≈ 〈p∇ · v〉 + 〈
εin

L

〉
=: εeff , (72)

where εeff denotes the effective mean energy injection rate.
Note that the right-hand side of (72) does not include length
scale �. The scale independence of the mean scale-to-scale
kinetic energy flux implies that kinetic energy is transferred
conservatively to smaller scales on average. Therefore, it is
reasonable to call scale range �small 
 � 
 �large the inertial
range of quantum turbulence.

We provide some remarks related to the stationarity
assumption. If we introduce a phenomenological dissipation
term to eliminate the small-scale kinetic energy, the artificial
dissipation term −〈D�〉 acting at scale �d is added on the right-
hand side of (64). In that case, the inertial range is modified
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to max{�small, �d} 
 � 
 �large. It is also possible to assume
a quasisteady state instead of a steady state, as mentioned in
Sec. III B. In that case, if the total energy is conserved (decay-
ing turbulence), −〈∂t (ρ̄�|ṽ�|2/2)〉 plays the role of 〈εin

L 〉, while
if the total energy is increasing (forced turbulence), 〈εin

L 〉 in
(64) is replaced by 〈εin

L 〉 − 〈∂t (ρ̄�|ṽ�|2/2)〉.

D. Proof of the existence of a double-cascade process

1. Existence of a double-cascade process

We first note that the contribution to the energy transfer
from the baropycnal work �

(p)
� can be ignored because it

converges to zero as �/L → 0, as shown in (60). Therefore,
“Kolmogorov’s 4/5 law” (72) can be further approximated as

〈��〉 + 〈
�

(�)
�

〉 ≈ εeff . (73)

From (55) and (63), it immediately follows that the upper
bounds of the mean deformation work 〈��〉 and mean quan-
tum baropycnal work 〈�(�)

� 〉 have different � dependences. In
the case of h = 1/3,

〈��〉 = O(1), (74)

〈�(�)
� 〉 = O(�−2/3), (75)

whereas in the case of h = 1,

〈��〉 = O(�2), (76)〈
�

(�)
�

〉 = O(1). (77)

From the above observation and the fact that the sum of the
mean deformation work and mean quantum baropycnal work
〈��〉 + 〈�(�)

� 〉 becomes scale independent in the inertial range
�small 
 � 
 �large, it follows that a characteristic length scale
λ exists such that the energy cascade due to deformation work
is dominant in λ 
 � 
 �large, whereas that due to quantum
baropycnal work is dominant in �small 
 � 
 λ (see Fig. 2):〈

�
(�)
�

〉 
 〈��〉 = O(1) for λ 
 � 
 �large, (78)

〈��〉 
 〈
�

(�)
�

〉 = O(1) for �small 
 � 
 λ. (79)

The crossover scale λ may be determined, for instance, as
follows: From the expressions for deformation work (40) and

FIG. 2. Scale dependence of the scale-to-scale kinetic energy
fluxes. The solid lines indicate the upper bounds of the energy fluxes,
and the arrow indicates the direction of energy transfer.

quantum baropycnal work (42), and the definition of the quan-
tum circulation κ = h/m, one obtains

�
(�)
� ∼ κ2�−3ρ0v0 (80)

and

�� ∼ ρ0�
−1v3

0 . (81)

Assuming that �λ ∼ �
(�)
λ for some intermediate scale λ, we

obtain λ ∼ κ/v0. Note that λ is of the order of the mean
intervortex distance �i, i.e., λ ∼ �i.

Thus, a double cascade occurs in quantum turbulence: One
in �i 
 � 
 �large and the other in �small 
 � 
 �i. The for-
mer is the Richardson cascade, induced by deformation work,
as in the case of classical turbulence. The latter is the quantum
stress cascade, induced by quantum baropycnal work, the
existence of which is specific to quantum turbulence.

2. Velocity power spectrum

We consider the pth-order (absolute) structure function for
the velocity field

Sv
p(�) := 〈|δv(�)|p〉, (82)

with assumed scaling exponent ζp:

Sv
p(�) ∼ Cpv

p
0

(
�

L

)ζp

as �/L → 0, (83)

where Cp is a dimensionless constant. Note that the second-
order structure function Sv

2 (�) ∝ �ζ2 is also related to the
spectrum of the velocity field E v (k) ∝ k−ζ2−1, if isotropy is
assumed.

In �i 
 � 
 �large, where the Richardson cascade is dom-
inant, the velocity power spectrum is expected to follow the
Kolmogorov spectrum, i.e., E v (k) ∝ k−5/3. In fact, as h = 1/3
in �i 
 � 
 �large, we obtain ζ2 ≈ 2h = 2/3. Therefore, the
velocity power spectrum exhibits the following asymptotic
behavior:

E v (k) ∼ Clargek−5/3 for �−1
large 
 k 
 �−1

i , (84)

where Clarge is a positive constant.
In �small 
 � 
 �i, where the quantum stress cascade be-

comes dominant, we obtain ζ2 = 2 because h = 1 in this scale
range. This result implies that the velocity power spectrum
exhibits the following asymptotic behavior:

E v (k) ∼ Csmallk
−3 for �−1

i 
 k 
 �−1
small, (85)

where Csmall is a positive constant.

VI. CONCLUDING REMARKS

A. Summary of results

In this paper, we investigated the contribution of quantum
stress to energy transfer across scales in quantum turbulence
by applying the Onsager ideal turbulence theory. First, we
showed that two types of scale-to-scale energy flux contribute
to the energy cascade: The energy flux that is the same as
in classical turbulence, i.e., deformation work, and that due
to quantum stress, i.e., quantum baropycnal work. We then
derived “Kolmogorov’s 4/5 law” for quantum turbulence with
the proper definition of the inertial range �small 
 � 
 �large,
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where �large is determined through pressure dilatation and
�small through quantum stress strain. Using the “4/5 law” and
the scale dependence of the two energy fluxes, we established
a double-cascade scenario comprising the Richardson cas-
cade and the quantum stress cascade; the Richardson cascade,
induced by deformation work, becomes dominant in �i 

� 
 �large, whereas the quantum stress cascade, induced by
quantum baropycnal work, develops in �small 
 � 
 �i. The
advantage of the analysis presented in this paper is that it can
comprehensively and rigorously discuss the double-cascade
process consisting of the Richardson cascade and the Kelvin-
wave cascade, the existence of which has been predicted.

B. Implication and discussion of results

1. The role of Kelvin waves

It has been proposed that at scales smaller than the mean in-
tervortex distance, the Kelvin-wave cascade occurs. Because
both the quantum stress cascade and Kelvin-wave cascade
occur at scales sufficiently smaller than the mean intervortex
distance and Kelvin waves are accompanied by rapid density
changes, we expect that the quantum stress cascade is related
to the Kelvin-wave cascade. We emphasize that the present
analysis does not use any property of the Kelvin wave. In
fact, as can be seen from the calculation in Sec. V B 3, the
quantum stress cascade can occur if at least the quantum
stress is somewhat singular, i.e., the spatial derivative of the
density field is singular. This implies that the existence of
Kelvin waves may not be a prerequisite for the existence of the
quantum stress cascade. However, there is still a possibility
that the upper bound of the quantum baropycnal work (63) can
be optimized further considering Kelvin-wave oscillations.
Such an effect due to Kelvin-wave oscillations may be an
example of depletion of nonlinearity that will be explained
in Sec. VI B 4. Thus, there is scope for discussion on whether
Kelvin waves play a key role in energy transfer at small scales,
and on the elementary processes other than Kelvin waves that
contribute to the quantum stress cascade.

2. Classical-quantum crossover

Elucidating the structure of the crossover range between
the Richardson and Kelvin-wave cascades is an important
research topic. L’vov et al. conjecture that a bottleneck effect
exists between the two cascades, which affects the shape of
the energy spectrum around the mean intervortex distance
k ≈ �−1

i [72,73]. The bottleneck effect results from the faster
energy transfer by the three-dimensional Richardson cascade
than by the one-dimensional Kelvin-wave cascade. While
L’vov et al. ignored the effects of the reconnections both on the
cascade and on the bottleneck in the crossover region, Kozik
et al. hypothesized that the reconnection is the key process
in the crossover region and concluded that the region can
be classified into three relatively narrow scale regions [74].
It is interesting to consider whether these arguments would
be modified if the Kelvin-wave cascade were to be replaced
by the quantum stress cascade and whether our theoretical
approach can reveal the structure of the crossover region.

3. Scale locality of energy cascade

The fundamental property underlying an energy cascade
is scale locality. This means that only modes near a given
scale make major contributions to the transfer of energy at
that scale. Scale locality is fundamental in the sense that it
justifies the concept of scaling and universality in the inertial
range. In the theoretical framework using the smooth coarse-
graining approach employed in this paper, the definition and
proof of scale locality are given for the classical incompress-
ible [71,75,76] and classical compressible turbulence cases
[19,20]. Following the calculations in these works, we can
show that the Richardson cascade in quantum turbulence is
also scale local. However, the quantum stress cascade is only
ultraviolet local and does not satisfy the sufficient condition
to be infrared local (Appendix C). Thus, the contributions
of large-scale velocity increments could be non-negligible
and could contribute to quantum baropycnal work. Note that
this situation is similar to the enstrophy cascade in two-
dimensional incompressible turbulence [71,77,78].

4. Note on the spectral index of quantum stress cascade

Although the spectral index corresponding to the quan-
tum stress cascade is naively expected as −3 from the upper
bound of quantum baropycnal work (63), there is a possibil-
ity that the spectrum can become shallower; in other words,
the upper bound (63) may be overestimated. There are, for
example, two possibilities leading to such consequences: De-
pletion of nonlinearity and regularity of the density gradient
field. The depletion of nonlinearity is a phenomenon that
the nonlinearity is “reduced” because of cancellations due to
wave oscillations [22] or dynamical alignment [79,80]. In our
case, Kelvin-wave oscillations could lead to cancellations in
quantum baropycnal work, so that the upper bound (63) is
no longer optimal. To study such cancellation effects, “Kol-
mogorov’s 4/5 law” for quantum turbulence (28) provides the
correct starting point.

Another possibility to make the spectrum shallower is the
regularity of the density gradient field. In the estimation of the
upper bound of the quantum baropycnal work, we implicitly
assumed that the spatial derivative of the density field satisfies

δ(∇ρ)(r; x) = O(|r|β ), β = 0. (86)

This assumption appears reasonable considering that in the
simple case in which only one straight vortex line exists,
the density profile behaves like

√
ρ(r) ∝ r for r 
 ξ and√

ρ(r) � const for r � ξ , where r is the radial coordinate
from the vortex center. However, it may also be possible that
the spatial derivative of the density field satisfies the Hölder
condition

δ(∇ρ)(r; x) = O(|r|β ), β ∈ (0, 1). (87)

In this case, the upper bound of the quantum baropycnal work
(63) can be further sharpened as follows:

�
(�)
� = O(�h+β−1). (88)

Therefore, the upper bound becomes scale independent in the
case of h = 1 − β. Hence, the asymptotic behavior of the
velocity power spectrum can be estimated as

E v (k) ∝ k−3+2β for �−1
i 
 k 
 �−1

small. (89)
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Thus, the spectral index depends on exponent β of the Hölder
condition of the spatial derivative of the density field. There-
fore, a potentially interesting research direction could involve
investigating not only the energy spectrum but also the singu-
larity of the density field through numerical calculations.

We note that there are previous studies that claim the
spectral index −3 at scales smaller than the mean intervortex
distance. For example, Narita theoretically estimated the value
by constructing the phenomenological model and using the
method in magnetofluid turbulence theory [81]. Yepez et al.
numerically simulated quantum turbulence described by the
GP model using a unitary quantum lattice gas algorithm and
obtained the value −3 [82]. However, it should be noted that
the result of this numerical simulation is disputed because (i)
the number of vortices in the initial condition is too small to
consider it as fully developed turbulence and (ii) they confuse
the mean intervortex distance with the vortex core radius
[83,84].

More recent direct numerical calculation results using the
GP model show values closer to −5/3 in decaying turbulence
with no artificial dissipation [47], and −7/5 in steady turbu-
lence with an artificial dissipation [65]. However, the scale
range of the Kelvin-wave cascade in these numerical calcu-
lations is not wide enough to determine the spectral index.
Therefore, high-resolution numerical calculations capable of
accurately resolving the scale range �small 
 � 
 �i must be
performed.

5. Relation between quantum and classical turbulence

On the basis of the fact that pure quantum turbulence
consists of discrete vortices, quantum turbulence is sometimes
described as a prototype or “skeleton” of turbulence that
provides the simplest way of treating the turbulence prob-
lem [32,34]. Furthermore, as quantum turbulence has zero
viscosity, it is naively expected to be a concrete example
of Onsager’s ideal turbulence. However, the present analysis
reveals that it is not appropriate to describe quantum turbu-
lence as a prototype or “ideal turbulence”. This is because a
double-cascade process occurs and the inertial range cannot
extend to infinitesimal length scales owing to the effect of the
quantum stress strain that converts kinetic energy into interac-
tion and quantum energies. Therefore, it seems reasonable to
consider that quantum turbulence is more exotic than classical
turbulence.

At finite temperature, there is a situation where quan-
tum turbulence is described in terms of classical turbulence
[85–88]. In that case, a coarse-grained description of the
turbulent motion of a superfluid, such as the Hall-Vinen-
Bekarevich-Khalatnikov method, is possible. For future
research, it may be interesting to study quantum turbulence
at finite temperature with the approach of this study.
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APPENDIX A: COMMUTATOR ESTIMATES

In this section, we present results concerning the cumu-
lant estimation obtained by Drivas and Eyink [18], which
are modified to suit for our analysis. Hereafter, we take the
d-dimensional bounded domain � and consider coarse grain-
ing of functions fi ∈ L∞(�), i = 1, 2, 3, . . . . As L∞(�) ⊂
Lp(�) for p � 1, fi ∈ Lp(�).

Coarse-graining cumulants {τ̄�( f1, f2, · · · , fn)}n are de-
fined iteratively in n by τ̄�( f ) := f̄� and

( f1 f2 . . . fn)� =
∑
�

|�|∏
p=1

τ̄�

(
fi(p)

1
, . . . , fi(p)

np

)
, (A1)

where the sum is over all the partitions � of the set
{1, 2, · · · , n} into |�| disjoint subsets {i(p)

1 , . . . , i(p)
np }, p =

1, . . . , |�|. For example, when n = 2,

( f g)� = f̄�ḡ� + τ̄�( f , g). (A2)

Lemma 1. For n > 1, the coarse-graining cumulants are
related to the cumulants of difference fields δ f (r; x) := f (x +
r) − f (x) as follows:

τ̄�( f1, f2, . . . , fn) = 〈δ f1, . . . , δ fn〉c
�, (A3)

where 〈·〉� denotes the average over displacement vector r
with density G�(r) and superscript c indicates the cumulant
with respect to this average.

From the above lemma, the propositions below immedi-
ately follow:

Proposition 1 (Cumulant estimates). For n > 1,

|τ̄�( f1, f2, . . . , fn)| = O

(
n∏

i=1

|δ fi(�)|
)

, (A4)

where |δ f (�)| := sup|r|<� |δ f (r; ·)|.
This proposition can be extended to the case of the Lp

norm. For the Lp norm, for p ∈ [1,∞] and n > 1,

‖τ̄�( f1, f2, . . . , fn)‖p = O

(
n∏

i=1

‖δ fi(�)‖pi

)
(A5)

with
1

p
=

n∑
i=1

1

pi
,

where ‖δ f (�)‖p := sup|r|<� ‖δ f (r; ·)‖p.
Proposition 2 (Cumulant-derivative estimates). For n > 1

and ∂k = ∂/∂xk , k = 1, 2, . . . , d ,∣∣∂k1 . . . ∂km τ̄�( f1, f2, . . . , fn)
∣∣ = O

(
�−m

n∏
i=1

|δ fi(�)|
)

. (A6)

This proposition can also be extended to the case of the Lp

norm. For n > 1 and ∂k = ∂/∂xk , k = 1, 2, . . . , d ,

‖∂k1 . . . ∂km τ̄�( f1, f2, . . . , fn)‖p

= O

(
�−m

n∏
i=1

‖δ fi(�)‖pi

)
with

1

p
=

n∑
i=1

1

pi
. (A7)

023106-11



TOMOHIRO TANOGAMI PHYSICAL REVIEW E 103, 023106 (2021)

APPENDIX B: MORE SOPHISTICATED ANALYSIS
USING BESOV SPACES

In this section, we formulate the statement described in
this paper more precisely using the Lp norm. In particular,
we refine Assumption 1 in Sec. III A, the investigation of the
scale dependence of the energy fluxes described in Sec. V B,
and the estimation of the spectral index of the velocity power
spectrum in Sec. V D.

1. Assumption 1: Regularity of velocity and density fields

Instead of Assumption 1 imposed in Sec. III A, we assume
that

‖δv(r; ·)‖p ∼ Apvrms

( |r|
L

)σp

as |r|/L → 0, (B1)

with a dimensionless constant Ap for p ∈ [1,∞] and σp ∈
(0, 1]. Here, δa(r; x) := a(x + r) − a(x) for any field a(x),
and arms := 〈|a|2〉1/2 denotes the root mean square of a field
a(x), where the symbol 〈·〉 denotes the volume average. Ad-
ditionally, the symbol ∼ denotes “asymptotically equivalent,”
i.e., f (ξ ) ∼ g(ξ ) for ξ → 0 if and only if limξ→0 f (ξ )/g(ξ ) =
1; ‖ · ‖p denotes the Lp norm, i.e.,

‖a‖p :=
(

1

Ld

∫
�

|a(x)|pdd x
)1/p

= 〈|a|p〉1/p (B2)

for p ∈ [0,∞), and

‖a‖∞ := inf Ia = ess sup |a| (B3)

for p = ∞, where Ia denotes the semi-infinite interval

Ia := {c ∈ [0,∞)|the set {|a| > c} is of measure zero}.
(B4)

For a matrix A = (ai j ), we define its Lp norm ‖A‖p =
〈|A|p〉1/p via the Frobenius norm |A| :=

√∑
i

∑
j |ai j |2 . We

note that the relation (B1) can be interpreted as the Hölder
condition with index σp, not pointwise but in the sense of
spatial pth-order moments. This relation corresponds to the
Besov regularity [89,90]. According to recent experiments
[91], the condition (B1) is expected to hold up to p = 6 at
least in the scale range �i 
 � 
 �large.

In addition, we impose the following conditions for the
density field:

‖δρ(r; ·)‖p = O(|r|/L) as |r|/L → 0, (B5)

‖∇ρ‖∞ < ∞, (B6)

‖ρ‖∞ < ∞, (B7)

‖1/ρ̄�‖∞ � M < ∞ for � � ξ, (B8)

where M is a positive constant. The requirements (B5) and
(B6) are reasonable because the energy density of the sys-
tem (6) contains the density gradient term ∝ |∇ρ|2. In the
last condition (B8), M can be defined, for instance, as M :=
sup��ξ ‖1/ρ̄�‖∞. Note that this requirement is not strong
enough to prohibit the existence of vacuum regions, {x ∈
�|ρ(x) = 0}, where the quantized vortices are located.

2. Scale dependence of the energy fluxes

a. Deformation work

We examine the scale � dependence of the deformation
work �� by calculating its norm. Using the Cauchy-Schwarz
and Hölder inequalities, we obtain

‖��‖p/3 = ‖ρ̄�∇ṽ� : τ̃�(v, v)‖p/3

� ‖ρ‖∞‖∇ṽ�‖p‖τ̃�(v, v)‖p/2. (B9)

For the second factor on the right-hand side of (B9),
‖∇ṽ�‖p, using the relation

ṽ� = v̄� + τ̄�(ρ, v)

ρ̄�

(B10)

and the Minkowski inequality, one obtains

‖∇ṽ�‖p =
∥∥∥∥∇

(
v̄� + τ̄�(ρ, v)

ρ̄�

)∥∥∥∥
p

� ‖∇v̄�‖p +
∥∥∥∥ 1

ρ̄�

∇τ̄�(ρ, v)

∥∥∥∥
p

+
∥∥∥∥ τ̄�(ρ, v)

ρ̄2
�

∇ρ̄�

∥∥∥∥
p

. (B11)

For the first term of (B11), as
∫

dd r∇G(r) = 0, note that for
any locally integrable function a(x),

∇ā�(x) = −1

�

∫
�

dd r(∇G)�(r)δa(r; x). (B12)

Subsequently, the triangle inequality gives

‖∇ā�‖p =
∥∥∥∥1

�

∫
�

dd r(∇G)�(r)δa(r; ·)
∥∥∥∥

p

� 1

�

∫
�

dd r|(∇G)�(r)|‖δa(r; ·)‖p

� (const)

�
sup
|r|<�

‖δa(r; ·)‖p, (B13)

and hence

‖∇v̄�‖p = O

(‖δv(�)‖p

�

)
, (B14)

where ‖δa(�)‖p := sup|r|<� ‖δa(r; ·)‖p. For the second and
last terms of (B11), using the assumption (B8) and Proposi-
tions 1 and 2 in Appendix A, one obtains∥∥∥∥ 1

ρ̄�

∇τ̄�(ρ, v)

∥∥∥∥
p

� (const)

�
‖1/ρ̄�‖∞‖δρ(�)‖∞‖δv(�)‖p

� (const)

�
M‖ρ‖∞‖δv(�)‖p, (B15)∥∥∥∥ τ̄�(ρ, v)

ρ̄2
�

∇ρ̄�

∥∥∥∥
p

� M2‖∇ρ̄�‖∞‖τ̄�(ρ, v)‖p

� (const)

�
M2‖δρ(�)‖2

∞‖δv(�)‖p

� (const)M2‖ρ‖2
∞

‖δv(�)‖p

�
. (B16)
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Thus, combining the results (B14), (B15), and (B16), we
obtain

‖∇ṽ�‖p = ‖δv(�)‖p

�

× [O(1) + O(M‖ρ‖∞) + O(M2‖ρ‖2
∞)]

= O

(‖δv(�)‖p

�

)
. (B17)

For the last factor on the right-hand side of (B9),
‖τ̃�(v, v)‖p/2, using the relation

τ̃�(v, v) = τ̄�(v, v) + 1

ρ̄�

τ̄�(ρ, v, v) − 1

ρ̄2
�

τ̄�(ρ, v)τ̄�(ρ, v)

(B18)
and the Minkowski inequality, we obtain

‖τ̃�(v, v)‖p/2 � ‖τ̄�(v, v)‖p/2 +
∥∥∥∥ 1

ρ̄�

τ̄�(ρ, v, v)

∥∥∥∥
p/2

+
∥∥∥∥ 1

ρ̄2
�

τ̄�(ρ, v)τ̄�(ρ, v)

∥∥∥∥
p/2

. (B19)

Subsequently, using the assumption (B8) and Proposition 1 in
Appendix A, one obtains

‖τ̃�(v, v)‖p/2 = ‖δv(�)‖2
p

× [O(1) + O(M‖ρ‖∞) + O(M2‖ρ‖2
∞)]

= O
(‖δv(�)‖2

p

)
, p � 2. (B20)

Thus, from (B9), (B17), (B20), and the assumptions (B1)
and (B7), we finally obtain

‖��‖p/3 = ‖ρ̄�∇ṽ� : τ̃�(v, v)‖p/3

= O

(‖δv(�)‖3
p

�

)
= O

((
�

L

)3σp−1)
, p � 3, (B21)

as a rigorous upper bound. Note that the upper bound of (B21)
becomes independent of � in the case of σp = 1/3.

b. Baropycnal work

Next, we investigate the scale � dependence of baropycnal
work by calculating the norm. Using the assumption (B8) and
Cauchy-Schwarz and Hölder inequalities, we obtain

‖�(p)
� ‖p/3 = ‖(1/ρ̄�)∇ p̄� · τ̄�(ρ, v)‖p/3

� M‖∇ p̄�‖p‖τ̄�(ρ, v)‖p/2. (B22)

For ‖∇ p̄�‖p, from the inequality (B13),

‖∇ p̄�‖p � (const)

�
‖δp(�)‖p

= O

(‖δρ(�)‖p

�

)
, (B23)

where we have used the fact that

‖δp(�)‖p = O(‖δρ(�)‖p), (B24)

which follows from the definition of p and the mean value the-
orem. For ‖τ̄�(ρ, v)‖p/2, using Proposition 1 in Appendix A,
we obtain

‖τ̄�(ρ, v)‖p/2 = O(‖δρ(�)‖p‖δv(�)‖p). (B25)

From the assumptions (B1) and (B5), we thus obtain

‖�(p)
� ‖p/3 = ‖(1/ρ̄�)∇ p̄� · τ̄�(ρ, v)‖p/3

= O

(
1

�
‖δρ(�)‖p‖δρ(�)‖p‖δv(�)‖p

)
= O

((
�

L

)σp+1)
, p � 3. (B26)

c. Quantum baropycnal work

We investigate the scale � dependence of quantum baropy-
cnal work by calculating its norm. From the assumption (B8)
and the Cauchy-Schwarz and Hölder inequalities, we obtain

‖�(�)
� ‖p/3 = ‖(1/ρ̄�)∇ · �̄� · τ̄�(ρ, v)‖p/3

� M‖∇ · �̄�‖p‖τ̄�(ρ, v)‖p/2. (B27)

For ‖∇ · �̄�‖p, using the Minkowski inequality and the in-
equality (B13), one obtains

‖∇ · �̄�‖p �
∥∥∥∥ h̄2

4m2
∇	ρ̄�

∥∥∥∥
p

+
∥∥∥∥ h̄2

m2
∇ · (∇√

ρ∇√
ρ )�

∥∥∥∥
p

� (const)

�3
‖δρ(�)‖p + (const)

�
‖δρ(�)‖p‖∇ρ‖2

∞.

(B28)

From (B25), (B27), (B28), and the assumptions (B1), (B5),
(B6), and (B8), we thus obtain∥∥�

(�)
�

∥∥
p/3 = ‖(1/ρ̄�)∇ · �̄� · τ̄�(ρ, v)‖p/3

= O

(
1

�3
‖δρ(�)‖2

p‖δv(�)‖p

)
+O

(
1

�
‖δρ(�)‖2

p‖δv(�)‖p

)
= O

((
�

L

)σp−1)
+ O

((
�

L

)σp
)

= O

((
�

L

)σp−1)
, p � 3. (B29)

Note that the upper bound (B29) becomes independent of � in
the case of σp = 1.

3. Proof of the existence of a double-cascade process

From (B21) and (B29), it immediately follows that the
upper bounds of the mean deformation work 〈��〉 and mean
quantum baropycnal work 〈�(�)

� 〉 have different � depen-
dences. In the case of σ3 = 1/3,

〈��〉 � 〈|��|〉 = ‖��‖1 = O(1), (B30)

〈
�

(�)
�

〉
�

〈∣∣�(�)
�

∣∣〉 = ∥∥�
(�)
�

∥∥
1 = O

((
�

L

)−2/3)
, (B31)
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whereas in the case of σ3 = 1,

〈��〉 � 〈|��|〉 = ‖��‖1 = O

((
�

L

)2)
, (B32)〈

�
(�)
�

〉
�

〈∣∣�(�)
�

∣∣〉 = ∥∥�
(�)
�

∥∥
1 = O(1). (B33)

Therefore, we can show that the double-cascade process
exists using the same argument as in Sec. V D.

4. Estimation of the spectral index of the velocity
power spectrum

In compressible turbulence, we can consider the spectra of
the velocity v and the density-weighted velocity, such as

√
ρv

[92]. In classical compressible turbulence, high-resolution nu-
merical simulations exhibited the Kolmogorov spectrum for
both the velocity [68] and density-weighted velocity power
spectra [51] in the case in which the pressure-dilatation
cospectrum assumption is satisfied. In this subsection, we con-
sider the spectra of both the velocity v and density-weighted
velocity

√
ρv.

a. Velocity power spectrum

We consider the pth-order (absolute) structure function for
the velocity field,

Sv
p(�) := 〈|δv(�)|p〉 = ‖δv(�)‖p

p (B34)

with assumed scaling exponent ζp:

Sv
p(�) ∼ Cpv

p
0

(
�

L

)ζp

as �/L → 0, (B35)

where Cp is a dimensionless constant. Using the Hölder in-
equality, it can be shown that ζp is a concave function of p ∈
[0,∞) [58,93]. From this property, it immediately follows
that σp = ζp/p is a nonincreasing function of p [93]. Note
that the second-order structure function Sv

2 (�) ∝ �ζ2 is related
to the velocity spectrum E v (k) ∝ k−ζ2−1, assuming isotropy.

Because σ3 = 1/3 in �i 
 � 
 �large and σp is a nonin-
creasing function of p, it follows that σ2 � 1/3 in this scale
range. Hence, we can write ζ2 = 2σ2 ≡ 2/3 + μ/9, where μ

is a positive constant. This additional constant μ formally
corresponds to the so-called intermittency exponent [58].
Therefore, the velocity power spectrum exhibits the following
asymptotic behavior:

E v (k) ∼ Clargek−5/3−μ/9 for �−1
large 
 k 
 �−1

i , (B36)

where Clarge is a positive constant.
In �small 
 � 
 �i, where the quantum stress cascade be-

comes dominant, σ3 = 1. Because σp is a nonincreasing
function of p, it follows that σ2 = 1. This result implies that
the velocity power spectrum exhibits the following asymptotic
behavior:

E v (k) ∼ Csmallk
−3 for �−1

i 
 k 
 �−1
small, (B37)

where Csmall is a positive constant.

b. Density-weighted velocity power spectrum

Next, we consider the spectrum of the density-weighted
velocity

√
ρv. This quantity has been thoroughly investigated

in numerical simulations of quantum turbulence described by
the GP model [32,47,65]. We consider the pth-order (abso-
lute) structure function for density-weighted velocity

S
√

ρv
p (�) := 〈|δ(

√
ρv)(�)|p〉 = ‖δ(

√
ρv)(�)‖p

p, (B38)

with assumed scaling exponent ζ̃p:

S
√

ρv
p (�) ∼ C̃pρ

p/2v
p
0

(
�

L

)ζ̃p

as �/L → 0, (B39)

where C̃p is a dimensionless constant. Using the Hölder in-
equality, one can also show that ζ̃p is a concave function
of p ∈ [0,∞) [58,93]. Note that the second-order structure
function S

√
ρv

2 (�) ∝ �ζ̃2 is also related to the density-weighted
velocity spectrum E (k) ∝ k−ζ̃2−1, assuming isotropy.

In this case, we cannot determine the exact value of ζ̃2

because, from the mean value theorem, Minkowski inequality,
and assumptions (B1) and (B5),

‖δ(
√

ρv)(r; ·)‖p � B1‖δρ(r; ·)‖p + B2‖δv(r; ·)‖p

∼ B3v0

( |r|
L

)σp

as |r|/L → 0,

where B1, B2, and B3 are constants. Hence,

S
√

ρv
p (�) = ‖δ(

√
ρv)(�)‖p

p = O

((
�

L

)pσp
)

, (B40)

and we cannot conclude that ζ̃p = pσp in general. If we as-
sume that ζ2 ≈ ζ̃2 as in classical compressible turbulence, the
asymptotic behavior of the kinetic energy spectrum E (k) can
be obtained as

E (k) ∼
{

C̃largek−5/3−μ/9 for �−1
large 
 k 
 �−1

i ,

C̃smallk−3 for �−1
i 
 k 
 �−1

small,
(B41)

where C̃large and C̃small are positive constants.

APPENDIX C: SCALE LOCALITY OF QUANTUM
BAROPYCNAL WORK

In proving the scale locality of the quantum baropyc-
nal work �

(�)
� = −(1/ρ̄�)∇ · �̄� · τ̄�(ρ, v), it is not necessary

to consider ∇√
ρ∇√

ρ in the quantum stress because its
contribution to the energy flux vanishes as �/L → 0 (see
Sec. V B 3). Therefore, it is sufficient to prove the scale lo-
cality of

Z�(ρ, ρ, ρ, v) := −(h̄2/4m2ρ̄�)∇	ρ̄� · τ̄�(ρ, v), (C1)

where the first density argument corresponds to the factor
1/ρ̄� and the second to the factor ∇	ρ̄�. Following Eyink
[71], we describe the energy flux Z�(ρ, ρ, ρ, v) as ultravio-
let local if 〈Z�(ρ ′

δ, ρ
′
δ, ρ

′
δ, v′

δ )〉 decays as fast as (δ/�)α , for
α > 0, whenever δ 
 �. Similarly, we describe the energy
flux Z�(ρ, ρ, ρ, v) as infrared local if 〈Z�(ρ, ρ, ρ, v̄	)〉 decays
as fast as (	/�)−α , for α > 0, whenever 	 � �. As observed
by Aluie [19,20], in defining the infrared locality of the energy
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flux, the condition of negligible contribution of the large-scale
density field to the flux is not necessary. This is reasonable
considering that, in the case of incompressible turbulence,
the energy flux directly depends on the large-scale (k = 0)
density field.

1. Ultraviolet locality

It is obvious that 1/ρ̄� has a vanishing contribution from
small scales δ 
 � because its Fourier amplitudes decay faster
than any power n of wave number k−n as k → ∞ as a di-
rect consequence of the Riemann-Lebesgue lemma. For the
remaining three arguments, using the assumptions (B1), (B5),
and (B8) and the Hölder inequality, we obtain

‖Z�(ρ, ρ ′
δ, ρ

′
δ, v′

δ )‖p/3

= ∥∥(h̄2/4m2ρ̄�)∇	(ρ ′
δ )

�
· τ̄�(ρ ′

δ, v′
δ )

∥∥
p/3

� (const)

(
1

�3

∫
�

dd r|(∇	G)�(r)|‖ρ ′
δ‖p

)
‖τ̄�(ρ ′

δ, v′
δ )‖p/2

� (const)
1

�3
‖ρ ′

δ‖p‖ρ ′
δ‖p‖v′

δ‖p

= O

((
�

L

)σp−1(
δ

�

)σp+2)
, p � 3. (C2)

Here, we have used the fact that

‖a′
δ‖p �

∫
�

dd rGδ (r)‖δa(r; ·)‖p

�
∫

�

dd rGδ (r)‖δa(δ)‖p. (C3)

Therefore, Z� is ultraviolet local.

2. Infrared locality

Using the assumptions (B1), (B5), and (B8) and the Hölder
inequality, we obtain

‖Z�(ρ, ρ, ρ, v̄	)‖p/3

= ‖(h̄2/4m2ρ̄�)∇	ρ̄� · τ̄�(ρ, v̄	))‖p/3

� (const)
1

�3
‖δρ(�)‖p‖δρ(�)‖p‖δv̄	(�)‖p

= O

((
�

L

)σp−1(
	

�

)σp−1)
, p � 3. (C4)

Here, we have used the following evaluation [71]:

‖δv̄	(�)‖p

� sup
|ρ|<�

∥∥∥∥∫
�

dd rG	(r)(v(x + ρ + r) − v(x + r))

∥∥∥∥
p

= sup
|ρ|<�

∥∥∥∥∫
�

dd r(G	(r − ρ) − G	(r))v(x + r)

∥∥∥∥
p

= sup
|ρ|<�

∥∥∥∥ 1

	

∫ 1

0
dθ

∫
�

dd rρ · (∇G)	(r − θρ)δv(r; x)

∥∥∥∥
p

� �

	

∫ 1

0
dθ

∫
�

dd r|(∇G)	(r)|‖δv(	)‖p

= O

((
�

L

)(
	

L

)σp−1)
. (C5)

Therefore, in the scale range �small 
 � 
 	 
 �i,

〈Z�(ρ, ρ, ρ, v̄	)〉 � ‖Z�(ρ, ρ, ρ, v̄	)‖1

= O(1) for � 
 	, (C6)

because σ3 = 1 in this range. Thus, Z� does not satisfy the
sufficient condition to be infrared local.
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